Data Pre-processing Exploratory Analysis Post-processing

DATA MINING

What is Data Mining?

- Data mining is the use of efficient techniques for the analysis of very large collections of data and the extraction of useful and possibly unexpected patterns in data.
- "Data mining is the analysis of (often large) observational data sets to find unsuspected relationships and to summarize the data in novel ways that are both understandable and useful to the data analyst" (Hand, Mannila, Smyth)
- "Data mining is the discovery of models for data" (Rajaraman, Ullman)
 - We can have the following types of models
 - Models that explain the data (e.g., a single function)
 - Models that predict the future data instances.
 - Models that summarize the data
 - Models the extract the most prominent features of the data.

Why do we need data mining?

- Really huge amounts of complex data generated from multiple sources and interconnected in different ways
 - Scientific data from different disciplines
 - Weather, astronomy, physics, biological microarrays, genomics
 - Huge text collections
 - The Web, scientific articles, news, tweets, facebook postings.
 - Transaction data
 - Retail store records, credit card records
 - Behavioral data
 - Mobile phone data, query logs, browsing behavior, ad clicks
 - Networked data
 - The Web, Social Networks, IM networks, email network, biological networks.
 - All these types of data can be combined in many ways
 - Facebook has a network, text, images, user behavior, ad transactions.
- We need to analyze this data to extract knowledge
 - Knowledge can be used for commercial or scientific purposes.
 - Our solutions should scale to the size of the data

The data analysis pipeline

Mining is not the only step in the analysis process

- Preprocessing: real data is noisy, incomplete and inconsistent. Data cleaning is required to make sense of the data
 - Techniques: Sampling, Dimensionality Reduction, Feature selection.
 - A dirty work, but it is often the most important step for the analysis.
- Post-Processing: Make the data actionable and useful to the user
 - Statistical analysis of importance
 - Visualization.
- Pre- and Post-processing are often data mining tasks as well

Data Quality

Examples of data quality problems:

- Noise and outliers
- Missing values
- Duplicate data

A mistake or a millionaire?

Missing values

Inconsistent duplicate entries

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	10000K	Yes	
6	No	NULL	60K	No	٦
7	Yes	Divorced	220K	NULL	
8	No	Single	85K	Yes	
9	No	Married	90K	No	
9	No	Single	90K	No	

Sampling

- Sampling is the main technique employed for data selection.
 - It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
 - Example: What is the average height of a person in Ioannina?
 - We cannot measure the height of everybody
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.
 - Example: We have 1M documents. What fraction has at least 100 words in common?
 - Computing number of common words for all pairs requires 10¹² comparisons
 - Example: What fraction of tweets in a year contain the word "Michigan"?
 - 300M tweets per day, if 100 characters on average, 86.5TB to store all tweets

Sampling ...

- The key principle for effective sampling is the following:
 - using a sample will work almost as well as using the entire data sets, if the sample is representative
 - A sample is representative if it has approximately the same property (of interest) as the original set of data
 - Otherwise we say that the sample introduces some bias
 - What happens if we take a sample from the university campus to compute the average height of a person in Kalamazoo?

Types of Sampling

- Simple Random Sampling
 - There is an equal probability of selecting any particular item
- Sampling without replacement
 - As each item is selected, it is removed from the population

Sampling with replacement

- Objects are not removed from the population as they are selected for the sample.
 - In sampling with replacement, the same object can be picked up more than once. This makes analytical computation of probabilities easier
 - E.g., we have 100 people, 51 are women P(W) = 0.51, 49 men
 P(M) = 0.49. If I pick two persons what is the probability
 P(W,W) that both are women?
 - Sampling with replacement: P(W,W) = 0.51²
 - Sampling without replacement: P(W,W) = 51/100 * 50/99

Types of Sampling

- Stratified sampling
 - Split the data into several groups; then draw random samples from each group.
 - Ensures that both groups are represented.
 - Example. I want to understand the differences between legitimate and fraudulent credit card transactions. 0.1% of transactions are fraudulent. What happens if I select 1000 transactions at random?
 - I get 1 fraudulent transaction (in expectation). Not enough to draw any conclusions.
 Solution: sample 1000 legitimate and 1000 fraudulent transactions

Probability Reminder: If an event has probability p of happening and I do N trials, the expected number of times the event occurs is pN

Sample Size

8000 points

2000 Points

500 Points

Sample Size

What sample size is necessary to get at least one object from each of 10 groups.

A data mining challenge

- You have N integers and you want to sample one integer uniformly at random. How do you do that?
- The integers are coming in a stream: you do not know the size of the stream in advance, and there is not enough memory to store the stream in memory. You can only keep a constant amount of integers in memory
- How do you sample?
 - Hint: if the stream ends after reading n integers the last integer in the stream should have probability 1/n to be selected.
- Reservoir Sampling:
 - Standard interview question for many companies

Reservoir Sampling

- Classic online algorithm due to Vitter (1985)
- Maintains a fixed-size uniform random sample
 - Size of the data stream need not be known in advance
- Data structure: "reservoir" of k data elements
- As the ith data element arrives:
 - Add it to the reservoir with probability p = k/i, discarding a randomly chosen data element from the reservoir to make room
 - Otherwise (with probability 1-p) discard it

A (detailed) data preprocessing example

Suppose we want to mine the comments/reviews of people on <u>Yelp</u> and <u>Foursquare</u>.

- Today there is an abundance of data online
 - Facebook, Twitter, Wikipedia, Web, etc...
- We can extract interesting information from this data, but first we need to collect it
 - Customized crawlers, use of public APIs
 - Additional cleaning/processing to parse out the useful parts
 - Respect of crawling etiquette

Mining Task

- Collect all reviews for the top-10 most reviewed restaurants in NY in Yelp
 - (thanks to Hady Law)
- Find few terms that best describe the restaurants.
- Algorithm?

Example data

- I heard so many good things about this place so I was pretty juiced to try it. I'm from Cali and I heard Shake Shack is comparable to IN-N-OUT and I gotta say, Shake Shake wins hands down. Surprisingly, the line was short and we waited about 10 MIN. to order. I ordered a regular cheeseburger, fries and a black/white shake. So yummerz. I love the location too! It's in the middle of the city and the view is breathtaking. Definitely one of my favorite places to eat in NYC.
- I'm from California and I must say, Shake Shack is better than IN-N-OUT, all day, err'day.
- Would I pay \$15+ for a burger here? No. But for the price point they are asking for, this is a definite bang for your buck (though for some, the opportunity cost of waiting in line might outweigh the cost savings) Thankfully, I came in before the lunch swarm descended and I ordered a shake shack (the special burger with the patty + fried cheese & portabella topping) and a coffee milk shake. The beef patty was very juicy and snugly packed within a soft potato roll. On the downside, I could do without the fried portabella-thingy, as the crispy taste conflicted with the juicy, tender burger. How does shake shack compare with in-and-out or 5-guys? I say a very close tie, and I think it comes down to personal affliations. On the shake side, true to its name, the shake was well churned and very thick and luscious. The coffee flavor added a tangy taste and complemented the vanilla shake well. Situated in an open space in NYC, the open air sitting allows you to munch on your burger while watching people zoom by around the city. It's an oddly calming experience, or perhaps it was the food coma I was slowly falling into. Great place with food at a great price.

First cut

- Do simple processing to "normalize" the data (remove punctuation, make into lower case, clear white spaces, other?) Break into words, keep the most popular words

- 1				
	the 27514	the 16710	the 16010	the 14241
	and 14508	and 9139	and 9504	and 8237
	i 13088	a 8583	i 7966	a 8182
	a 12152	i 8415	to 6524	i 7001
	to 10672	to 7003	a 6370	to 6727
	of 8702	in 5363	it 5169	of 4874
	ramen 8518	it 4606	of 5159	you 4515
	was 8274	of 4365	is 4519	it 4308
	is 6835	is 4340	sauce 4020	is 4016
	it 6802	burger 432	in 3951	was 3791
	in 6402	was 4070	this 3519	pastrami 3748
	for 6145	for 3441	was 3453	in 3508
	but 5254	but 3284	for 3327	for 3424
	that 4540	shack 3278	you 3220	sandwich 2928
	you 4366	shake 3172	that 2769	that 2728
	with 4181	that 3005	but 2590	but 2715
	pork 4115	you 2985	food 2497	on 2247
	my 3841	my 2514	on 2350	this 2099
	this 3487	line 2389	my 2311	my 2064
	wait 3184	this 2242	cart 2236	with 2040
	not 3016	fries 2240	chicken 2220	not 1655
	we 2984	on 2204	with 2195	your 1622
	at 2980	are 2142	rice 2049	so 1610
	on 2922	with 2095	so 1825	have 1585

First cut

- Do simple processing to "normalize" the data (remove punctuation, make into lower case, clear white spaces, other?) Break into words, keep the most popular words

the 27514 and 14508 i 13088 a 12152 to 10672 of 8702 ramen 8518 was 8274 is 6835 it 6802 in 6402 for 6145 but 5254 that 4540 you 4366 with 4181 pork 4115 my 3841	the 16710 and 9139 a 8583 i 8415 to 7003 in 5363 it 4606 of 4365 is 4340 burger 432 was 4070 for 3441 but 3284 shack 3278 shake 3172 that 3005 you 2985 my 2514	the 16010 and 9504 i 7966 to 6524 a 6370 it 5169 of 5159 is 4519 sauce 4020 in 3951 this 3519 was 3453 for 3327 you 3220 that 2769 but 2590 food 2497	the 14241 and 8237 a 8182 i 7001 to 6727 of 4874 you 4515 it 4308 is 4016 was 3791 pastrami 3748 in 3508 for 3424 sandwich 2928 that 2728 but 2715 on 2247	
this 3487	line 2389	Aost frequent v	vords are stol	o word
wait 3184 not 3016 we 2984 at 2980 on 2922	fries 2242 fries 2240 on 2204 are 2142 with 2095	cart 2236 chicken 2220 with 2195 rice 2049 so 1825	not 1655 your 1622 so 1610 have 1585	

Second cut

Remove stop words

Stop-word lists can be found online.

a, about, above, after, again, against, all, am, an, and, any, are, aren't, as, at, be, be cause, been, before, being, below, between, both, but, by, can't, cannot, could, could n't, did, didn't, do, does, doesn't, doing, don't, down, during, each, few, for, from, f urther, had, hadn't, has, hasn't, have, haven't, having, he, he'd, he'll, he's, her, he re, here's, hers, herself, him, himself, his, how, how's, i, i'd, i'll, i'm, i've, if, in , into, is, isn't, it, it's, its, itself, let's, me, more, most, mustn't, my, myself, no, nor, not, of, off, on, once, only, or, other, ought, our, ours, ourselves, out, over, own , same, shan't, she, she'd, she'll, she's, should, shouldn't, so, some, such, than, tha t, that's, the, their, theirs, them, themselves, then, there, there's, these, they, th ey'd, they'll, they're, they've, this, those, through, to, too, under, until, up, very , was, wasn't, we, we'd, we'll, we're, we've, were, weren't, what, what's, when, when's , where, where's, which, while, who, who's, whom, why, why's, with, won't, would, would n't, you, you'd, you'll, you're, you've, your, yours, yourself, yourselves,

Second cut

Remove stop words

• Stop-word lists can be found online.

ramen 8572	burger 4340	<pre>sauce 4023 food 2507 cart 2239 chicken 2238 rice 2052 hot 1835 white 1782 line 1755 good 1629 lamb 1422 halal 1343 just 1338 get 1332 one 1222 like 1096 place 1052 go 965 can 878 night 832 time 794 long 792 people 790</pre>	pastrami 3782
pork 4152	shack 3291		sandwich 2934
wait 3195	shake 3221		place 1480
good 2867	line 2397		good 1341
place 2361	fries 2260		get 1251
noodles 2279	good 1920		katz's 1223
ippudo 2261	burgers 1643		just 1214
buns 2251	wait 1508		like 1207
broth 2041	just 1412		meat 1168
like 1902	cheese 1307		one 1071
just 1896	like 1204		deli 984
get 1641	food 1175		best 965
time 1613	get 1162		go 961
one 1460	place 1159		ticket 955
really 1437	one 1118		food 896
go 1366	long 1013		sandwiches 813
food 1296	go 995		can 812
bowl 1272	time 951		beef 768
can 1256	park 887		order 720
great 1172	can 860		pickles 699
best 1167	best 849		time 662

Second cut

Remove stop words

• Stop-word lists can be found online.

<pre>ramen 8572 pork 4152 wait 3195 good 2867 place 2361 noodles 2279 ippudo 2261 buns 2251 broth 2041 like 1902 just 1896 get 1641 time 1613 one 1460</pre>	burger 4340 shack 3291 shake 3221 line 2397 fries 2260 good 1920 burgers 1643 wait 1508 just 1412 cheese 1307 like 1204 food 1175 get 1162	<pre>sauce 4023 food 2507 cart 2239 chicken 2238 rice 2052 hot 1835 white 1782 line 1755 good 1629 lamb 1422 halal 1343 just 1338 get 1332</pre>	pastrami 3782 sandwich 2934 place 1480 good 1341 get 1251 katz's 1223 just 1214 like 1207 meat 1168 one 1071 deli 984 best 965 go 961	
really 1437 Com	monly used wo	ords in reviews,	not so interesti	ing
go 1366 food 1296 bowl 1272 can 1256 great 1172 best 1167	go 995 time 951 park 887 can 860 best 849	prace 1052 go 965 can 878 night 832 time 794 long 792 people 790	sandwiches 813 can 812 beef 768 order 720 pickles 699 time 662	

IDF

- Important words are the ones that are unique to the document (differentiating) compared to the rest of the collection
 - All reviews use the word "like". This is not interesting
 - We want the words that characterize the specific restaurant
- Document Frequency DF(w): fraction of documents that contain word w. D(w): num of docs that contain word w

$$DF(w) = \frac{D(w)}{D}$$

D(w): num of docs that contain word wD: total number of documents

Inverse Document Frequency IDF(w):

$$IDF(w) = \log\left(\frac{1}{DF(w)}\right)$$

- Maximum when unique to one document : IDF(w) = log(D)
- Minimum when the word is common to all documents: IDF(w) = 0

TF-IDF

- The words that are best for describing a document are the ones that are important for the document, but also unique to the document.
- TF(w,d): term frequency of word w in document d
 - Number of times that the word appears in the document
 - Natural measure of importance of the word for the document
- IDF(w): inverse document frequency
 - Natural measure of the uniqueness of the word w
- TF-IDF(w,d) = TF(w,d) \times IDF(w)

Third cut

Ordered by TF-IDF

ramen 3057.4176194	fries 806.08537330	lamb 985.655290756243	pastrami 1931.94250908298 6
akamaru 2353.24196	custard 729.607519	halal 686.038812717726	katz's 1120.62356508209 4
noodles 1579.68242	shakes 628.4738038	53rd 375.685771863491	rye 1004.28925735888 2
broth 1414.7133955	shroom 515.7790608	gyro 305.809092298788	corned 906.113544700399 2
miso 1252.60629058	burger 457.2646379	pita 304.984759446376	pickles 640.487221580035 4
hirata 709.1962086	crinkle 398.347221	cart 235.902194557873	reuben 515.779060830666 1
hakata 591.7643688	burgers 366.624854	platter 139.45990308004	matzo 430.583412389887 1
shiromaru 587.1591	madison 350.939350	chicken/lamb 135.852520	
noodle 581.8446147	shackburger 292.42	carts 120.274374158359	harry 226.323810772916 4
	_	hilton 84.2987473324223	mustard 216.079238853014 6
ippudo 504.5275695	portobello 239.806	lamb/chicken 82.8930633	cutter 209.535243462458 1
	-	yogurt 70.0078652365545	carnegie 198.655512713779 3
			katz 194.387844446609 7
		6th 60.7930175345658 9	knish 184.206807439524 1
		4am 55.4517744447956 5	sandwiches 181.415707218 8
		yellow 54.4470265206673	brisket 131.945865389878 4
-		-	fries 131.613054313392 7
			salami 127.621117258549 3
		sammy's 50.656872045869	knishes 124.339595021678 1
		sw 50.5668577816893 3	delicatessen 117.488967607 2
		platters 49.90659700031	
	-	falafel 49.479699521204	
		sober 49.2211422635451	brown's 109.441778045519 2
bruiee 201.1797390	1amps 99.011138998	moma 48.1589121730374	matzoh 108.22149937072 1

Third cut

- TF-IDF takes care of stop words as well
- We do not need to remove the stopwords since they will get IDF(w) = o

Decisions, decisions...

- When mining real data you often need to make some
 - What data should we collect? How much? For how long?
 - Should we throw out some data that does not seem to be useful?

An actual review

- Too frequent data (stop words), too infrequent (errors?), erroneous data, missing data, outliers
- How should we weight the different pieces of data?
- Most decisions are application dependent. Some information may be lost but we can usually live with it (most of the times)
- We should make our decisions clear since they affect our findings.
- Dealing with real data is hard...

Exploratory analysis of data

- Summary statistics: numbers that summarize properties of the data
 - Summarized properties include frequency, location and spread
 - Examples: location mean spread - standard deviation
 - Most summary statistics can be calculated in a single pass through the data

Frequency and Mode

- The frequency of an attribute value is the percentage of time the value occurs in the data set
 - For example, given the attribute 'gender' and a representative population of people, the gender 'female' occurs about 50% of the time.
- The mode of a an attribute is the most frequent attribute value
- The notions of frequency and mode are typically used with categorical data

Percentiles

- For continuous data, the notion of a percentile is more useful.
- Given an ordinal or continuous attribute x and a number p between o and 100, the pth percentile is a value x_p of x such that p% of the observed values of x are less than x_p .
- For instance, the 50th percentile is the value $x_{50\%}$ such that 50% of all values of x are less than $x_{50\%}$.

Measures of Location: Mean and Median

- The mean is the most common measure of the location of a set of points.
- However, the mean is very sensitive to outliers.
- Thus, the median or a trimmed mean is also commonly used.

$$\mathrm{mean}(x) = \overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

 $median(x) = \begin{cases} x_{(r+1)} & \text{if } m \text{ is odd, i.e., } m = 2r+1\\ \frac{1}{2}(x_{(r)} + x_{(r+1)}) & \text{if } m \text{ is even, i.e., } m = 2r \end{cases}$

Example

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	10000K	Yes	
6	No	NULL	60K	No	
7	Yes	Divorced	220K	NULL	
8	No	Single	85K	Yes	
9	No	Married	90K	No	
10	No	Single	90K	No	

Measures of Spread: Range and Variance

- Range is the difference between the max and min
- The variance or standard deviation is the most common measure of the spread of a set of points.

$$var(x) = \frac{1}{m} \sum_{i=1}^{m} (x - \bar{x})^2$$

 $\sigma(x) = \sqrt{var(x)}$

Normal Distribution

•
$$\phi(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

- An important distribution that characterizes many quantities and has a central role in probabilities and statistics.
 - Appears also in the central limit theorem
- Fully characterized by the mean μ and standard deviation σ

Not everything is normally distributed

Plot of number of words with x number of occurrences

 If this was a normal distribution we would not have a frequency as large as 28K

Power-law distribution

 We can understand the distribution of words if we take the log-log plot

 $p(x=k)=k^{-a}$

Zipf's law

 Power laws can be detected by a linear relationship in the log-log space for the rank-frequency plot

• f(r): Frequency of the r-th most frequent word $f(r) = r^{-\beta}$

Power-laws are everywhere

- Incoming and outgoing links of web pages, number of friends in social networks, number of occurrences of words, file sizes, city sizes, income distribution, popularity of products and movies
 - Signature of human activity?
 - A mechanism that explains everything?
 - Rich get richer process

<u>The Long Tail</u>

Post-processing

- Visualization
 - The human eye is a powerful analytical tool
 - If we visualize the data properly, we can discover patterns
 - Visualization is the way to present the data so that patterns can be seen
 - E.g., histograms and plots are a form of visualization
 - There are multiple techniques (a field on its own)

Scatter Plot Array of Iris Attributes

Contour Plot Example: SST Dec, 1998

- Statistical computing language.
- Many, many add-on packages.
- x = c(1, 1, 2, 3, 5, 8, 13, 21)
- length(x)
- x[5]
- help("foo")

Data Frames

- Data frames are the most common way to store data in R
- Like a matrix, but columns and rows can have names

> head(mtcars)

	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2

- You can access columns by name using the \$ operator
- e.g., count(mtcars\$gear)

Data Frames: viewing and manipulating

- > summary(mtcars)
- > write.csv(mtcars,'/tmp/blah.csv')
- > mtcars\$logmpg <- log(mtcars\$mpg)</pre>
 - > rownames(mtcars)
 - > colnames(mtcars)
- > str()
- > mean()
- > var()

```
> plot(x,y)
```

```
> hist(x)
```

```
> read.csv()
```

```
> write.csv()
```

```
> library("rattle")
```

```
> library("Rcmdr")
```

```
▶ ls()
```

```
> Remove()
```

R: Data Frames

```
> var1 <- 1:5
> var2 <- (1:5) / 10
> var3 <- c("R", "and", "Data Mining", "Examples", "Case Studies")
> df1 <- data.frame(var1, var2, var3)</pre>
> names(df1) <- c("VariableInt", "VariableReal", "VariableChar")</pre>
> write.csv(df1, "./data/dummmyData.csv", row.names = FALSE)
> df2 <- read.csv("./data/dummmyData.csv")</pre>
> print(df2)
  VariableInt VariableReal VariableChar
1
            1
                        0.1
                                        R
            0
                        ~ ~
0
```

and	0.2	2	2
Data Mining	0.3	3	3
Examples	0.4	4	4
Case Studies	0.5	5	5

Meaningfulness of Answers

- A big data-mining risk is that you will "discover" patterns that are meaningless.
- Statisticians call it Bonferroni's principle: (roughly) if you look in more places for interesting patterns than your amount of data will support, you are bound to find crap.
- The Rhine Paradox: a great example of how not to conduct scientific research.

Rhine Paradox – (1)

- Joseph Rhine was a parapsychologist in the 1950's who hypothesized that some people had Extra-Sensory Perception.
- He devised (something like) an experiment where subjects were asked to guess 10 hidden cards – red or blue.
- He discovered that almost 1 in 1000 had ESP – they were able to get all 10 right!

Rhine Paradox – (2)

- He told these people they had ESP and called them in for another test of the same type.
- Alas, he discovered that almost all of them had lost their ESP.
- What did he conclude?
 - Answer on next slide.

Rhine Paradox – (3)

He concluded that you shouldn't tell people they have ESP; it causes them to lose it.