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Note 3: Projection Transformation 
 
Reading: Textbook 5 
 

1. Introduction  
 
In the last lecture, our concentration was on creating model and putting the model in the 
right place for viewing. Next we need to consider how we want the projection to be. 
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Demo program: projection from Nate Robins (Utah) 

2. Simple Projections 
 
There following are 2 main classes of planar geometric projections. 
 
(i) perspective projection: object position are transformed to the 

view plane along the lines that converge to a point called the 
center of projection 

view plane 

Projection  reference 
point 
 ( center of projection ) 
 

 
(ii) parallel projection: determined by Direction of projection 

(projectos are parallel—do not converge to an “eye” of 
COP…..some consider this as a special case of perspective 
projection with cop at infinity (along some direction)  

 
view plane

infinity

 
 
- orthogonal projection: the projections are perpendicular to the view plane 
- oblique projection: the projection are not perpendicular to the view plan 
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Perspective Case: 

view plane 

 (x, y, z ) 

 ( x’, y’, z’ ) 

top view 

z = -d 
 ( x’, -d ) 

 (x, z ) 
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  For sure, we have z’ = -d 
From similar triangle (top view), we get 
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Orthogonal Case: 
   

x’ = x               
y’ = y 

  z’ = 0  (for projecting onto view plane at z=0) 
 

We have transformation matrix M = 
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3 OpenGL Projection Transformation 
Projection transformation defines a viewing volume that 
• determines how an object is projected onto the screen. 
• defines which objects or portions of an object are clipped out of the final image. 
 
OpenGl provide the following to specify perspective view:  
           glFrustum ( xmin, xmax, ymin, ymax, near, far ) 
           gluPerspective ( fovy, aspect, near, far ) 

 
void APIENTRY gluPerspective( GLdouble fovy, GLdouble aspect, GLdouble near, GLdouble far ) 
{  GLdouble xmin, xmax, ymin, ymax; 
    ymax = near * tan( fovy * M_PI / 360.0 );              ymin = -ymax; 
    xmin = ymin * aspect;                                                xmax = ymax * aspect; 
   glFrustum( xmin, xmax, ymin, ymax, near, far ); 
} 
 
OpenGl provides the following to specify parallel view:  

glOrtho ( xmin, xmax, ymin, ymax, near, far ) 
gluOrtho2D  (xmin, xmax, ymin, yman ) 
 

 (Xmin, Ymin, -near) 

(Xmax,Ymax, -near) 

Z = -far

 
void APIENTRY gluOrtho2D( GLdouble left,GLdouble right, GLdouble bottom, GLdouble top ) 
{         glOrtho( left, right, bottom, top, -1.0, 1.0 );     } 

 (Xmin, Ymin, Zmin = -near)

(Xmax,Ymax, Zmin = -near) 

Z = Zmax = -far

glFrustum 

fov 

W 

H 

gluPerspective 
Z 

X 

Z

X 

Y 
Y
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4 Projection Matrices in OpenGL  
Reference: Textbook 5.7.1. 
 
• Approach is based on a technique  -  projection-normalization, that converts all 

projections into orthogonal projections  by first distorting the objects such that the 
orthogonal projections of the distorted objects is the same as the desired projection of 
the original objects. ( see Fig 5.29 )  

 

perspective view orthographic projection of
distorted object  

 
Distort (normalize)  � orthographic projection 

 
e.g.1.    Orthogonal-Projection Matrix in OpenGL 

(Reference: Textbook: 5.7.2) 
For orthographic projections, the simplest clipping volume to deal with is a cube whose 
center is at the origin, whose sides are: 

    x = ± 1,    y = ± 1,   z = ± 1. 
This volume is called the canonical view volume and is defined by: 

 ( -1, -1, 1)

 (1, 1, -1)

 
glOrtho(-1.,1.,-1.,1.,-1.,1. );               
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Now suppose we set the glOrtho parameters as: 
  glOrtho( xmin, xmax, ymin, ymax, near, far );               

Projection matrix OpenGL sets up will convert the vertices that specify the 
objects to vertices within the canonical view volume, by scaling and 
translating them, then changing to a left-handed coord sys.   
 
Thus, the projection matrix that maps the specified volume to the 
canonical view volume may be represented by P where 
 

 P  =   Sreflection • S • T 
with 
        Sreflection    =   S(1, 1, -1) , 
 
        S  =   S( 2/( xmax - xmin ),   2/( ymax - ymin ),   2/( far - near )  )                   
   
        T  =  T (-( xmax+ xmin )/2,  -( ymax+ ymin)/2,  ( far+ near )/2) 
 
T translates center of cube to origin, S scales the edge to length 2 and Sreflection  changes 
the right-hand coordinates to the left-handed coordinates. 
 
Thus  P  =   Sreflection • S • T 

 
The matrix P is implemented in OpenGL by the function 
            glOrtho ( xmin, xmax, ymin, ymax, near, far ) 
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e.g 2.       Perspective-Projection Matrices (warm-up) 
  (Reference: Textbook: 5.8.1) 
Consider first the matrix N  and the simple perspective projection: 
(fix the angle of view at 90 degrees by making the sides of the viewing 
volume intersect the projection plane at a 45-degree angle) 
 

 
 
 
             N [ x   y   z   1 ]T  =  [  x    y    (-2-2z)    -z  ]T      
or 

x” = - x/z,     y” = -y/z,        z” = 2(1 + 1/z) 

The matrix N has transformed the viewing volume into a new volume.  Their original and 
new side planes given as follows: 
 original     new 

x = ± z     into     x” = - (± 1), 
y = ± z     into     y” = - (± 1), 
z = -1      into     z” =  0 , 
z = zmax    into     z” =  2 ( 1 +  1/zmax ) 

 
Top View : 
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N  =  

(-1, -1, -1) (1, 1, -1) 

z = zmax 

near plane

far plane 

 COP

z = zmin = -1 

z = zmax 

x = -1 

z = 0 

z = z” = 2 (1  + 1/zmax )

N

x = +z 
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Next consider an orthographic projection matrix Morth  with 
projection plane z = 0  and apply it after N : 

 
Morth N   becomes a simple projection matrix (with d=1)!    

 
Checking: 
           pp  = Morth N p   =   [ x  y  0  -z ]T    
 ����       xp  =   - x/z,   yp  =  - y/z ,   zp  =  0  
 
 
• Thus N  has transformed the view frustum into a right 

parallelepiped, and an orthographic projection in the 
transformed volume yields the same image as does the 
perspective projection. 

 
• N is called the perspective-normalization matrix (converts a 

perspective projection to an orthogonal projection) 

 
 

 
In the next example, we use a modified  N  for our purposes. The 
modification is necessary to move our z”  to between –1 and +1. 
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e.g 3.   OpenGL  Perspective Transformation 
Note: there are quite a bit of typos in the textbook on this topic 
 
 
 
 
 
 
 
 
 
 
 
 
(1)  Convert OpenGL frustum to the symmetric frustum by a shear transformation   
       H ( cot θ, cot φ ).  The skew (shear) angle is determined by our desire to shear the      

point   ( (xmin + xmax)/2, (ymin + ymax)/2, -near )   to    (0, 0, -near) 
 

 
The resultant symmetric frustum is described by the planes: 
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,   z = - far,   z = - near. 

 
 
 

(-1, -1, -1) 

(1, 1, -1) 

z = zmax

near plane

far plane 

(xmin, ymin, -near 
)

(xmax, ymax, -near)

z = -far 

symmetric viewing frustum OpenGL Perspective frustum 
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(2)  Want to scale the sides to : 
  x = ± z,     y = ± z,       z = - far,    z = - near. 

       Required scaling matrix S is therefore: 
          S =   S [ 2 near /(xmax – xmin ),  2 near /(ymax – ymin ),   1 ] 
 
(3)  To transform the far plane to the plane  z = +1  and the near plane to  z = -1 using the  
projection normalization, we must make a slight change to the projection-normalization 
matrix N by adjusting the parameters α and β : 

The effect of  N  on x, y, and  w  components of a point p remains the same as before, but 

the new z is now given by:  z’ =  - ( α + z
β

 )  . 
We require near plane:     z = - near    be moved to  z’ = -1 ,  
                  far plane:       z   = - far      be moved to  z’ = +1 . 
 

Thus:                 
nearfar
nearfar

−
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With these new values for the projection-normalization matrix N, the required 
projection matrix is therefore 
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