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Abstract 

Resolution-based proof analysis techniques have been proposed 
recently to identify a sufficient set of reasons for unsatisfiability 
derived by a CNF-based SAT solver. We have adapted these 
techniques to work with a hybrid SAT solver. We use the proof 
analysis technique with SAT-based BMC, in order to generate 
useful abstract models. Our abstraction procedure is used 
iteratively in a top-down framework, starting from the concrete 
design, where we apply BMC on increasingly more abstract 
models. We apply various SAT-based and BDD-based 
verification methods on these abstract models, in order to obtain 
proofs of correctness, or to perform deeper searches for 
counterexamples. We demonstrate the effectiveness of our 
prototype implementation on several large industry designs. 

1. Introduction 
Symbolic model checking techniques [1, 2], based on the use of 
Binary Decision Diagrams (BDDs) [3], offer the potential of 
exhaustive coverage and the ability to detect subtle bugs. 
However, these techniques do not scale very well in practice due 
to the state explosion problem. A recent alternative is Bounded 
Model Checking (BMC) [4], which focuses on the search for 
counterexamples of bounded depth. Effectively, the problem is 
translated to a propositional formula, such that the formula is 
satisfiable if and only if there exists a counterexample of depth 
k. In practice, the depth k can be increased incrementally to find 
the shortest counterexample. However, additional reasoning is 
needed to ensure completeness of the proof of correctness, when 
no counterexample can be found [4, 5].  
 
The satisfiability check in the BMC method is typically 
performed by a backend SAT solver. Due to the many advances 
in SAT solving techniques [6-9], BMC can handle much larger 
designs than BDD-based methods. A related important 
development has been the use of resolution-based proof analysis 
techniques to check the unsatisfiability result of a SAT solver 
[10, 11]. As part of the check, these techniques also identify a 
set of clauses from the original problem, called the unsatisfiable 
core, such that the clauses are sufficient for implying the 
unsatisfiability.  Similar SAT-based proof analysis techniques 
have also been proposed independently in the context of 
refinement, and abstraction-based verification methods [12, 13]. 
The existing resolution-based proof analysis techniques have 
been described for SAT solvers that use a CNF (Conjunctive 
Normal Form) representation of the Boolean problem. We have 
adapted these techniques to work with a circuit SAT solver [14], 
or a hybrid SAT solver [9].  
 
We use the resolution-based proof analysis technique in the SAT 
solver used for checking BMC problems – we call this SAT-

based BMC with Proof Analysis.  Note that unsatisfiable SAT 
instances in BMC correspond to the absence of a 
counterexample of (or up to) a given depth. For each such depth, 
we identify an unsatisfiable core, and use it to generate an 
abstract model. In particular, we propose a latch-based 
abstraction, such that the resulting abstract models are 
guaranteed to not have a counterexample of (or up to) that depth.  
 
Our overall verification methodology centers around a top-down 
iterative abstraction framework. Starting from the concrete 
design, we apply SAT-based BMC with Proof Analysis on a 
seed model in each iteration. Our abstraction, based on 
identification of unsatisfiable cores, is used to choose a seed 
model for the next iteration. Under certain practical conditions, 
we allow a refinement step, which can potentially increase the 
size of the seed model. In each iteration, we also generate 
existentially abstract models, again based on the unsatisfiable 
cores. These models are known to be conservative for LTL 
properties [1, 15]. We use various BDD-based and SAT-based 
methods for performing unbounded model checking on these 
models. A proof of correctness on any of these models 
guarantees correctness on the concrete design, while a 
counterexample may require a refinement, or going back to a 
previous iteration in our iterative flow. In practice, we iterate the 
loop until convergence of the seed model, or until a conclusive 
result is obtained on some abstract model.  
 
The key contribution of our work is that the overall flow is 
targeted at reducing the size of the seed models across 
successive iterations. The potential benefit is that for properties 
that are false, BMC search for deeper counterexamples is 
performed on successively smaller models, thereby increasing 
the likelihood of finding them. For properties that are true, the 
successive iterations help to reduce the size of the abstract 
models, thereby increasing the likelihood of completing the 
proof by unbounded verification methods. 
 
We have implemented these ideas in a prototype verification 
framework called DiVer [16], which includes other BDD-based 
and SAT-based verification methods. We report on our 
experience on some large industry designs. For some of these, 
we have been able to complete proofs of correctness for the first 
time ever. In most of these, we have been able to perform deeper 
searches for counterexamples. We have also observed that our 
iterative abstraction typically gives an order of magnitude 
reduction in the final model sizes. For many examples, this 
reduction was crucial in enabling the successful application of 
the unbounded verification methods.   

  



2. Related Work 3. Proof Analysis for a Hybrid SAT Solver 
Our work is broadly related to the many efforts in verification 
that use abstraction and refinement [12, 17-20]. Most of these 
efforts are bottom-up approaches, where starting from a small 
abstract model of the concrete design, counterexamples found 
on these models are used to refine them iteratively. In practice, 
many iterations are needed before converging on a model where 
the proof succeeds. More frequently, the size of the refined 
abstract model grows monotonically larger, on which 
unbounded verification methods fail to complete. 

There have been several independent efforts aimed at extracting 
proofs of unsatisfiability from a CNF-based SAT solver [10-13]. 
They are based on recording additional information during 
conflict analysis and conflict-driven learning [6], which form 
important components of modern SAT solvers [7-9]. We start by 
reviewing the basics.  
 
3.1 Basics: Identification of An Unsatisfiable Core 
Conflict analysis takes place whenever a conflict is discovered 
by a SAT solver during BCP (Boolean constraint propagation). 
The implications are typically stored in the form of an 
implication graph. In this graph, a node denotes a variable with a 
value (a literal), and an edge into a node denotes the clause, 
called the antecedent, which caused the implication on the 
node’s variable. Nodes with no incoming edges denote decision 
variables. A conflict is obtained whenever the graph has two 
nodes for the same variable with opposite values. A small 
example of an implication graph leading up to a conflict is 
shown in Figure 1. 

 
The main reason for the popularity of the bottom-up approaches 
has been a lack of techniques that could extract relevant 
information from a relatively large concrete design. This is 
changing now with the use of proof analysis techniques for SAT 
solvers and other theorem-provers [13, 21], and use of 
interpolants that approximate reachable state sets [22]. We too 
have employed SAT proof analysis techniques effectively, to 
obtain abstract models in a top-down iterative abstraction 
framework based on use of BMC in the inner loop. In our 
approach, a lack of a counterexample provides an opportunity to 
perform further abstraction. On the other hand, the presence of a 
counterexample does not necessarily require a refinement based 
on that particular counterexample.  

Clauses:
C1: x1’+ x2 + x6
C2: x2 + x3 + x7’
C3: x3 + x4’+ x8
C4: x1’+ x6’+ x5’
C5: x6’+ x7+ x8’+ x9’
C6: x5 + x9 + x10
C7: x9 + x10’

Conflict Clause C8:
x1’+ x2 + x3 + x8’
Due to conflict (x10, x10’)

Antecedents(C8) = 
{C7, C6, C5, C4, C2, C1}

x1

x2’

x3’

x8

x5’
x6

x7’
x9’

x10

x10’

C1
C1

C2

C2

C4

C4

C5

C5

C5

C6

C6

C7

x4

C3
C3

Clauses:
C1: x1’+ x2 + x6
C2: x2 + x3 + x7’
C3: x3 + x4’+ x8
C4: x1’+ x6’+ x5’
C5: x6’+ x7+ x8’+ x9’
C6: x5 + x9 + x10
C7: x9 + x10’

Conflict Clause C8:
x1’+ x2 + x3 + x8’
Due to conflict (x10, x10’)

Antecedents(C8) = 
{C7, C6, C5, C4, C2, C1}

x1

x2’

x3’

x8

x5’
x6

x7’
x9’

x10

x10’

C1
C1

C2

C2

C4

C4

C5

C5

C5

C6

C6

C7

x4

C3
C3

x1

x2’

x3’

x8

x5’
x6

x7’
x9’

x10

x10’

C1
C1

C2

C2

C4

C4

C5

C5

C5

C6

C6

C7

x4

C3
C3

Conflicting 
Nodes

CUTSET

Conflicting 
Nodes

CUTSET

Conflicting 
Nodes

CUTSET

 
In comparison to bottom-up approaches, our top-down approach 
may need to handle much larger models. However, note that we 
do not require complete verification on these models for the 
purpose of abstraction. Instead, our abstraction method is based 
on SAT-based BMC, which we use up to some finite depth to 
check for counterexamples anyway. Furthermore, in practice, 
the first iteration of our iterative abstraction framework provides 
a significant reduction in model sizes, such that all successive 
iterations need to work on smaller models. Our broader goal is 
to systematically exploit proof analysis with SAT-based BMC 
wherever possible. Since it is unlikely that a purely top-down or 
a purely bottom-up approach will work best in practice, we are 
currently exploring combinations of the two. 

Figure 1: Example for Conflict Analysis 
 
Conflict analysis takes place by following back the edges 
leading to the conflicting nodes up to any cutset in this graph. A 
conflict clause can then be derived from the variables feeding 
into the chosen cutset. A key feature of a learned conflict clause 
is that it is also the result of resolution on all the antecedent 
clauses, which are traversed up to the chosen cutset. For proof 
analysis, these antecedents (reasons) are recorded and associated 
with the learned conflict clause, as also shown in Figure 1.  

 
The work by McMillan and Amla [12] is most closely related to 
ours. Though our work was done independently, there are some 
similarities. They also use SAT-based BMC, with extraction of 
unsatisfiable cores as the basis for performing automatic 
abstraction. Therefore, their abstract model also has the useful 
property of ruling out counterexamples below a certain depth. 
However, the specific abstraction that they use is slightly 
different from ours, in that it is not latch-based, but is based on 
individual gates. The biggest difference, however, is in the 
application setting. They do not use BMC on successively 
smaller abstract models within an iterative framework. This 
forces them to perform deeper searches with BMC on the 
concrete design itself, whenever a counterexample is found on 
an abstract model. This is avoided in our approach, by 
performing a deeper search on a less abstract model where 
possible. A related issue is that they do not use counterexample-
driven refinement (other than noting its depth). In contrast, we 
do use refinement, though sparingly. Finally, our iterative 
abstraction method provides significant model size reductions in 
the final iteration. This frequently enables the application of 
unbounded verification methods, which often fail to complete on 
abstract models generated in the initial iteration (directly from 
the concrete design). 

 
When a SAT solver determines that a given problem is 
unsatisfiable, it does so because there is a conflict without any 
decisions being taken. A conflict analysis can again be used to 
record the antecedents for this final conflict. This time, the 
learned conflict clause, i.e. a resolution of all its antecedents, is 
an empty clause. Therefore, this final resolution tree constitutes 
a proof of unsatifiability [23], except that it may include some 
learned clauses. Recall that a learned clause is itself a resolution 
of the antecedents associated with it. Therefore, by recursively 
substituting the resolution trees corresponding to the learned 
clauses into the final resolution tree, a resolution proof only on 
the original clauses can be obtained. These original clauses 
constitute an unsatisfiable core, i.e. they are sufficient for 
implying the unsatisfiability. In practice, the resolution tree is 
created only if a check is needed for the unsatisfiability result 
[10, 11]. For the purpose of identifying an unsatisfiable core, a 
marking procedure is used, which starts from the antecedents of 
the final conflict graph, and recursively marks the antecedents 

  



associated with any marked conflict clause. At the end, the set of 
marked original clauses constitutes an unsatisfiable core.  
 
3.2 Adaptation to Hybrid SAT Solver 
We have extended the proof analysis technique to work with a 
hybrid SAT solver. A hybrid SAT solver uses hybrid 
representations of Boolean constraints, e.g. where a circuit 
netlist is used to represent the original circuit problem, and CNF 
is used to represent the learned constraints [9]. Conflict analysis 
in a hybrid SAT solver also traverses back from the conflicting 
nodes in an implication graph. However, edges in such a graph 
may correspond to hybrid representations of constraints. For 
example, while performing BCP directly on a circuit netlist, 
edges might correspond to nodes in the circuit. We record the 
reasons for the conflict, in their hybrid representations, and 
associate them with the learned constraint (corresponding to the 
conflict clause). When the final conflict is found, indicating the 
unsatisfiability, a marking procedure is started from its 
antecedents. Again, reasons for any learned constraints are 
marked recursively. At the end of this procedure, the marked 
constraints from the original problem constitute an unsatisfiable 
core. For example, given an unsatisfiable circuit problem due to 
external constraints, this procedure identifies a set of nodes in 
the circuit that are sufficient for implying the unsatisfiability. 
 
3.3 Reducing the Size of the Unsatisfiable Core 
By iterating SAT checking on the unsatisfiable core, the number 
of original clauses/variables needed for unsatisfiability can be 
reduced significantly [10]. Also, the constraints constituting the 
unsatisfiable core are related to the particular conflict clauses 
learned by a SAT solver. These, in turn, depend upon other 
heuristics in the SAT solver, e.g. decision heuristics, heuristics 
for choosing a cutset during conflict analysis [24] etc. We vary 
these heuristics in different runs of the SAT solver, in order to 
obtain a potentially smaller unsatisfiable core.  

4. Generation of Abstract Models 
We use a proof analysis technique in the SAT solver used to 
check BMC problems. For each depth checked, the lack of a 
counterexample corresponds to an unsatisfiable SAT instance. 
We identify an unsatisfiable core in each such instance. 
 
4.1 SAT-based BMC with Proof Analysis 
For ease of exposition, consider that we use SAT-based BMC to 
search for counterexamples of increasing depth k, 1 ≤ k ≤ kmax. If 
there is no counterexample of depth k, i.e. the check for depth k 
is unsatisfiable, we obtain the unsatisfiable core, and denote it 
R(k) (Reasons for depth k). Note that this corresponds to a set of 
clauses for a CNF-based SAT solver, or a set of circuit nodes 
and external constraints for a hybrid SAT solver using a circuit-
netlist representation for the given design. Our techniques 
described in the rest of this paper do not depend upon which 
representation is actually used.   

4.2 Sufficient Abstract Models  
Given an unsatisfiable core R(k), which was identified by BMC 
with Proof Analysis at depth k, we generate an abstract model 
which preserves the unsatisfiability implied by constraints in 
R(k). At the same time, we want to keep the size of the abstract 
model small. Rather than optimize at the level of each gate in 

the original design, our abstraction tries to minimize the number 
of latches to include in the abstract model, while still retaining 
the useful property that there is no counterexample of depth k. 
 
4.2.1 Latch Interface Abstraction 
We use the following notation to describe our abstraction. For a 
node v in the unrolled design, let F(v) denote the node 
corresponding to it in the transition relation1 of the design. For a 
given node e in the unrolled design, let Ext(e) denote the 
(possibly empty) set of external constraints imposed on node e. 
For a given latch L in the transition relation of the design, let 
IF(k,L) denote the set of its latch interface constraints in the 
unrolled design up to depth k.  The set IF(k,L) consists of 
constraints corresponding to equality of the latch output at time 
frame i, with the latch input at time frame i-1, for 1 ≤ i ≤ k. Note 
that this set includes the initial state constraint. Note also that 
any k-depth unrolling of the design would necessarily include 
these constraints for each latch, either explicitly, or implicitly, in 
the problem representation. We propose a latch interface 
abstraction, which works as follows: 
 
Step 1: Given R(k), we first mark a node v in the unrolled 
design, if variable v appears in some constraint in R(k). For each 
such v, we say that node v is marked. 
 
Step 2: For each marked node e, such that some constraint in 
Ext(e) belongs to R(k), we perform a backward DFS traversal 
starting from e, through only marked nodes, using the procedure 
shown in Figure 2. Note that the recursive traversal on marked 
nodes is terminated at any unmarked node, but is otherwise 
continued through the fanin nodes. Any marked node which is 
visited during such a traversal is called visited.  
 
  rec_dfs_through_marked_nodes(node n) { 
    if (visited(n)) return; 
    if (!marked(n)) return; 
    visited(n)=1; 
    for each m in fanin(n) { 
      rec_dfs_through_marked(m); 
    }} 
  
Figure 2: Recursive DFS through Marked Nodes 
 
Step 3:  For each latch L, we say that L is visited if any of the 
nodes denoting its output at  time frame i, 0 ≤ i ≤ k,  is visited.  
 
Step 4: We extract the combinational fanin cones of all latches 
that are visited. We also extract combinational fanin cones of all 
nodes F(e) such that Ext(e) is not empty. These fanin cones 
represent the transition relation of our abstract model. In 
particular, all latches that are not visited are abstracted away as 
pseudo-primary inputs.  
 
The resulting abstract model is called a sufficient model for 
depth k, denoted SM(k). Since it is generated by abstracting 
away some latches as pseudo-primary inputs, it is known to be 
conservative for LTL properties [1, 15], i.e. truth of a property 

                                                           
1 We use the term transition relation to denote the entire 
combinational logic of the design, including next-state logic for 
the latches, as well as output logic for the external constraints, 
either due to the property, or enforced by the designers. 

  



on the abstract model guarantees its truth on the given design. It 
has an additional useful property, stated in the following 
theorem. 
  
Theorem 1: The sufficient model SM(k) generated using the 
latch interface abstraction does not have any counterexample of 
depth k.  
 
Proof: Recall that constraints in R(k) are sufficient to generate 
implications (without taking any decisions), which lead to a 
conflict at some node in the unrolled design, corresponding to 
the final conflict graph. The latch interface abstraction uses 
circuit connectivity information to prune away those constraints 
in R(k) which are not needed to obtain the final conflict. 
Consider a marked node that does not have a transitive fanout 
path, through other marked nodes, to a marked node with an 
external constraint in R(k). We claim that such a node is not 
needed to obtain the final conflict. This is because implications 
only on inputs of a circuit node cannot cause a final conflict on 
the output of that node. The same reasoning can be used to show 
that there can be no final conflict on any of its marked but 
unvisited transitive fanouts. Therefore, at the end of Step 2, the 
set of visited nodes and their associated constraints are 
guaranteed to lead to a final conflict.  
 
Due to the structure of the unrolled design, all transitive paths 
connecting visited nodes in different time frames have to go 
through latch interfaces between those time frames. Therefore, 
each visited node is contained in the combinational fanin cone of 
some visited latch output node, or some visited node on which 
an external constraint is in R(k). The abstract model SM(k) 
includes all such combinational fanin cones in its transition 
relation (Step 4). Therefore, all visited nodes and their 
constraints are included in a k-depth unrolling of the abstract 
model. Therefore, we are guaranteed to get a final conflict 
without any decisions, thereby proving that the abstract model 
SM(k) cannot have any counterexample of depth k. 
 
We also use an alternative abstraction, where we skip the 
recursive DFS traversal in Step 2 altogether. We consider a latch 
L to be marked, if any of its output nodes in any time frame is 
marked (not visited), i.e. if any constraint in IF(k, L) belongs to 
R(k). In this case, the abstract model consists of the 
combinational fanin cones of all marked latches, and all external 
constraint nodes. The reasoning in our proof works also for this 
cheaper (to compute) abstraction. Indeed, the proof of 
sufficiency works, while pruning R(k), for any subset S of 
latches, such that {L| visited(L)} ⊆ S  ⊆ {L| marked(L)}. In the 
remainder of this paper, we denote the abstract model 
corresponding to any such set S as SM(k), since it is guaranteed 
to not have a counterexample of depth k.  
 
4.2.2 Pruning due to Latch Interface Abstraction 
The unsatisfiable core R(k) can include a node in the unrolled 
design, on which  constraints are not needed to generate the final 
conflict. The pruning obtained by the latch interface abstraction 
in Step 2 is geared at throwing away these nodes, without losing 
sufficiency for the unsatisfiability. 
 
A small example of how this can happen is shown in Figure 3. 
Part (a) of this figure shows the implication graph at the time of 
learning the conflict clause C1: (a’+b), and the associated 

antecedents. In Part (b), we show a final conflict graph, where 
implications from an external constraint on node e imply 
variable a to 1, which leads to use of the conflict clause to imply 
b to 1. This further leads to c and d being implied to 1, with the 
implication on d leading to a final conflict on node v. Given this 
final conflict graph, the recursive marking procedure for R(k) 
starts by including antecedents for implications from the circuit 
clauses (from e to a, from b to c, … etc.). Furthermore, it  
substitutes the antecedents of the conflict clause, leading to R(k) 
as shown in the figure.  
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Figure 3: Example for Pruning the Set R(k) 
 
Suppose there is no implication from any external constraint on 
the value of variable b, i.e. it does not matter what value b takes. 
The reason that constraints involving b even appear in R(k) is 
that the required values on c and d, needed for the final conflict, 
are used to imply a consistent value on their fanout variable b. 
As noted in our proof, implication values existing only on inputs 
of node b cannot lead to a conflict on b. Therefore, our 
abstraction prunes away the constraints associated with b. Note 
from the circuit shown at the top of Part (b), that when the gate 
corresponding to variable b is removed, the implication from a 
to d can still be used to obtain the final conflict. Indeed, if the 
SAT solver had used this implication directly, the conflict clause 
C1 may never have been used at all. However, in general, we 
cannot rely on the SAT solver to use the implication from a to d, 
instead of the transitive implications from a to b, and b to d. In 
case d is far away from a, say through a chain of buffers, it may 
actually be faster for the SAT solver to use the learned clause 
C1, than not to use it (which is how conflict clauses help to 
improve SAT solver performance). 
 
4.2.3 Other Applications  
It is instructive to recall that the set R(k) is sufficient, but not 
necessary, for unsatisfiability. As described in the previous 
section, the latch interface abstraction prunes the given 
sufficient set R(k) further, to yield another sufficient set. We can 
use this pruned sufficient set for other applications as well. In 
particular, we can use it to identify refinement candidates for 
counterexample guided abstraction refinement [12]. Rather than 
choosing all latch nodes at the failure interface marked by R(k), 
we can use the latch nodes in the pruned sufficient set as 
refinement candidates. This can potentially reduce the number 
of candidates. 
 

  



5.1 Inner Loop of the Framework Another application is in verification of safety properties. If the 
pruned set of constraints does not include any constraint due to 
initial state of a latch, then it represents an inductive invariant. 
Note that though initial state constraints are enforced in the 
BMC SAT problem at depth k, if the pruned set of sufficient 
constraints does not contain any, then this constitutes a proof of 
unsatisfiability when starting from an arbitrary initial state. This 
corresponds to an inductive step in a proof by induction with 
increasing depth [5, 16]. By separately checking the basis step, a 
complete proof by induction can be obtained for the safety 
property. 
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4.3  Accumulated Sufficient Abstract Models 
When using BMC on increasing depth k, it is useful to identify 
the accumulated unsatisfiable core for depth k, denoted AR(k). 
(It can also be identified from a single unsatisfiable BMC 
problem, which checks the existence of a counterexample of any 
depth up to k.)  
 
We use an abstraction similar to that defined in the previous 
section, where the accumulated unsatisfiable core AR(k) is used 
in place of R(k). The resulting model is called an accumulated 
sufficient model for depth k, denoted ASM(k).  Following a 
similar reasoning as in the proof of Theorem 1, it can be shown 
that the model ASM(k) does not have any counterexample of 
depth less than or equal to k.  Figure 4: Iterative Abstraction Framework 

  Each iteration of our framework, indexed by n as shown in the 
figure, consists of applying SAT-based BMC with Proof 
Analysis on a given seed model An. The seed model for the 
initial iteration is the concrete design. In each iteration, we run 
BMC with Proof Analysis up to some fixed depth (potentially 
different for each iteration). The proof analysis technique is used 
to identify the unsatisfiable cores for each depth k when there is 
no counterexample. If a counterexample is found at some depth 
d, it is handled as described in the next section. The result of 
such handling is that we may obtain a new seed model An' 
potentially larger than An, and we repeat the current iteration. 

4.4  Insufficient Abstract Models  
The main purpose of generating abstract models is to enable use 
of complete verification methods, such as symbolic model 
checking [1, 2], or a proof by induction for safety properties [5, 
16]. Typically, such methods do not work well on large models. 
Therefore, if the abstract models resulting from the entire 
unsatisfiable core are too large, we may not be able to apply 
these methods. This is typically the case for many industry 
designs, especially when k gets large (some data are provided in 
Section 6).  
  
The latch interface abstraction already includes some pruning of 
the set R(k) (or AR(k)), which is guaranteed to retain the 
unsatisfiability at (or up to) depth k. It is also possible to 
arbitrarily pick any subset of visited latches required by the latch 
interface abstraction. The choice can be dictated by heuristic 
criteria such as – at what depth was its output node visited, at 
how many depths was its output node visited, etc. The abstract 
model derived by retaining some, but not all, of the visited 
latches is called an insufficient model. It is not guaranteed to 
exclude a counterexample of any length. However, it can 
potentially exclude many in practice. The important point is that 
it is still conservative for verification of LTL properties. In 
comparison to models derived from localization reduction [17], 
which is based on a static cone of influence analysis, an 
insufficient model based on proof analysis may better capture 
the needed invariant for all depths.  We are currently exploring 
heuristics for obtaining useful insufficient abstract models. 

On the other hand, if no counterexample is found by BMC, we 
heuristically choose one of the sets AR(k) at some depth k. For 
example, we can choose a set that remains unchanged for a 
certain number of time frames. Then we use any abstraction 
technique which is guaranteed to exclude all counterexamples of 
depth less than or equal to k, in order to generate the 
corresponding accumulated sufficient model ASM(k).  
Specifically, we can use any version of the latch interface 
abstraction proposed in this paper, or the abstraction proposed 
by others [13]. The ASM(k) model is used as the seed model 
An+1 for the next iteration. If we don't wish to continue, e.g. if 
the seed model An+1 is small enough, or if model An+1 is 
unchanged from model An, we attempt to verify the abstract 
models generated in this iteration. This is described in more 
detail in Section 5.4. The result of such verification is that we 
can get a counterexample (handled as described next), or a 
conclusive result (we can stop), or an inconclusive result. In the 
last case, we try to reduce the size of the seed model by 
performing another iteration.   5.  Iterative Abstraction Framework 

 Our verification methodology is centered around a novel 
iterative abstraction framework, based on the use of BMC with 
Proof Analysis and the related abstractions in the inner loop. 
The overall flow is shown in Figure  4. 

5.2 Handling Counterexamples 
Our scheme for handling counterexamples is shown in Figure 5. 
Given a counterexample on a model An at depth d, we first check 

  



if model An is the concrete design. If it is, then we have found a 
true counterexample. However, for n>1, the counterexample 
could be spurious, since it was obtained not on the concrete 
design, but on an abstract model.  

We briefly mention the techniques we use, and highlight the 
benefit of using them on smaller abstract models.  
� We use symbolic model checking techniques [1, 2] on the 

abstract model. If the correctness property is proved true, it 
is guaranteed to be true on the concrete design as well. Due 
to the limited capacity of such methods, they are more 
likely to work on smaller abstract models.  
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� We also use symbolic traversal techniques to perform a 
reachability analysis on the abstract model [1, 2, 25]. The 
computed reachable set corresponds to an over-
approximate reachable set for the concrete design. These 
are used as additional reachability constraints for the BMC 
methods described below. 

� We use BMC (optionally with reachability constraints [16]) 
to search for a counterexample [4]. If there is no 
counterexample up to depth d, then it is guaranteed that 
there is no counterexample up to depth d in the concrete 
design either. In many examples, BMC can complete 
deeper searches on the smaller abstract models than on the 
larger concrete design.  

� For safety properties, we use BMC (optionally with 
reachability constraints [16]) to perform a proof by 
induction with increasing depth [5]. In many cases, a 
smaller model enables a proof of increased depth, which 
may succeed.  

 
Figure 5: Handling Counterexamples 

 
In case the counterexample is spurious, we run a deeper search 
on seed model An-1 from the previous iteration, in order to 
choose AR(d’), at some depth d’≥ d. Note that, in practice, it 
may not always be possible to run BMC deeper than d. If we 
can, we extract the corresponding model ASM(d’). Otherwise, 
we perform a resolution-based refinement to remove the 
counterexample in case it is spurious [12]. For refinement, we 
use the pruned set of sufficient constraints, rather than the entire 
set R(k), to identify suitable refinement candidates (as described 
in Section 4.2.3).  Finally, we re-enter the iterative abstraction 
flow with the new model An’. This model is guaranteed to 
exclude at least the given counterexample, but is potentially 
larger than the model An. 

6. Experimental Results 
We have implemented the iterative abstraction framework in a 
prototype verification platform called DiVer [16]. The BMC 
engine in DiVer has been successfully used for verification of 
many large industry designs.  For our experiments here, we 
chose the most difficult of these designs, ranging in size up to 
416k gates and 12k flip-flops in the static cone of influence. We 
verified safety properties, i.e. the BMC search was for simple 
counterexamples without loops. All experiments were 
performed on a 2.2 GHz Dual Xeon processor machine, with 4 
GB memory, running Linux 7.2.  

  
5.3 Potential Benefits of Iterative Abstraction 6.1 Results for Iterative Abstraction 
Due to the sufficiency property of the abstractions, the seed 
model in each iteration can have counterexamples only at depths 
strictly greater than the depth d, from which it was generated in 
the previous iteration. Furthermore, it is no bigger than the seed 
model of the previous iteration, provided there are no 
refinements (which we use only when we cannot do a deeper 
search with BMC). The combined effect is that for properties 
that are false, BMC search for deeper counterexamples is 
performed on successively smaller models, thereby increasing 
the likelihood of finding them. For properties that are true, the 
successive iterations help to reduce the size of the abstract 
models, thereby increasing the likelihood of completing the 
proof by unbounded verification methods. 

The results for use of iterative abstraction are summarized in 
Table 1. The size of the concrete design is listed in Column 2 in 
terms of number of flip-flops (#FF), and number of gates 
(#Gates). The results for the different iterations are shown in the 
remaining columns, where for each iteration, we report the size 
of the abstract model (#FF, number of flip-flops), the depth at 
which it was derived (k), and the total CPU time taken by BMC 
with Proof Analysis to check up to that depth (T(s), in seconds).  
 
Typically, we used a 3-hour time limit for each iteration. Within 
each iteration, we used either the last depth completed by BMC, 
or a simple heuristic to pick the depth, from which to generate 
the seed model for the next iteration. The heuristic we used was 
to look for a stable set AR(k) which did not change for 10 time 
frames. For these experiments, we used the cheaper latch 
interface abstraction, which skips the recursive DFS traversal. 
Also, we iterated over the inner loop till the size of the seed 
model converged.  

 
5.4 Verification of Abstract Models 
We apply various complete, as well as incomplete, verification 
methods on the abstract models generated in any iteration of the 
iterative abstraction flow. We prefer to perform verification on 
the seed models (ASM(d)  models), in order to derive benefits of 
iterative abstraction. However, in practice, if these models are 
too large, we use either the SM(k) models, or the insufficient 
abstract models, derived from any depth k checked by BMC. 

 
Note that the first iteration was quite successful in generating 
small abstract models. For most designs, we obtained a 
magnitude of order reduction, in comparison to the size of the 

  



Concrete
Design

#FF / #Gates #FF k T(s) #FF k T(s) #FF k T(s) #FF k T(s) #FF k T(s) #FF k T(s) #FF k T(s)
D1 12.7k / 416.1k 1269 63 32815 541 63 486 439 63 140 259 63 75 212 63 34 118 61 20 113 60 5
D2 4.2k / 37.8k 523 47 10043 451 56 2540 445 41 4163 444 43 2293
D3 5.2k / 46.4k 1530 30 10515 1468 28 2763 1434 29 4354 1406 27 6812 1356 28 8650
D4 910 / 18k 476 80 6274 420 78 3250 405 80 8765 397 85 9588 396 78 2660
D5 4.2k / 37.8k 330 43 882 303 34 27
D6 3.6k / 155k 105 15 1786 103 15 7

Abstract Models Generated by Iterative Abstraction 
Iteration 1 Iteration 2 Iteration 3 Iteration 4

Table 1: Results for Iterative Abstraction

Iteration 5 Iteration 6 Iteration 7

concrete design. Typically, the first iteration was also the most 
expensive in CPU time. Next, note that for some designs, we can 
clearly see a reduction across the iterations also. In particular, 
for the design D1, iterative abstraction allowed the size of the 
abstract model to be reduced from 1269 (Iteration 1) to 113 
(Iteration 7) flip-flops. Though other designs did not exhibit the 
same level of reduction, we did manage to reduce their sizes as 
well.  
 
This effect is related to that observed by others, i.e. when proof 
analysis techniques are applied iteratively, the final unsatisfiable 
core can be much smaller than the original problem [10]. 
However, note that we are not applying the iterative technique to 
the unsatisfiable core at each depth. We are choosing the core at 
a particular depth, and applying proof analysis on the resulting 
abstract model at all depths in the next iteration. We are 
currently experimenting with combining the two, to see if we 
can reduce the sizes of the abstract models even further. 
 
6.2 Results for Verification of Abstract Models 
After we performed iterative abstraction, we tried verification of 
the generated abstract models. These results are summarized in 
Table 2, and discussed in more detail in this section.  
 
For each design, we ran basic BMC with a 3-hour time limit, 
and these results are shown in the first set of columns. We report 
the size of the concrete design (#FF / #Gates), the maximum 
depth for which BMC search was completed (Depth), and the 
total CPU time taken for searching all depths up to the 
maximum (T(s), in seconds). Note that our basic BMC engine is 
able to search fairly deep even for large designs. However, we 
were unable to find a counterexample for any of these designs. 
 
The next set of columns shows results for basic BMC on an 
abstract seed model generated during iterative abstraction. 
Again, we report the size of the abstract model (#FF / #Gates), 

the maximum depth searched by BMC (Depth), and the total 
CPU time taken to search up to that depth (T(s), in seconds). For 
all designs except D3, we were able to search deeper on the 
abstract models than on the concrete designs. For some, there 
was an increase by an order of magnitude in the maximum depth 
searched. This is due to an improvement in the SAT checking 
time on smaller problems, and the ability to unroll the model 
deeper with bounded memory resources. Since no 
counterexample were still found, these results constituted at 
least an increased level of confidence in the correctness.  
 
The last set of columns report the results for complete 
verification of the abstract models. We report the status of the 
verification (Status), i.e. whether or not we were able to prove 
the property correct. Note that we were able to prove the 
correctness of 3 of the 6 designs. For successful instances, we 
also report the time taken (T(s), in seconds) and the verification 
method used.  
 
For design D1, we were able to prove the property correct on the 
abstract model in 40 seconds, by using standard BDD-based 
symbolic model checking. In fact, we had not been able to prove 
this design correct using any other techniques so far. For design 
D5, we were given external constraints by the designers, which 
needed to be enforced at every cycle. However, these constraints 
were not enough to help a proof by induction. Therefore, we 
performed a BDD-based reachability analysis on a much smaller 
abstract model derived from depth 4, with 40 flip-flops, which 
took 1 second. The computed reachable state set was used as a 
reachability invariant by the BMC engine [18], to successfully 
perform a proof by induction on the concrete design, in less than 
1 second. Similarly, for design D6 also, we performed a 
reachability analysis on the shown model with 103 flip-flops, 
taking 2737 seconds. Again, with the BDD-based reachability 
invariant, our BMC engine was able to successfully prove the 
property on the concrete design in less than 1 second. So far, we 

#FF / #Gates Depth T (s) #FF / #Gates Depth T (s) Status T (s) Verification Method
D1 12.7k / 416.1k 96 10230 113 / 1.5k 1012 10788 Yes 40 BDD-based model checking
D2 4.2k / 37.8k 64 7519 451 / 14.5k 115 7129 No
D3 5.2k / 46.4k 32 8667 1356 / 20.8k 30 7513 No
D4 910 / 18k 89 9760 396 / 6k 96 10134 No
D5 4.2k / 37.8k 82 3968 303 / 12.4k 211 10603 Yes  2 * BDD Constraints for BMC-based Induction
D6 3.6k / 155k 307 3099 ** 103 / 17.3k 3034 2635 ** Yes 2738 BDD Constraints for BMC-based Induction

Proof of Property Using Abstract ModelAbstract ModelConcrete Design

                                  **: mem-out within 3-hour time limit.)

Table 2: Results for Verification of Concrete and Abstract Models
(Notes *: BDD analysis performed on a different abstract model, with 40 FF, derived from depth 4.

Basic BMC Performance Basic BMC Performance

  



  

have not been able to conclusively verify the remaining designs 
D2, D3, and D4. We are currently experimenting with abstract 
models generated from lower depths, and hope to obtain further 
improvement.  
 
We are also investigating the comparison of our results against 
use of counterexample-driven refinement methods [12]. It would 
be interesting to compare the sizes of the abstract models, which 
allow complete proofs for the successful instances among these 
designs, and the total time and number of iterations required. 
Though our overall iterative abstraction framework allows 
refinement to be used, so far we have focused more on the top-
down abstraction. We also plan to examine more flexible 
combinations of the two approaches.  

7. Conclusions  
We have presented a novel approach for utilizing SAT-based 
proof analysis in an abstraction-refinement flow using BMC. 
Our contributions are in the specific abstraction we generate 
from the proof analysis, and the manner in which we iterate 
through successive abstractions, leading to successively smaller 
abstract models. The small abstract models enable deeper BMC 
search for counterexamples. They also enable a conclusive proof 
of the correctness property using BDD-based model checking, 
or SAT-based inductive methods. We are able to show 
significant model reductions on industry designs, including a 
100x reduction in the number of flip-flops leading to a 
conclusive proof for a large production design. 
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