Chapter 4 roadmap

4.1 Introduction and Network Service Models
4.2 VC and Datagram Networks
4.3 What’s Inside a Router
4.4 The Internet (IP) Protocol - IPv4, IPv6
4.5 Routing Algorithms
 └ Link state routing
 └ Distance vector routing
 └ Hierarchical Routing
4.6 Routing in the Internet
4.7 Broadcast and Multicast Routing

Hierarchical Routing

Our routing study thus far - idealization

/> all routers identical
/> network "flat"
... not true in practice

scale: with 200 million destinations:
/> can’t store all dest’s in routing tables!
/> routing table exchange would swamp links!

administrative autonomy
/> internet = network of networks
/> each network admin may want to control routing in its own network

aggregate routers into regions, “autonomous systems” (AS)
routers in same AS run same routing protocol
 └ “intra-AS” routing protocol
routers in different AS can run different “intra-AS” routing protocol
gateway routers
/> special routers in AS
/> run intra-AS routing protocol with all other routers in AS
/> also responsible for routing to destinations outside AS
/> run “inter-AS” routing protocol with other gateway routers
Intra-AS and Inter-AS routing

Gateways:
- perform inter-AS routing amongst themselves
- perform intra-AS routing with other routers in their AS

- inter-AS, intra-AS routing in gateway A.c

We'll examine specific inter-AS and intra-AS Internet routing protocols shortly

Chapter 4 roadmap
4.1 Introduction and Network Service Models
4.2 VC and Datagram Networks
4.3 What's Inside a Router
4.4 The Internet (IP) Protocol
 4.4.1 IPv4 addressing
 4.4.2 Moving a datagram from source to destination
 4.4.3 Datagram format
 4.4.4 IP Fragmentation
 4.4.5 ICMP: Internet Control Message Protocol
 4.4.6 DHCP: Dynamic Host Configuration Protocol
 4.4.7 NAT: Network Address Translation
4.5 Routing Algorithms
4.6 Routing in the Internet
4.7 Broadcast and Multicast Routing
The Internet Network layer

Host, router network layer functions:

- **Routing protocols**
 - path selection
 - RIP, OSPF, BGP

- **IP protocol**
 - addressing conventions
 - datagram format
 - packet handling conventions

- **ICMP protocol**
 - error reporting
 - router "signaling"

Transport layer: TCP, UDP

Link layer

Physical layer

IP Addressing: introduction

- IP address: 32-bit identifier for host, router interface
- Interface: connection between host/router and physical link
 - router typically has multiple interfaces
 - host may have multiple interfaces
 - IP addresses associated with each interface

IP Addressing

- IP address:
 - network part (high order bits)
 - host part (low order bits)
- What's a network?
 - from IP address perspective
 - device interfaces with same network part of IP address
 - can physically reach each other without intervening router

Network consisting of 3 IP networks
(for IP addresses starting with 223, first 24 bits are network addresses)
IP Addressing

How to find the networks?
- Detach each interface from router, host
- Create "islands of isolated networks"

Interconnected system consisting of six networks

223.1.1.1
223.1.1.2
223.1.1.3
223.1.1.4
223.1.1.5
223.1.1.6

223.1.2.1
223.1.2.2
223.1.2.3
223.1.2.4
223.1.2.5
223.1.2.6

223.1.3.1
223.1.3.2
223.1.3.3
223.1.3.4
223.1.3.5
223.1.3.6

223.1.4.1
223.1.4.2
223.1.4.3
223.1.4.4
223.1.4.5
223.1.4.6

223.1.5.1
223.1.5.2
223.1.5.3
223.1.5.4
223.1.5.5
223.1.5.6

223.1.6.1
223.1.6.2
223.1.6.3
223.1.6.4
223.1.6.5
223.1.6.6

IP Addresses

given notion of "network", let's re-examine IP addresses:
"class-full" addressing:

<table>
<thead>
<tr>
<th>class</th>
<th>network</th>
<th>host</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0.0.0 to 127.255.255.255</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>128.0.0.0 to 191.255.255.255</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>192.0.0.0 to 223.255.255.255</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>224.0.0.0 to 239.255.255.255</td>
<td></td>
</tr>
</tbody>
</table>

32 bits

IP addressing: CIDR

- **Classful addressing:**
 - inefficient use of address space, address space exhaustion
 - e.g., class B net allocates enough addresses for 65K hosts, even if only 2K hosts in that network; whereas class C allows 254 hosts

- **CIDR: Classless InterDomain Routing**
 - network portion of address of arbitrary length
 - address format: a.b.c.d/x, where x is # bits in network portion of address

<table>
<thead>
<tr>
<th>network part</th>
<th>host part</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000</td>
<td>00010111</td>
</tr>
<tr>
<td>00010000</td>
<td>00000000</td>
</tr>
<tr>
<td>200.23.16.0/23</td>
<td></td>
</tr>
</tbody>
</table>
IP addresses: how to get one?

Q: How does host get IP address?

- hard-coded by SysAdmin in a file
 - Wintel: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from AS server
 - "plug-and-play"
 (more shortly…)

IP addresses: how to get one?

Q: How does network get network part of IP addr?

A: gets allocated portion of its provider ISP’s address space

<table>
<thead>
<tr>
<th>ISP’s block</th>
<th>11001000 00010111 00010000 00000000 200.23.16.0/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISP decides…</td>
<td>11001000 00010111 00010000 00000000 200.23.16.0/23</td>
</tr>
<tr>
<td>Organization 0</td>
<td>11001000 00010111 00010000 00000000 200.23.16.0/23</td>
</tr>
<tr>
<td>Organization 1</td>
<td>11001000 00010111 00010100 00000000 200.23.18.0/23</td>
</tr>
<tr>
<td>Organization 2</td>
<td>11001000 00010111 00010100 00000000 200.23.18.0/23</td>
</tr>
<tr>
<td>Organization 7</td>
<td>11001000 00010111 00011110 00000000 200.23.30.0/23</td>
</tr>
</tbody>
</table>

Hierarchical addressing: route aggregation

Hierarchical addressing allows efficient advertisement of routing information:
- Organization 1 keeps the IP addresses 200.23.18.0/23 and ISPs-R-Us advertises the 200.23.18.0/23 block.
- Fly-by-night-ISP continues to advertise 200.23.16.0/20 – longest prefix matching is used by routers to route to organization 1 via ISPs-R-Us.
- "Send me anything with addresses beginning 200.23.18.0/23"
- "Send me anything with addresses beginning 199.31.0.0/16"
Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

```
Organization 0
  200.23.16.0/23

Organization 2
  200.23.20.0/23

Organization 3
  200.23.30.0/23

ISPs-R-Us
```

“Send me anything with addresses beginning 200.23.16.0/20”

```
200.23.18.0/23
200.23.20.0/23
```

Fly-By-Night-ISP

Organization 0

Organization 7

Internet

“Send me anything with addresses beginning 199.31.0/16 or 200.23.16.0/23”

```
200.23.20.0/23
```

```
Organization 1
  199.31.0.0/16

Organization 2

... ...
```

IP addressing: the last word...

Q: How does an ISP get block of addresses?
A: ICANN: Internet Corporation for Assigned Names and Numbers
- allocates addresses
- manages DNS
- assigns domain names, resolves disputes

Moving a datagram from source to dest.

<table>
<thead>
<tr>
<th>IP datagram:</th>
<th>forwarding table in A</th>
<th>Dest. Net.</th>
<th>next router</th>
<th>Nhops</th>
</tr>
</thead>
<tbody>
<tr>
<td>fields</td>
<td>223.1.1</td>
<td>223.1.2</td>
<td>223.1.3</td>
<td></td>
</tr>
<tr>
<td>misc fields</td>
<td></td>
<td>223.1.1.4</td>
<td>223.1.1.4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>223.1.1.4</td>
<td>223.1.1.4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>223.1.1.4</td>
<td>223.1.1.4</td>
<td>2</td>
</tr>
</tbody>
</table>

misc fields:
- datagram remains unchanged, as it travels source to destination
- addr fields of interest here
Getting a datagram from source to dest.

Starting at A, send IP datagram addressed to B:
- look up net. address of B in forwarding table
- find B is on same net. as A
- link layer will send datagram directly to B inside link-layer frame
 - B and A are directly connected

Dest. Net. next router Nhops
223.1.1 223.1.1.4 1
223.1.2 223.1.1.4 2
223.1.3 223.1.1.4 2

Getting a datagram from source to dest.

Starting at A, dest. E:
- look up network address of E in forwarding table
- E on different network
 - A, E not directly attached
 - routing table: next hop router to E is 223.1.1.4
- link layer sends datagram to router 223.1.1.4 inside link-layer frame
- datagram arrives at 223.1.1.4
- continued...

Getting a datagram from source to dest.

Arriving at 223.1.4, destined for 223.1.2.2:
- look up network address of E in router's forwarding table
- E on same network as router's interface 223.1.2.9
 - router, E directly attached
 - link layer sends datagram to 223.1.2.2 inside link-layer frame via interface 223.1.2.9
- datagram arrives at 223.1.2.2 (hooray!)
IP datagram format

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version/Length</td>
<td>The version number and the length of the IP header.</td>
</tr>
<tr>
<td>Type of Service</td>
<td>The type of service the datagram is providing.</td>
</tr>
<tr>
<td>Source/Destination</td>
<td>The source and destination IP addresses.</td>
</tr>
<tr>
<td>Identifier/Hop Limit</td>
<td>The fragment identifier and the maximum hop limit.</td>
</tr>
<tr>
<td>Time to Live</td>
<td>The time to live, which is used to detect invalid routes.</td>
</tr>
<tr>
<td>Protocol</td>
<td>The protocol number of the upper layer protocol.</td>
</tr>
<tr>
<td>Source Port/ Destination Port</td>
<td>The source and destination port numbers for TCP/UDP.</td>
</tr>
<tr>
<td>Options</td>
<td>Additional options that can be added to the datagram.</td>
</tr>
</tbody>
</table>

IP Fragmentation & Reassembly

- Network links have MTU (max transfer size), which is the largest possible link-level frame.
- Different link types, different MTUs.
- Large IP datagram divided ("fragmented") within the network, resulting in several fragments.
- "Reassembled" only at the final destination.
- IP header bits used to identify, order, and relate fragments.

Example

- **4000 byte datagram**
- **MTU = 1500 bytes**

 - Fragmentation: one large datagram into 3 smaller datagrams
 - Reassembly:
 - ID = x, offset = 0, fragflag = 0, length = 4000
 - ID = x, offset = 0, fragflag = 1, length = 1500
 - ID = x, offset = 1480, fragflag = 1, length = 1500
 - ID = x, offset = 2960, fragflag = 0, length = 1040

Comments:

- All data link protocols supported by IP must have MTU = min 576 bytes.
- If TCP segment size MSS = 536 bytes, then fragmentation can be completely avoided.