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ABSTRACT 

Pattern discovery in DNA sequences is one of the most 
challenging tasks in molecular biology and computer 
science. The main goal of pattern discovery in DNA 
sequences is to identify sequences of important biological 
function hidden in the huge amounts of genomic 
sequences. Several methods and techniques have been 
proposed and implemented in this field. However, in 
order to reduce computational time and complexity, most 
of them either focus on finding short DNA patterns or 
require explicit specification of pattern lengths in 
advance. Scientists need to find longer patterns without 
specifying pattern lengths in advance and still have good 
performance. 

In this paper, we propose a pattern discovery 
algorithm called Pattern Discovery with Confidence 
(PDC). Based on biological studies, we propose a new 
measurement system that can identify over-represented 
patterns inside DNA sequences. Using this measurement, 
PDC algorithm can narrow the search space by checking 
dependency along the pattern, thus extending the pattern 
as long as possible without the need to restrict or specify 
the length of a pattern in advance. Experimental tests 
demonstrate that this approach can find long, interesting 
patterns within a reasonable computation time. 
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1. Introduction 
Since Watson and Crick discovered the double-helix 
structure of DNA 50 years ago, scientists have been 
studying the function of DNA at many levels. One of the 
most interesting challenges is to discover sequences that 
are similar or identical between different genomic 
locations or between different genomes. Similar 
sequences may be present because they have been 
conserved or selected during evolution due to some 
mediating important biological functions. In particular, 
human and rodent genomes exhibit more than 5000 
“ultraconserved” sequences, most of as yet unknown 
function, greater than 100 bp in length [1]. Despite 
obvious differences between humans and mice as 

organisms, similarities between human and mouse 
genomes may indicate comparable functional 
requirements for regulating basic biological mechanisms 
and developmental stages in various tissues. 

Among the important repeated sequence motifs that 
have been identified are cis-regulatory (CR) elements.  
CR elements are DNA patterns that are generally located 
in the upstream promoter region of a gene. They provide 
the binding site for transcription factors which regulate 
the expression of the gene. Genes are simultaneously up-
regulated or down-regulated often have similar CR 
elements in their promoter regions. Thus, genes that share 
common sequences in their promoter regions are 
candidates for examining whether their expressions are 
co-regulated. Given the importance of gene expression 
regulation in biological function and the large amount of 
genomic data now becoming available, scientists have 
been developing various computational approaches to 
discovering new conserved sequence motifs, including 
CR elements.  

Mining of sequence pattern in an informational 
science context has been widely studied [2, 3]. However, 
the problem of finding patterns in biological sequences is 
slightly different from the general case. The biological 
pattern discovery should align the pattern with each 
occurrence while general data mining only consider the 
order of items in the pattern. A large number of literatures 
has been published in this area, and they basically can be 
divided into two categories: the statistical based [4-8] and 
the combinatorial based [9-11]. 

CONSENSUS [8] compares the information content 
of a large number of possible binding site alignments to 
arrive at a matrix representation of the binding site 
pattern. The specificity of the protein is represented as a 
matrix and a consensus sequence, allowing patterns that 
are typical of regulatory protein-binding sites to be 
identified. Another widely used statistical approach is 
MEME [4], which is an extension of expectation 
maximization (EM) technique [6]. It discovers one or 
more motifs in a collection of DNA sequences. The 
algorithm estimates how many times each motif occurs in 
each sequence in the data sets and outputs the alignment 



of the occurrences of the motif. Patterns with variable-
length are split by MEME into two or more motifs. The 
GIBBS sampler [7] stochastically examines candidate 
alignments in order to find the best alignment as 
measured by the maximum a posteriori log-likelihood 
ratio. This algorithm allows the simultaneous detection 
and optimization of multiple patterns. While MEME may 
get stuck into a local optima and need to ask a user to 
specify the minimal and maximal lengths of search 
motifs, both GIBBS and CONSENSUS need the input of 
motif length. 

One of combinatorial based approaches, WEEDER 
[10] extends the exhaustive search mechanism, and adds 
the feature of error ratio threshold. Search paths can be 
excluded if they exceed a given error ratio. However, 
when WEEDER is used to find the CR sequence patterns, 
it may face the dilemma of choosing between a higher 
error ratio threshold versus missing interesting patterns. 
TEIRESIAS [9] extends the idea of general mining 
technique proposed in [2, 3] to discover protein patterns,  
however, in DNA pattern mining it may suffer from 
generating enormous candidate patterns and thus the 
efficiency may be affected. While the statistical approach 
may be affected by background noise and get stuck into a 
local optima, combinatorial approach may suffer from the 
computation cost and thus can only be applied to find 
short patterns. 

In this paper, we propose an approach that can be 
used to find long patterns without specifying the length of 
patterns in advance and without costing too much 
computational time. Main contributions of this paper are: 

• A new measurement system based on some 
biological observations. This measurement system 
will help the algorithm narrow the search space in 
which patterns will be searched. 

• A new algorithm, called Pattern Discovery with 
Confidence (PDC). PDC is proposed to discover long 
patterns efficiently without specifying pattern lengths 
in advance. 

• Experimental demonstrations of PDC algorithm 
performance on both simulated and real data. 
Furthermore, the effects of parameters on algorithm 
performance are examined, in order to determine the 
parameter values that will help discover patterns at 
the most competitive time cost. 

This paper is organized as follows: Section 2 defines 
the computational problem. The algorithm is presented in 
section 3. Section 4 describes the results of experiments. 
Finally, section 5 gives the conclusion and possible future 
work. 

2. Problem Definition and Measurement  
What kind of patterns are biologists interested in? Is a 
pattern more interesting when it occurs more frequently? 
In most approaches so far, the number of occurrence is a 
major measurement to determine whether a pattern is 
interesting or not. However, sometimes this measurement 
is not enough to discriminate a pattern from background 
noise, and it may spend time checking many patterns of 
no biological interest. By making some biological 
observations, we give our measurement system in this 
section.  

Definition 2.1 (DNA characters and sequence): Given a 
DNA alphabet set ∑={A,C,G,T}, A,C,G and T are called 
DNA characters or bases. A DNA sequence S is 
represented as c1c2 …cn, where ci ∈∑ (1≤ i ≤n). |S| denotes 
the length of sequence S. A sequence of length n is called 
an n-sequence. 

Definition 2.2 (DNA sequence database): A DNA 
sequence database D is a set of DNA sequences 
{S1,S2,…,Sm}. The sum of the lengths of sequences in D is 
denoted as |D| = |S1|+|S2|+…+|Sm|. 

Definition 2.3 (Pattern): A pattern is a sequence of 
characters drawn from ∑*=∑∪{N}={A,C,G,T,N}, where 
N denotes the do-not-care character. We say a pattern R 
matches a DNA sequence S if |R|=|S| and for each 
i∈{1…|R|}, either Ri=ck+i (k+i ≤ |S|) or Ri=N. An 
occurrence of pattern R in DNA sequence S is a 
subsequence of S that matches R. 

We need to consider the following factors to identify 
frequent patterns. 

• Support: from a biological point of view, a group of 
co-regulated genes share a common DNA binding 
site in their regulatory regions. Therefore, a sequence 
that occurs more frequently has a higher probability 
of being associated with a co-expressed gene. Thus, 
the number of occurrences of a pattern is one of 
important parameters. 

• Confidence: experimental data might contain errors, 
if a pattern R occurs n times in DNA sequence S, then 
the average number of occurrences of Rx, where x is 
any of the 4 DNA characters that can extend 
sequence R, is 0.25n. As a result, if R is frequent, 
then Rx has a high probability to be frequent even 
when x is generated randomly. To differentiate real 
frequent patterns from false ones, the notion of 
confidence is introduced. 

• Significance: number of occurrences of a pattern 
should be significant enough to be considered as a 



frequent pattern. The measurement of significance is 
evaluated based on a ratio of the real support of a 
pattern R to the expected support of R. 

We define these notions formally in the following. 

Definition 2.4 (Support): Given a pattern R and a 
sequence S, the number of occurrences of R in S is called 
the support of R in S, denoted by Supp(R, S). We extend 
this notion to a DNA sequence database D{S1,S2,…,Sm}, 
the support of R in D is defined as 
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Definition 2.5 (Confidence): Given a sequence 
R=R1R2…Rn and DNA sequence database D, the 
confidence of R1R2 with respect to R1 is defined as 

),(/),(),( 121121 DRSuppDRRSuppRRRConf = . And we 
extend the confidence R respect to D as  
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ID DNA sequence 
1 c a g t C g c c 
2 g c t a C t g t 
3 c t c g A c t g 

Example (Confidence): Using the sample DNA sequence 
database shown in the table above, character A occurs 3 
times in D, and AC occurs 2 times in D, then 
Conf(AC,A)=67%. 

Definition 2.6 (Pattern Probability): The Pattern 
Probability of R in sequence S reflects the probability that 
an arbitrary subsequence XS if S with length |R| will 
match R. Given a pattern R=R1R2…Rn and a DNA 
sequence S, the pattern probability of R in S is defined as 
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Supp(c,D) / |D|, for each c∈∑. We extend the notion of 
pattern probability to DNA sequence database D. Given a 
pattern R=R1…Rn and a DNA sequence database D, the 
pattern probability of R in D is defined as 
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For example, using the same sequences in the 
example above the pattern probability of pattern ACTG is 
Pr(ACTG, D) = Pr(A,D) * Pr(C,D) * Pr(T,D) * Pr(G,D) = 
0.125 * 0.25 * 0.25 * 0.375= 2.9*10-3. 

Definition 2.7 (Expected Support):Given the statistics of 
character occurrences in a DNA sequence database, the 
expected support estimates the expected number of 
occurrence of a pattern R in D. Assuming |D|>>|R|, then 
the expected support of pattern R is defined as 
Exp(R,D)=Pr(R,D)*|D|, where Pr(R,D) is the pattern 
probability. 

For example, the pattern probability of ACTG is 
2.9*10-3. Then Exp(ACTG, D) = Pr(ACTG,D)*|D| = 
2.9*10-3 * 24 = 0.07. 

Definition 2.8 (Significance): Given a pattern R and a 
DNA sequence database D, the significance of pattern R 
is defined as Sig(R,D)= Supp(R,D) /Exp(R,D). 

Example (Significance): Using the example above, if we 
have the support 2, then the significance is Supp(ACTG, 
D) /Exp(ACTG, D) = 2/0.07 = 300. 

When we extend the patterns, we introduce N, the do-not-
care character, into the pattern to allow some mutation or 
variation in the pattern. However, too much variation in 
the pattern will very likely disrupt the biological function 
and make computation more costly.  Thus, it is necessary 
to define a maximum number of do-not-care characters 
that can be involved in the pattern to avoid spending too 
much time on non-functional patterns. 

Definition 2.9 (Max Gap): Given a pattern R, the number 
of do-not-care characters, N, is called max gap of R, 
denoted as DNC(R). 

Then our problem can defined as following based on 
the notion introduced above: Given a set of DNA 
sequence database D, minimum support threshold ST, 
minimum confidence threshold CT, minimum 
significance threshold FT, and max gap threshold GT, 
find all patterns R that 

• Supp(R, D) ≥ ST  
• Conf(R, D) ≥ CT 
• Sig(R, D) ≥ FT 
• DNC(R) ≤ GT  

3. PDC algorithm 
The starting point of the PDC algorithm is to identify the 
core patterns which are composed of a list of consecutive 
characters without any do-not-care characters. The idea is 
inspired from the observation of biology nature. Most  
cis-Regulatory Elements (CREs) have consensus core 
sequences. The overall pattern of such kind of CREs 
includes gap between conserved base pair. This property 
enables us to develop a solution which start from an l-
sequence instead of 1-sequence (l≥1), and then extend to 
the longer pattern. The algorithm will only find patterns  
that have at least one core pattern which has length more 
than l. However, we can set l to a small value which will 
not affect the result a lot. Here, we set l to 4.  

A useful property to use in this process is the idea 
that (n+1)-pattern R1…Rn+1 is a solution if and only if n-
pattern R1R2…Rn is a solution. However, exhaustive 
search is time consuming and can only be used to find 



short patterns. By using confidence, support and max gap 
threshold in our measurement system, we can eliminate 
the patterns that are unlikely to be extended as patterns, 
and thus gain performance efficiency. 

The Significance parameter in the measurement 
system can be used to rank patterns after they have been 
identified. Patterns with higher Significance are likely to 
have greater biological relevance. 

Figure 1 shows our PDC algorithm. The algorithm 
starts with initialization. Basically it scans the database 
and finds all occurrences for each 4-sequence, and keep a 
record of each occurrence as a pair (Sequence ID, 
Location in Sequence). At the same time, it calculates the 
character probabilities for A,C,G and T. Calculation of 
character probabilities for A,C,G and T is straightforward. 
It can be obtained by adding all occurrences of A,C,G,T, 
and dividing by the total number of characters in the 
database. In order to keep all occurrences of 256 possible 
4-sequences from AAAA to TTTT, an array of 256 
elements will be used to store the occurrences.  

In each element of the array, we keep 6 parameters: 
• pattern: a list of DNA characters, may include do-

not-care character N for n-pattern (n>4). 
• Support: the support of current pattern in D, as 

introduced in definition 2.4. 
• PP: pattern probability of the current pattern. 
• Significance: significance of the current pattern. 
• LocList: a linked list, in which each location is 

recorded as a pair (i,j), while i is the sequence ID, 
and j is the location number in sequence Si. 

• gap: the total do-not-care characters in the pattern, 
at the beginning, it is 0 for core 4-sequences. 

The core and costly step in PDC algorithm is the 
pattern extension step. The pattern searching process is 
just like a tree expanding process. After the initialization 
step, we have already reached the 4th level, and the next 
step would be to extend to level 5 patterns with 5 
characters each.  

The extension could extend each possible 5-way path 
with possible 5 characters, A, C, T, G and N. The 5-way 
extension would generate an exponentially increasing 
number of candidate patterns, making the search space 
extremely large and the computation extremely costly. To 
avoid checking every candidate pattern that can be 
generated by this 5-way extension, The function 
IsExtendable in the algorithm checks whether a candidate 
pattern can be pruned or not based on three thresholds 
introduced in section 2. By setting a confidence threshold, 
we can eliminate most of the extension paths. At the same 
time, the support and gap thresholds will eliminate most 
extension paths with little likelihood of yielding 
interesting patterns. If the candidate pattern can not be 
extended, then it will be checked whether it meets the 
minimum significance threshold defined in section 2. All 
patterns with higher significance may be of greatest 
interest. The significance threshold is used to filter out 
patterns with small Significance value. Patterns are 
therefore sorted and output based on the significance 
value.  

4. Experimental Results 
Our experiments were conducted on a Dell Dimension 
8200 PC machine with 2.4G Hz CPU and 512MB RAM. 
The algorithm is implemented using Java SDE 1.4 and 
tested with Windows XP operating system. Three 
categories of experiments were conducted. First, the 
effectiveness of the algorithm was evaluated. Second, the 
algorithm efficiency was examined. Finally, the 
significance ranking system was examined. 

4.1 Effectiveness Study 

Two experiments were conducted in this study. First, we 
simulated a DNA sequence database by randomly 
generating DNA sequences composed of A,C,G and T. 
Each sequence data set had m sequences with equal length 
of n base pairs. Simulated genomic sequences contain a 
highly-represented pattern. In this case, we use perfect 
estrogen response element (pERE: GGTCANNNTGACC) 
as the pattern. The pERE was implanted randomly into 
the simulated random DNA sequences. We controlled the 
number of pEREs implanted to test the sensitivity of the 

Algorithm PDC 
Input: database D, support threshold ST, confidence 
threshold CT, significance threshold FT, and max gap 
threshold GT  
Output: All patterns R where Supp(R,D) ≥ ST, Conf 
C(R,D) ≥ CT, Sig(R,D) ≥ FT, DNC(R) ≤ GT  
Begin 
   Initialization 
   Generate all core l-patterns, push into stack s 
   While (!s.isEmpty) Do 
          Pop up candidate pattern R from stack s  
          R1=R+ “A”/ “C”/ “G”/ “T”/ “N” 
          For i = 1 to 5 Do 
               If IsExtendable (Ri) Then 
       s.push (Ri) 
 Else 
      If IsSolution(Ri) Then 
                          Output the pattern Ri  
               End If 
         End For 
    End While  
End 

Figure 1 Pseudo-code of PDC algorithm 



algorithm. The lowest number of pERE in our test set was 
10 in 20 DNA sequences with length of 1000 bp. We set 
the minimum support to 3, the max gap to 10, minimum 
confidence ranges from 0.1 to 0.5. The pERE is found in 
all data sets with highest Significance value. 

The second experiment was conducted on real data 
sets that are collections of sequences obtained from 
biological experiments. The data contains upstream 
regulatory regions of 277 genes known to be responsive 
to estrogen in gene expression microarrays. Three data 
sets were used, each of them composed of 277 sequences 
with lengths of 1000, 2000, and 5000 bases respectively. 
The minimum support was set to 10; max gap was set to 
10; and minimum confidence was set to 0.3. Several 
significant pERE and longer patterns were found during 
the experiments, one of them as long as 80 bp. While 
some of these patterns had previously been noted in the 
biological literature, others may be novel and should be 
carefully examined by biologists.   

4.2 Performance Study 

Three experiments have been conducted to check the 
impact of three thresholds defined in section 2.  

1. Minimum Confidence threshold.  The impact of 
changing minimum confidence threshold was studied on 
randomly chosen data set of 100 sequences/1000 bases.  
The minimum support is set to 10 and max gap set to 10. 
The experiment studied the impacts of varying minimum 
confidence from 0.1 to 0.5. Figure 2, showing the 
algorithm performance with different values for minimum 
confidence, illustrates a non-linear effect. The greatest 
change along the confidence axis is from 0.2 to 0.3, above 
which not much improvement results from further 
changes in the minimum confidence threshold. In most 
cases, the characters are distributed evenly. That means 
the A, C, G and T occur almost at the same ratio in the 
data set as the frequency of each character, which is 
approximately 25%. Thus, if the minimum confidence is 
set to 0.3, most random patterns will be filtered out, and 

real patterns, occurring more frequently than 25% of the 
time will survive and be extended.  

2. Minimum Support. The impact of the minimum 
support was similarly examined in a randomly chosen test 
data set having 100 sequences each 1000 bases in length. 
The minimum confidence was set to 0.3 and the max gap 
was set to 10. We studied the effect of changing minimum 
support from 5 to 400. As shown in Figure 3, the running 
time decreases as minimum support is increased. In the 
minimum support range of 5 to 200, the relationship 
between running time and minimum support is 
approximately linear. However, for values of minimum 
support greater than 200, there was no influence on the 
running time. This is because most of time, when the 
minimum support is greater than 200, the extension 

procedure of the algorithm will not be running. 

Figure 2 impact of Max Gap threshold 

3. Max Gap.  Finally, the effect of max gap was 
examined. Using again the 100 sequence/1000 bases data 
set combinations, the minimum confidence set to 0.3, and 
minimum support fixed at 10, the impact of max gap in 
the range of 3 to 20 was investigated. As shown in Figure 
4, when the max gap becomes larger, the running time 
increase accordingly. Obviously, the algorithm needs to 
check more possible patterns when the max gap is larger.  

In summary, these 3 experimental results demonstrate 
the effects of minimum support, max gap and minimum 
confidence levels on the performance of the PDC 
algorithm. While minimum support has linear effects on 
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the running time, max gap and minimum confidence 
thresholds have non-linear impacts. Thus, defining 
appropriate thresholds for these thresholds may improve 
performance. We conclude from the experimental study 
that our measurement system has the potential to improve 
the pattern discovery process. The confidence threshold 
particularly serves an important role in improving 
performance, giving three- to five- fold faster searches 
when set to 0.3 or greater. 

Figure 5 the Significance Ranking System  

4.3 Significance Ranking System 
To show the contribution of significance ranking system, 
the same data set used in section 4.2 is used here. In 
Figure 5, we demonstrate that our significance ranking 
system can discriminate the true pattern from the 
background sequences. We plot the result of random 
DNA sequences with implanted pERE sequences. Three 
significant patterns have been identified:  

1: GGTCAnnnTGACC(support:19 );  
2: GTCAGNNTGACCANNNNNNT(support:3);  
3: AGGTCNNNNNGACC(support:8).   
These three patterns are all derived from the original 

pERE sequence. Pattern 1 indicates the exact pERE 
pattern implanted. Pattern 2 and 3 are part of the 
conserved sequence and the number of patterns found was 
only a subset of original patterns. Three round points with 
shallow color plotted in Figure 5 represents the sequences 
introduced above. We can separate them from other 
points even with visually observation. Using the 
significance ranking system introduced in section 2, the 
program can works decently to separate the real patterns 
and noise. 

5 Conclusions and Future Work 
In this paper, we proposed a new pattern discovery 
algorithm called PDC and a new measurement system to 
discover conserved patterns that might have biological 
function in DNA sequences. PDC algorithm inherits the 
advantage of combinatorial approach and thus can find 
patterns without inference of background noise in 

sequence database. Compared with the TEIRESIAS [9], 
our approach is more efficient in finding DNA sequence 
pattern by providing the pruning techniques. It has been 
confirmed by our experiments that our measurement 
system could find interesting patterns within a reasonable 
computation cost.  

The significance measurement is a naive definition in 
this paper and is mainly based on character probability.  It 
does not consider the impact of the order or position of 
the characters in the pattern. For future work, we may 
consider developing new measurement parameters that 
can better describe the sequences in a biological context. 
In addition, we would like to compare our work with the 
current most advanced algorithms on efficiency and 
effectiveness. 
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