
1

© 2006 Pearson Education, Inc. All rights reserved.

1

Searching and
Sorting

© 2006 Pearson Education, Inc. All rights reserved.

2

24.2 Searching Algorithms

•  Linear Search
-  Searches each element in an array sequentially
-  Has O(n) time

•  The worst case is that every element must be checked to determine
whether the search item exists in the array

•  Big O notation
-  One way to describe the efficiency of a search

•  Measures the worst-case run time for an algorithm
•  O(1) is said to have a constant run time
•  O(n) is said to have a linear run time
•  O(n^2) is said to have a quadratic run time

© 2006 Pearson Education, Inc. All rights reserved.

3

24.3 Sorting Algorithms

• Selection Sort
-  The first iteration selects the smallest element in the array

and swaps it with the first element
-  The second iteration selects the second-smallest item and

swaps it with the second element
-  Continues until the last iteration selects the second-largest

element and swaps it with the second-to-last index
•  Leaves the largest element in the last index

-  After the ith iteration, the smallest i items of the array will
be sorted in increasing order in the first i elements of the
array

-  Is a simple, but inefficient, sorting algorithm; O(n^2)

2

© 2006 Pearson Education,
Inc. All rights reserved.

4

Outline

SelectionSort

Unsorted array:

86 97 83 45 19 31 86 13 57 61

after pass 1: 13 97 83 45 19 31 86 86* 57 61
 --

after pass 2: 13 19 83 45 97* 31 86 86 57 61
 -- --

after pass 3: 13 19 31 45 97 83* 86 86 57 61
 -- -- --

after pass 4: 13 19 31 45* 97 83 86 86 57 61
 -- -- -- --

after pass 5: 13 19 31 45 57 83 86 86 97* 61
 -- -- -- -- --

after pass 6: 13 19 31 45 57 61 86 86 97 83*
 -- -- -- -- -- --

after pass 7: 13 19 31 45 57 61 83 86 97 86*
 -- -- -- -- -- -- --

after pass 8: 13 19 31 45 57 61 83 86* 97 86
 -- -- -- -- -- -- -- --

after pass 9: 13 19 31 45 57 61 83 86 86 97*
 -- -- -- -- -- -- -- -- --

Sorted array:

13 19 31 45 57 61 83 86 86 97

© 2006 Pearson Education, Inc. All rights reserved.

5

24.3 Sorting Algorithms (Cont.)

•  Insertion Sort
-  The first iteration takes the second element in the array

and swaps it with the first element if it is less than the first
element

-  The second iteration looks at the third element and inserts
it in the correct position with respect to the first two
elements

•  All three elements will be in order
-  At the ith iteration of this algorithm, the first i elements in

the original array will be sorted
-  Another simple, but inefficient, sorting algorithm; O(n^2)

© 2006 Pearson Education,
Inc. All rights reserved.

6

Outline

InsertionSort

Unsorted array:
12 27 36 28 33 92 11 93 59 62

after pass 1: 12 27* 36 28 33 92 11 93 59 62
 -- --

after pass 2: 12 27 36* 28 33 92 11 93 59 62
 -- -- --

after pass 3: 12 27 28* 36 33 92 11 93 59 62
 -- -- -- --

after pass 4: 12 27 28 33* 36 92 11 93 59 62
 -- -- -- -- --

after pass 5: 12 27 28 33 36 92* 11 93 59 62
 -- -- -- -- -- --

after pass 6: 11* 12 27 28 33 36 92 93 59 62
 -- -- -- -- -- -- --

after pass 7: 11 12 27 28 33 36 92 93* 59 62
 -- -- -- -- -- -- -- --

after pass 8: 11 12 27 28 33 36 59* 92 93 62
 -- -- -- -- -- -- -- -- --

after pass 9: 11 12 27 28 33 36 59 62* 92 93
 -- -- -- -- -- -- -- -- -- --

Sorted array:
11 12 27 28 33 36 59 62 92 93

3

© 2006 Pearson Education, Inc. All rights reserved.

7

24.3 Sorting Algorithms (Cont.)

• Merge Sort
-  Sorts an array by splitting it into two equal-sized

subarrays
•  Sort each subarray and merge them into one larger array

-  With an odd number of elements, the algorithm still
creates two subarrays

•  One subarray will have one more element than the other
-  Merge sort is an efficient sorting algorithm: O(n log n)

•  Conceptually more complex than selection sort and insertion
sort

© 2006 Pearson Education,
Inc. All rights reserved.

8

Outline

MergeSortTest

(2 of 3)

Unsorted: 36 38 81 93 85 72 31 11 33 74

split: 36 38 81 93 85 72 31 11 33 74
 36 38 81 93 85
 72 31 11 33 74

split: 36 38 81 93 85
 36 38 81
 93 85

split: 36 38 81
 36 38
 81

split: 36 38
 36
 38

merge: 36
 38
 36 38

merge: 36 38
 81
 36 38 81

split: 93 85
 93
 85

merge: 93
 85
 85 93

merge: 36 38 81
 85 93
 36 38 81 85 93
 (continued)

© 2006 Pearson Education,
Inc. All rights reserved.

9

Outline

MergeSortTest

(3 of 3)

split: 72 31 11 33 74
 72 31 11
 33 74

split: 72 31 11
 72 31
 11

split: 72 31
 72
 31

merge: 72
 31
 31 72

merge: 31 72
 11
 11 31 72

split: 33 74
 33
 74

merge: 33
 74
 33 74

merge: 11 31 72
 33 74
 11 31 33 72 74

merge: 36 38 81 85 93
 11 31 33 72 74
 11 31 33 36 38 72 74 81 85 93

Sorted: 11 31 33 36 38 72 74 81 85 93

4

© 2006 Pearson Education,
Inc. All rights reserved.

10

24.2 Searching
Algorithms
(Cont.)

Binary Search

Requires that the array be sorted
For this example, assume the array is sorted in ascending order

The first iteration of this algorithm tests the middle element
If this matches the search key, the algorithm ends
If the search key is less than the middle element, the algorithm continues with only the first
half of the array

The search key cannot match any element in the second half of the array
If the search key is greater than the middle element, the algorithm continues with only the
second half of the array

The search key cannot match any element in the first half of the array
Each iteration tests the middle value of the remaining portion of the array

Called a subarray
If the search key does not match the element, the algorithm eliminates half of the
remaining elements
The algorithm ends either by finding an element that matches the search key or
reducing the subarray to zero size
Is more efficient than the linear search algorithm, O(log n)

Known as logarithmic run time

© 2006 Pearson Education,
Inc. All rights reserved.

11

Outline

12 17 22 25 30 39 40 52 56 72 76 82 84 91 93

Please enter an integer value (-1 to quit): 72

12 17 22 25 30 39 40 52 56 72 76 82 84 91 93
 *
 56 72 76 82 84 91 93
 *
 56 72 76
 *
The integer 72 was found in position 9.

Please enter an integer value (-1 to quit): 13

12 17 22 25 30 39 40 52 56 72 76 82 84 91 93
 *
12 17 22 25 30 39 40
 *
12 17 22
 *
12
 *
The integer 13 was not found.

Please enter an integer value (-1 to quit): -1

Binary search

© 2006 Pearson Education, Inc. All rights reserved.

12

Fig. 24.12 | Searching and sorting algorithms with Big O values.

Algorithm Location Big O

Searching Algorithms:

Linear Search O(n)

Binary Search O(log n)

Recursive Linear Search O(n)

Recursive Binary Search O(log n)

Sorting Algorithms:

Selection Sort O(n2)

Insertion Sort O(n2)

Merge Sort O(n log n)

Bubble Sort O(n2)

5

© 2006 Pearson Education, Inc. All rights reserved.

13

Fig. 24.13 | Number of comparisons for common Big O notations.

n = O(log n) O(n) O(n log n) O(n2)

1 0 1 0 1

2 1 2 2 4

3 1 3 3 9

4 1 4 4 16

5 1 5 5 25

10 1 10 10 100

100 2 100 200 10000

1,000 3 1000 3000 106

1,000,000 6 1000000 6000000 1012

1,000,000,000 9 1000000000 9000000000 1018

