Data Pre-processing Exploratory Analysis
Post-processing

DATA MINING

What is Data Mining?

- Data mining is the use of efficient techniques for the analysis of very large collections of data and the extraction of useful and possibly unexpected patterns in data.
- "Data mining is the analysis of (often large) observational data sets to find unsuspected relationships and to summarize the data in novel ways that are both understandable and useful to the data analyst" (Hand, Mannila, Smyth)
- "Data mining is the discovery of models for data" (Rajaraman, Ullman)
- We can have the following types of models
- Models that explain the data (e.g., a single function)
- Models that predict the future data instances.
- Models that summarize the data
- Models the extract the most prominent features of the data.

Why do we need data mining?

- Really huge amounts of complex data generated from multiple sources and interconnected in different ways
- Scientific data from different disciplines
- Weather, astronomy, physics, biological microarrays, genomics
- Huge text collections
- The Web, scientific articles, news, tweets, facebook postings.
- Transaction data
- Retail store records, credit card records
- Behavioral data
- Mobile phone data, query logs, browsing behavior, ad clicks
- Networked data
- The Web, Social Networks, IM networks, email network, biological networks.
- All these types of data can be combined in many ways
" Facebook has a network, text, images, user behavior, ad transactions.
- We need to analyze this data to extract knowledge
- Knowledge can be used for commercial or scientific purposes.
- Our solutions should scale to the size of the data

The data analysis pipeline

- Mining is not the only step in the analysis process

Data Mining

Result

Post-processing

- Preprocessing: real data is noisy, incomplete and inconsistent. Data cleaning is required to make sense of the data
- Techniques: Sampling, Dimensionality Reduction, Feature selection.
- A dirty work, but it is often the most important step for the analysis.
- Post-Processing: Make the data actionable and useful to the user
- Statistical analysis of importance
- Visualization.
- Pre- and Post-processing are often data mining tasks as well

Data Quality

- Examples of data quality problems:
- Noise and outliers
- Missing values
- Duplicate data

A mistake or a millionaire?

Missing values

Inconsistent duplicate entries

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	NULL	60K	No
7	Yes	Divorced	220K	NULL
8	No	Single	85K	Yes
9	No	Married	90K	No
9	No	Single	90K	No

Sampling

- Sampling is the main technique employed for data selection.
- It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Example: What is the average height of a person in loannina?
- We cannot measure the height of everybody
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.
- Example: We have 1 M documents. What fraction has at least 100 words in common?
- Computing number of common words for all pairs requires 10^{12} comparisons
- Example: What fraction of tweets in a year contain the word "Michigan"?
- 300 M tweets per day, if 100 characters on average, 86.5 TB to store all tweets

Sampling

- The key principle for effective sampling is the following:
- using a sample will work almost as well as using the entire data sets, if the sample is representative
- A sample is representative if it has approximately the same property (of interest) as the original set of data
- Otherwise we say that the sample introduces some bias
- What happens if we take a sample from the university campus to compute the average height of a person in Kalamazoo?

Types of Sampling

- Simple Random Sampling
- There is an equal probability of selecting any particular item
- Sampling without replacement
- As each item is selected, it is removed from the population
- Sampling with replacement
- Objects are not removed from the population as they are selected for the sample.
- In sampling with replacement, the same object can be picked up more than once. This makes analytical computation of probabilities easier
- E.g., we have 100 people, 51 are women $P(W)=0.51,49$ men $P(M)=0.49$. If I pick two persons what is the probability $P(W, W)$ that both are women?
- Sampling with replacement: $P(W, W)=0.51^{2}$
- Sampling without replacement: $P(W, W)=51 / 100$ * 50/99

Types of Sampling

- Stratified sampling
- Split the data into several groups; then draw random samples from each group.
- Ensures that both groups are represented.
- Example. I want to understand the differences between legitimate and fraudulent credit card transactions. 0.1% of transactions are fraudulent. What happens if I select 1000 transactions at random?
- I get 1 fraudulent transaction (in expectation). Not enough to draw any conclusions. Solution: sample 1000 legitimate and 1000 fraudulent transactions

Probability Reminder: If an event has probability pof happening and I do N trials, the expected number of times the event occurs is pN

Sample Size

8000 points

2000 Points

500 Points

Sample Size

- What sample size is necessary to get at least one object from each of $\mathbf{1 0}$ groups.

A data mining challenge

- You have N integers and you want to sample one integer uniformly at random. How do you do that?
- The integers are coming in a stream: you do not know the size of the stream in advance, and there is not enough memory to store the stream in memory. You can only keep a constant amount of integers in memory
- How do you sample?
- Hint: if the stream ends after reading n integers the last integer in the stream should have probability $1 / n$ to be selected.
- Reservoir Sampling:
- Standard interview question for many companies

Reservoir Sampling

- Classic online algorithm due to Vitter (1985)
- Maintains a fixed-size uniform random sample
- Size of the data stream need not be known in advance
- Data structure: "reservoir" of k data elements
- As the ith data element arrives:
- Add it to the reservoir with probability $p=k / i$, discarding a randomly chosen data element from the reservoir to make room
- Otherwise (with probability 1-p) discard it

A (detailed) data preprocessing example

- Suppose we want to mine the comments/reviews of people on Yelpand Foursquare.

Data Collection

- Today there is an abundance of data online
" Facebook, Twitter, Wikipedia, Web, etc...
- We can extract interesting information from this data, but first we need to collect it
- Customized crawlers, use of public APIs
- Additional cleaning/processing to parse out the useful parts
- Respect of crawling etiquette

Mining Task

- Collect all reviews for the top-10 most reviewed restaurants in NY in Yelp
- (thanks to Hady Law)
- Find few terms that best describe the restaurants.
- Algorithm?

Example data

I heard so many good things about this place so I was pretty juiced to try it. I'm from Cali and I heard Shake Shack is comparable to IN-N-OUT and I gotta say, Shake Shake wins hands down. Surprisingly, the line was short and we waited about 10 MIN. to order. I ordered a regular cheeseburger, fries and a black/white shake. So yummerz. I love the location too! It's in the middle of the city and the view is breathtaking. Definitely one of my favorite places to eat in NYC.

I'm from California and I must say, Shake Shack is better than IN-N-OUT, all day, err'day.

Would I pay $\$ 15+$ for a burger here? No. But for the price point they are asking for, this is a definite bang for your buck (though for some, the opportunity cost of waiting in line might outweigh the cost savings) Thankfully, I came in before the lunch swarm descended and I ordered a shake shack (the special burger with the patty + fried cheese \& portabella topping) and a coffee milk shake. The beef patty was very juicy and snugly packed within a soft potato roll. On the downside, I could do without the fried portabella-thingy, as the crispy taste conflicted with the juicy, tender burger. How does shake shack compare with in-and-out or 5-guys? I say a very close tie, and I think it comes down to personal affliations. On the shake side, true to its name, the shake was well churned and very thick and luscious. The coffee flavor added a tangy taste and complemented the vanilla shake well. Situated in an open space in NYC, the open air sitting allows you to munch on your burger while watching people zoom by around the city. It's an oddly calming experience, or perhaps it was the food coma I was slowly falling into. Great place with food at a great price.

First cut

- Do simple processing to "normalize" the data (remove punctuation, make into lower case, clear white spaces, other?)
- Break into words, keep the most popular words

```
the 27514
and 14508
i 13088
a 12152
to 10672
of 8702
ramen }851
was 8274
is 6835
it 6802
in 6402
for 6145
but 5254
that 4540
you 4366
with 4181
pork 4115
my 3841
this 3487
wait 3184
not }301
we 2984
at 2980
on }292
```

```
the 16710
```

the 16710
and 9139
and 9139
a 8583
a 8583
i 8415
i 8415
to 7003
to 7003
in 5363
in 5363
it 4606
it 4606
of 4365
of 4365
is 4340
is 4340
burger 432
burger 432
was 4070
was 4070
for 3441
for 3441
but }328
but }328
shack 3278
shack 3278
shake 3172
shake 3172
that 3005
that 3005
you 2985
you 2985
my 2514
my 2514
line 2389
line 2389
this 2242
this 2242
fries 2240
fries 2240
on 2204
on 2204
are 2142
are 2142
with 2095

```
with 2095
```

```
the 16010
and 9504
i 7966 a 8182
the 14241
and 9504 and 8237
to 6524 i 7001
a 6370 to 6727
it 5169 of 4874
of 5159 you 4515
is 4519 it 4308
sauce 4020 is 4016
in 3951 was 3791
this 3519 pastrami 3748
was 3453 in 3508
for 3327 for 3424
you 3220 sandwich 2928
that 2769 that 2728
but 2590 but 2715
food 2497 on 2247
on 2350 this 2099
my 2311 my 2064
cart 2236 with 2040
chicken 2220 not 1655
with 2195 your 1622
rice 2049 so 1610
so 1825 have 1585
```


First cut

- Do simple processing to "normalize" the data (remove punctuation, make into lower case, clear white spaces, other?)
- Break into words, keep the most popular words

```
the 27514
and 14508
i 13088
a 12152
to 10672
of }870
ramen 8518
was 8274
is 6835
it 6802
in 6402
for 6145
but 5254
that 4540
you 4366
with 4181
pork 4115
my 3841
this 3487
wait 3184
not 3016
we 2984
at 2980
on 2922
```

```
the 16710
```

the 16710
and 9139
and 9139
a 8583
a 8583
i 8415
i 8415
to 7003
to 7003
in }536
in }536
it 4606
it 4606
of 4365
of 4365
is 4340
is 4340
burger 432
burger 432
was 4070
was 4070
for 3441
for 3441
but }328
but }328
shack }327
shack }327
shake 3172
shake 3172
that 3005
that 3005
you 2985
you 2985
my 2514
my 2514
line 2389
line 2389
this 2242
this 2242
fries 2240
fries 2240
on 2204
on 2204
are 2142
are 2142
with 2095

```
with 2095
```

```
the 16010
and 9504
i 7966
but 2590
```

the 14241
and 8237
a 8182
i 7001
to 6524 to 6727
$\begin{array}{ll}\text { a } 6370 & \text { to } 6727 \\ \text { of } 4874\end{array}$
$\begin{array}{ll}\text { it } 5169 & \text { of } 4874 \\ \text { of } 5159 & \text { you } 4515\end{array}$
of 5159 it 4308
is 4519 is 4016
sauce 4020 was 3791
$\begin{array}{ll}\text { in } 3951 & \text { was } 3791 \\ \text { this } 3519 & \text { pastrami } 3748\end{array}$
this 3519 in 3508
was 3453 in 3508
for 3327 sandwich 2928
you 3220 sandwich
that $2769 \quad$ but 2715
food 2497
on 2247

Most frequent words are stop words

cart 2236	not 1655
chicken 2220	your 1622
with 2195	so 1610
rice 2049	have 1585
so 1825	

Second cut

Remove stop words

- Stop-word lists can be found online.
a, about, above, after, again, against, all, am, an, and, any, are, aren't, as, at, be, be cause, been, before, being, below, between, both, but, by, can't, cannot, could, could n't, did, didn't, do, does, doesn't, doing, don't, down, during, each, few, for, from, f urther, had, hadn't,has,hasn't,have, haven't,having,he,he'd,he'll,he's,her, he re,here's,hers,herself,him,himself,his,how,how's,i,i'd,i'll,i'm,i've,if,in , into, is,isn't,it,it's,its,itself,let's,me, more, most, mustn't,my,myself,no, nor, not, of, off, on, once, only, or, other, ought, our, ours, ourselves, out, over, own , same, shan't, she, she'd, she'll, she's, should, shouldn't, so, some, such, than, tha t, that's, the, their, theirs, them, themselves, then, there, there's, these, they, th ey'd, they'll, they're, they've, this, those, through, to, too, under, until, up, very , was, wasn't, we, we'd,we'll,we're, we've, were, weren't, what, what's, when, when's , where, where's,which, while, who, who's,whom, why,why's,with,won't, would, would n't, you, you'd, you'll, you're, you've, your, yours, yourself,yourselves,

Second cut

- Remove stop words

- Stop-word lists can be found online.

ramen 8572	burger 4340	sauce 4023	pastrami 3782
pork 4152	shack 3291	food 2507	sandwich 2934
wait 3195	shake 3221	cart 2239	place 1480
good 2867	line 2397	chicken 2238	good 1341
place 2361	fries 2260	rice 2052	get 1251
noodles 2279	good 1920	hot 1835	katz's 1223
ippudo 2261	burgers 1643	white 1782	just 1214
buns 2251	wait 1508	line 1755	like 1207
broth 2041	just 1412	good 1629	meat 1168
like 1902	cheese 1307	lamb 1422	one 1071
just 1896	like 1204	halal 1343	deli 984
get 1641	food 1175	just 1338	best 965
time 1613	get 1162	get 1332	go 961
one 1460	place 1159	one 1222	ticket 955
really 1437	one 1118	like 1096	food 896
go 1366	long 1013	place 1052	sandwiches 813
food 1296	go 995	go 965	can 812
bowl 1272	time 951	can 878	beef 768
can 1256	park 887	night 832	order 720
great 1172	can 860	time 794	pickles 699
best 1167	best 849	long 792	time 662
		people 790	

Second cut

- Remove stop words
- Stop-word lists can be found online.

IDF

- Important words are the ones that are unique to the document (differentiating) compared to the rest of the collection
" All reviews use the word "like". This is not interesting
- We want the words that characterize the specific restaurant
- Document Frequency $D F(w)$: fraction of documents that contain word w.

$$
D F(w)=\frac{D(w)}{D}
$$

$D(w)$: num of docs that contain word w
D : total number of documents

- Inverse Document Frequency IDF(w):

$$
I D F(w)=\log \left(\frac{1}{D F(w)}\right)
$$

- Maximum when unique to one document: $\operatorname{IDF}(w)=\log (D)$
- Minimum when the word is common to all documents: $\operatorname{IDF}(w)=$ 0

TF-IDF

- The words that are best for describing a document are the ones that are important for the document, but also unique to the document.
- TF(w,d): term frequency of word w in document d
- Number of times that the word appears in the document
- Natural measure of importance of the word for the document
- IDF(w): inverse document frequency
- Natural measure of the uniqueness of the word w
- $\operatorname{TF}-\operatorname{IDF}(w, d)=\operatorname{TF}(w, d) \times \operatorname{IDF}(w)$

Third cut

- Ordered by TF-IDF

ramen 3057.4176194 akamaru 2353.24196 noodles 1579.68242 broth 1414.7133955 miso 1252.60629058 hirata 709.1962086 hakata 591.7643688 shiromaru 587.1591 noodle 581.8446147 tonkotsu 529.59457 ippudo 504.5275695 buns 502.296134008 ippudo's 453.60926 modern 394.8391629 egg 367.3680056967 shoyu 352.29551922 chashu 347.6903490 karaka 336.1774235 kakuni 276.3102111 ramens 262.4947006 bun 236.5122638036 wasabi 232.3667512 dama 221.048168927 brulee 201.1797390

Abstract

fries 806.08537330 lamb 985.655290756243 custard 729.607519 halal 686.038812717726 shakes 628.4738038 53rd 375.685771863491 shroom 515.7790608 gyro 305.809092298788 burger 457.2646379 pita 304.984759446376 crinkle 398.347221 cart 235.902194557873 burgers 366.624854 platter 139.45990308004 madison 350.939350 chicken/lamb 135.852520 shackburger 292.42 carts 120.274374158359 'shroom 287.823136 hilton 84.2987473324223 portobello 239.806 lamb/chicken 82.8930633 custards 211.83782 yogurt 70.0078652365545 concrete 195.16992 52nd 67.5963923222322 bun 186.9621782983 6th 60.79301753456589 milkshakes 174.996 4am 55.45177444479565 concretes 165.7861 yellow 54.4470265206673 portabello 163.483 tzatziki 52.95945713886: shack's 159.334353 lettuce 51.323016802268: patty 152.22603588 sammy's 50.656872045869 SS 149.66803104461 sw 50.56685778168933 patties 148.068287 platters 49.90659700031 (cam 105.9496067806 falafel 49.479699521204. milkshake 103.9720 sober 49.2211422635451 lamps 99.011158998 moma 48.1589121730374

pastrami 1931.942509082986 katz's 1120.62356508209 4 rye $1004.28925735888 \quad 2$ corned 906.113544700399 2 pickles 640.4872215800354 reuben 515.779060830666 1 matzo 430.5834123898871 sally 428.1104847074712 harry 226.323810772916 4 mustard 216.0792388530146 cutter 209.535243462458 1 carnegie 198.655512713779 3 katz 194.3878444466097 knish 184.2068074395241 sandwiches 181.415707218 8 brisket 131.9458653898784 fries 131.6130543133927 salami 127.6211172585493 knishes $124.339595021678 \quad 1$ delicatessen 117.4889676072 deli's 117.431839742696 1 carver 115.129254649702 1 brown's 109.441778045519 2 matzoh 108.22149937072 1

Third cut

- TF-IDF takes care of stop words as well
- We do not need to remove the stopwords since they will get IDF(w) $=0$

Decisions, decisions...

- When mining real data you often need to make some
- What data should we collect? How much? For how long?
- Should we throw out some data that does not seem to be useful?

An actual review

```
AAAAAAAAAAAAA
ААААААААААААААААААААААААА ААААААААААААААААААААААААА ААА 
```

- Too frequent data (stop words), too infrequent (errors?), erroneous data, missing data, outliers
- How should we weight the different pieces of data?
- Most decisions are application dependent. Some information may be lost but we can usually live with it (most of the times)
- We should make our decisions clear since they affect our findings.
- Dealing with real data is hard...

Exploratory analysis of data

- Summary statistics: numbers that summarize properties of the data
- Summarized properties include frequency, location and spread
- Examples: location-mean spread - standard deviation
- Most summary statistics can be calculated in a single pass through the data

Frequency and Mode

- The frequency of an attribute value is the percentage of time the value occurs in the data set
- For example, given the attribute 'gender' and a representative population of people, the gender 'female' occurs about 50% of the time.
- The mode of a an attribute is the most frequent attribute value
- The notions of frequency and mode are typically used with categorical data

Percentiles

- For continuous data, the notion of a percentile is more useful.

Given an ordinal or continuous attribute x and a number p between 0 and 100 , the $p^{\text {th }}$ percentile is a value x_{p} of \times such that $p \%$ of the observed values of x are less than x_{p}.

- For instance, the 50th percentile is the value $x_{50 \%}$ such that 50% of all values of x are less than $x_{50 \%}$.

Measures of Location: Mean and Median

- The mean is the most common measure of the location of a set of points.
- However, the mean is very sensitive to outliers.
- Thus, the median or a trimmed mean is also commonly used.

$$
\operatorname{mean}(x)=\bar{x}=\frac{1}{m} \sum_{i=1}^{m} x_{i}
$$

$$
\operatorname{median}(x)= \begin{cases}x_{(r+1)} & \text { if } m \text { is odd, i.e., } m=2 r+1 \\ \frac{1}{2}\left(x_{(r)}+x_{(r+1)}\right) & \text { if } m \text { is even, i.e., } m=2 r\end{cases}
$$

Example

Measures of Spread: Range and Variance

- Range is the difference between the max and min
- The variance or standard deviation is the most common measure of the spread of a set of points.

$$
\begin{gathered}
\operatorname{var}(x)=\frac{1}{m} \sum_{i=1}^{m}(x-\bar{x})^{2} \\
\sigma(x)=\sqrt{\operatorname{var}(x)}
\end{gathered}
$$

Normal Distribution

- $\phi(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{e \frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$

- An important distribution that characterizes many quantities and has a central role in probabilities and statistics.
- Appears also in the central limit theorem
- Fully characterized by the mean μ and standard deviation σ

Not everything is normally distributed

- Plot of number of words with x number of occurrences

- If this was a normal distribution we would not have a frequency as large as 28 K

Power-law distribution

- We can understand the distribution of words if we take the log-log plot

- Linear relationship in the log-log space

$$
p(x=k)=k^{-a}
$$

Zipf's law

- Power laws can be detected by a linear relationship in the log-log space for the rank-frequency plot

- $f(r)$: Frequency of the r-th most frequent word

$$
f(r)=r^{-\beta}
$$

Power-laws are everywhere

- Incoming and outgoing links of web pages, number of friends in social networks, number of occurrences of words, file sizes, city sizes, income distribution, popularity of products and movies
- Signature of human activity?
- A mechanism that explains everything?
- Rich get richer process

The Long Tail

Post-processing

- Visualization
- The human eye is a powerful analytical tool
- If we visualize the data properly, we can discover patterns
- Visualization is the way to present the data so that patterns can be seen
- E.g., histograms and plots are a form of visualization
- There are multiple techniques (a field on its own)

Scatter Plot Array of Iris Attributes

Contour Plot Example: SST Dec, 1998

- Statistical computing language.
- Many, many add-on packages.
- $x=c(1,1,2,3,5,8,13,21)$
- length(x)
- x[5]
- help("foo")

Data Frames

- Data frames are the most common way to store data in R
- Like a matrix, but columns and rows can have names

> head(mtcars)											
	mpg cyl	disp	hp	drat	wt	qsec	vs	am gear carb			
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2

- You can access columns by name using the $\$$ operator
- e.g., count (mtcars\$gear)

Data Frames: viewing and manipulating

> summary (mtcars)
> write.csv(mtcars,'/tmp/blah.csv')
$>$ mtcars\$logmpg <- log(mtcars\$mpg)
> rownames(mtcars)
> colnames(mtcars)
$>\operatorname{str}()$
$>$ mean()
$>\operatorname{var}()$
$>\operatorname{plot}(x, y)$
$>$ hist(x)
$>$ read.csv()
$>$ write.csv()
> library("rattle")
> library("Rcmdr")
$>$ ls()
$>$ Remove()

R: Data Frames

```
> var1 <- 1:5
> var2 <- (1:5) / 10
> var3 <- c("R", "and", "Data Mining", "Examples", "Case Studies")
> df1 <- data.frame(var1, var2, var3)
> names(df1) <- c("VariableInt", "VariableReal", "VariableChar")
> write.csv(df1, "./data/dummmyData.csv", row.names = FALSE)
> df2 <- read.csv("./data/dummmyData.csv")
> print(df2)
    VariableInt VariableReal VariableChar
1
2
3 3 0.3 Data Mining
4 4 0.4 Examples
5 5 0.5 Case Studies
```


Meaningfulness of Answers

- A big data-mining risk is that you will "discover" patterns that are meaningless.
- Statisticians call it Bonferroni's principle: (roughly) if you look in more places for interesting patterns than your amount of data will support, you are bound to find crap.
- The Rhine Paradox: a great example of how not to conduct scientific research.

Rhine Paradox - (1)

- Joseph Rhine was a parapsychologist in the 1950's who hypothesized that some people had Extra-Sensory Perception.
- He devised (something like) an experiment where subjects were asked to guess 10 hidden cards - red or blue.
- He discovered that almost 1 in 1000 had ESP - they were able to get all 10 right!

Rhine Paradox - (2)

- He told these people they had ESP and called them in for another test of the same type.
- Alas, he discovered that almost all of them had lost their ESP.
- What did he conclude?
- Answer on next slide.

Rhine Paradox - (3)

- He concluded that you shouldn't tell people they have ESP; it causes them to lose it.

