
CS527- Computer Graphics – Note 3: Projection Transformation 1

Note 3: Projection Transformation

Reading: Textbook 5

1. Introduction

In the last lecture, our concentration was on creating model and putting the model in the
right place for viewing. Next we need to consider how we want the projection to be.

modeling
transformation

viewing
transformation

projection
transformation

modeling
coordinate

world
coordinate

viewing
coordinate

projection
coordinate viewport

transformation
perspective
division

clip
coordinate

normalized
device
coordinate

window
coordinates

stages of vertex transformation

glTranslatef
glRotatef
glScalef gluLookAt

glFrustum
gluPerspective
glOrtho

glViewPort

CS527- Computer Graphics – Note 3: Projection Transformation 2

Demo program: projection from Nate Robins (Utah)

2. Simple Projections

There following are 2 main classes of planar geometric projections.

(i) perspective projection: object position are transformed to the

view plane along the lines that converge to a point called the
center of projection

view plane

Projection reference
point
 (center of projection)

(ii) parallel projection: determined by Direction of projection

(projectos are parallel—do not converge to an “eye” of
COP…..some consider this as a special case of perspective
projection with cop at infinity (along some direction)

view plane

infinity

- orthogonal projection: the projections are perpendicular to the view plane
- oblique projection: the projection are not perpendicular to the view plan

CS527- Computer Graphics – Note 3: Projection Transformation 3

Perspective Case:

view plane

 (x, y, z)

 (x’, y’, z’)

top view

z = -d
 (x’, -d)

 (x, z)

X

Y

Z
Z

X

 For sure, we have z’ = -d
From similar triangle (top view), we get

d
z
x'x

d
'x

z
x - ====����

−−−−
====

Similarly, we can get
d

z
y'y - ====

Thus, we have transformation matrix M =
����
����
����
����
����

����

����

����
����
����
����
����

����

����

−−−− 0100
0100
0010
0001

d

Orthogonal Case:

x’ = x
y’ = y

 z’ = 0 (for projecting onto view plane at z=0)

We have transformation matrix M =
����
����
����
����
����

����

����

����
����
����
����
����

����

����

1000
0000
0010
0001

CS527- Computer Graphics – Note 3: Projection Transformation 4

3 OpenGL Projection Transformation
Projection transformation defines a viewing volume that
• determines how an object is projected onto the screen.
• defines which objects or portions of an object are clipped out of the final image.

OpenGl provide the following to specify perspective view:
 glFrustum (xmin, xmax, ymin, ymax, near, far)
 gluPerspective (fovy, aspect, near, far)

void APIENTRY gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble near, GLdouble far)
{ GLdouble xmin, xmax, ymin, ymax;
 ymax = near * tan(fovy * M_PI / 360.0); ymin = -ymax;
 xmin = ymin * aspect; xmax = ymax * aspect;
 glFrustum(xmin, xmax, ymin, ymax, near, far);
}

OpenGl provides the following to specify parallel view:

glOrtho (xmin, xmax, ymin, ymax, near, far)
gluOrtho2D (xmin, xmax, ymin, yman)

 (Xmin, Ymin, -near)

(Xmax,Ymax, -near)

Z = -far

void APIENTRY gluOrtho2D(GLdouble left,GLdouble right, GLdouble bottom, GLdouble top)
{ glOrtho(left, right, bottom, top, -1.0, 1.0); }

 (Xmin, Ymin, Zmin = -near)

(Xmax,Ymax, Zmin = -near)

Z = Zmax = -far

glFrustum

fov

W

H

gluPerspective
Z

X

Z

X

Y
Y

CS527- Computer Graphics – Note 3: Projection Transformation 5

4 Projection Matrices in OpenGL
Reference: Textbook 5.7.1.

• Approach is based on a technique - projection-normalization, that converts all

projections into orthogonal projections by first distorting the objects such that the
orthogonal projections of the distorted objects is the same as the desired projection of
the original objects. (see Fig 5.29)

perspective view orthographic projection of
distorted object

Distort (normalize) � orthographic projection

e.g.1. Orthogonal-Projection Matrix in OpenGL

(Reference: Textbook: 5.7.2)
For orthographic projections, the simplest clipping volume to deal with is a cube whose
center is at the origin, whose sides are:

 x = ± 1, y = ± 1, z = ± 1.
This volume is called the canonical view volume and is defined by:

 (-1, -1, 1)

 (1, 1, -1)

glOrtho(-1.,1.,-1.,1.,-1.,1.);

CS527- Computer Graphics – Note 3: Projection Transformation 6

Now suppose we set the glOrtho parameters as:
 glOrtho(xmin, xmax, ymin, ymax, near, far);

Projection matrix OpenGL sets up will convert the vertices that specify the
objects to vertices within the canonical view volume, by scaling and
translating them, then changing to a left-handed coord sys.

Thus, the projection matrix that maps the specified volume to the
canonical view volume may be represented by P where

 P = Sreflection • S • T
with
 Sreflection = S(1, 1, -1) ,

 S = S(2/(xmax - xmin), 2/(ymax - ymin), 2/(far - near))

 T = T (-(xmax+ xmin)/2, -(ymax+ ymin)/2, (far+ near)/2)

T translates center of cube to origin, S scales the edge to length 2 and Sreflection changes
the right-hand coordinates to the left-handed coordinates.

Thus P = Sreflection • S • T

The matrix P is implemented in OpenGL by the function
 glOrtho (xmin, xmax, ymin, ymax, near, far)

P =

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

−
+−

−
−

−
+−

−

−
+−

−

1000

)(2
00

minmax
min)max(

0minmax
2

0

minmax
min)max(

00minmax
2

nearfar
nearfar

nearfar

yy
yy

yy

xx
xx

xx

CS527- Computer Graphics – Note 3: Projection Transformation 7

e.g 2. Perspective-Projection Matrices (warm-up)
 (Reference: Textbook: 5.8.1)
Consider first the matrix N and the simple perspective projection:
(fix the angle of view at 90 degrees by making the sides of the viewing
volume intersect the projection plane at a 45-degree angle)

 N [x y z 1]T = [x y (-2-2z) -z]T
or

x” = - x/z, y” = -y/z, z” = 2(1 + 1/z)

The matrix N has transformed the viewing volume into a new volume. Their original and
new side planes given as follows:
 original new

x = ± z into x” = - (± 1),
y = ± z into y” = - (± 1),
z = -1 into z” = 0 ,
z = zmax into z” = 2 (1 + 1/zmax)

Top View :

x = 1

�
�
�
�

�

�

�
�
�
�

�

�

01-00
2-2-00

0010
0001

N =

(-1, -1, -1) (1, 1, -1)

z = zmax

near plane

far plane

 COP

z = zmin = -1

z = zmax

x = -1

z = 0

z = z” = 2 (1 + 1/zmax)

N

x = +z

CS527- Computer Graphics – Note 3: Projection Transformation 8

Next consider an orthographic projection matrix Morth with
projection plane z = 0 and apply it after N :

Morth N becomes a simple projection matrix (with d=1)!

Checking:
 pp = Morth N p = [x y 0 -z]T
 ���� xp = - x/z, yp = - y/z , zp = 0

• Thus N has transformed the view frustum into a right

parallelepiped, and an orthographic projection in the
transformed volume yields the same image as does the
perspective projection.

• N is called the perspective-normalization matrix (converts a

perspective projection to an orthogonal projection)

In the next example, we use a modified N for our purposes. The
modification is necessary to move our z” to between –1 and +1.

�
�
�
�

�

�

�
�
�
�

�

�

01-00
2-2-00

0010
0001

N =

�
�
�
�

�

�

�
�
�
�

�

�

01-00
0000
0010
0001

Morth = Morth N =

�
�
�
�
�

�

�

�
�
�
�
�

�

�

1000
0000
0010
0001

CS527- Computer Graphics – Note 3: Projection Transformation 9

e.g 3. OpenGL Perspective Transformation
Note: there are quite a bit of typos in the textbook on this topic

(1) Convert OpenGL frustum to the symmetric frustum by a shear transformation
 H (cot θ, cot φ). The skew (shear) angle is determined by our desire to shear the

point ((xmin + xmax)/2, (ymin + ymax)/2, -near) to (0, 0, -near)

The resultant symmetric frustum is described by the planes:

 zx
�
�

�

�

�
�

�

� −
±=

near2
minxmaxx

, zy
�
�

�

�

�
�

�

� −
±=

near2
minymaxy

, z = - far, z = - near.

(-1, -1, -1)

(1, 1, -1)

z = zmax

near plane

far plane

(xmin, ymin, -near
)

(xmax, ymax, -near)

z = -far

symmetric viewing frustum OpenGL Perspective frustum

 H (cot θ, cot φ) =

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

+

+

1000
0100

010

001

near2
max

y
min

y

near2
max

x
min

x

x

y

z

CS527- Computer Graphics – Note 3: Projection Transformation 10

(2) Want to scale the sides to :
 x = ± z, y = ± z, z = - far, z = - near.

 Required scaling matrix S is therefore:
 S = S [2 near /(xmax – xmin), 2 near /(ymax – ymin), 1]

(3) To transform the far plane to the plane z = +1 and the near plane to z = -1 using the
projection normalization, we must make a slight change to the projection-normalization
matrix N by adjusting the parameters α and β :

The effect of N on x, y, and w components of a point p remains the same as before, but

the new z is now given by: z’ = - (α + z
β

) .
We require near plane: z = - near be moved to z’ = -1 ,
 far plane: z = - far be moved to z’ = +1 .

Thus:
nearfar
nearfar

−
+−=)(α

nearfar
nearfar

−
−= * 2β

With these new values for the projection-normalization matrix N, the required
projection matrix is therefore

�
�
�
�

�

�

�
�
�
�

�

�

01-00
00

0010
0001

βα
N =

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

−

−
−

−
+−

−
+

−

−
+

−

0100

*2)(
00

0
2

0

00
)(

2

minmax

minmax

minmax

minmax

minmax

minmax

nearfar
nearfar

nearfar
nearfar

yy
yy

yy
near

xx
xx

xx
near

P = NSH =

