
Iterative Abstraction using SAT-based BMC with Proof Analysis

Aarti Gupta, Malay Ganai, Zijiang Yang, Pranav Ashar

NEC Laboratories America
Princeton, NJ 08540, U.S.A.

{agupta, malay, jyang, ashar}@nec-labs.com

Abstract

Resolution-based proof analysis techniques have been proposed
recently to identify a sufficient set of reasons for unsatisfiability
derived by a CNF-based SAT solver. We have adapted these
techniques to work with a hybrid SAT solver. We use the proof
analysis technique with SAT-based BMC, in order to generate
useful abstract models. Our abstraction procedure is used
iteratively in a top-down framework, starting from the concrete
design, where we apply BMC on increasingly more abstract
models. We apply various SAT-based and BDD-based
verification methods on these abstract models, in order to obtain
proofs of correctness, or to perform deeper searches for
counterexamples. We demonstrate the effectiveness of our
prototype implementation on several large industry designs.

1. Introduction
Symbolic model checking techniques [1, 2], based on the use of
Binary Decision Diagrams (BDDs) [3], offer the potential of
exhaustive coverage and the ability to detect subtle bugs.
However, these techniques do not scale very well in practice due
to the state explosion problem. A recent alternative is Bounded
Model Checking (BMC) [4], which focuses on the search for
counterexamples of bounded depth. Effectively, the problem is
translated to a propositional formula, such that the formula is
satisfiable if and only if there exists a counterexample of depth
k. In practice, the depth k can be increased incrementally to find
the shortest counterexample. However, additional reasoning is
needed to ensure completeness of the proof of correctness, when
no counterexample can be found [4, 5].

The satisfiability check in the BMC method is typically
performed by a backend SAT solver. Due to the many advances
in SAT solving techniques [6-9], BMC can handle much larger
designs than BDD-based methods. A related important
development has been the use of resolution-based proof analysis
techniques to check the unsatisfiability result of a SAT solver
[10, 11]. As part of the check, these techniques also identify a
set of clauses from the original problem, called the unsatisfiable
core, such that the clauses are sufficient for implying the
unsatisfiability. Similar SAT-based proof analysis techniques
have also been proposed independently in the context of
refinement, and abstraction-based verification methods [12, 13].
The existing resolution-based proof analysis techniques have
been described for SAT solvers that use a CNF (Conjunctive
Normal Form) representation of the Boolean problem. We have
adapted these techniques to work with a circuit SAT solver [14],
or a hybrid SAT solver [9].

We use the resolution-based proof analysis technique in the SAT
solver used for checking BMC problems – we call this SAT-

based BMC with Proof Analysis. Note that unsatisfiable SAT
instances in BMC correspond to the absence of a
counterexample of (or up to) a given depth. For each such depth,
we identify an unsatisfiable core, and use it to generate an
abstract model. In particular, we propose a latch-based
abstraction, such that the resulting abstract models are
guaranteed to not have a counterexample of (or up to) that depth.

Our overall verification methodology centers around a top-down
iterative abstraction framework. Starting from the concrete
design, we apply SAT-based BMC with Proof Analysis on a
seed model in each iteration. Our abstraction, based on
identification of unsatisfiable cores, is used to choose a seed
model for the next iteration. Under certain practical conditions,
we allow a refinement step, which can potentially increase the
size of the seed model. In each iteration, we also generate
existentially abstract models, again based on the unsatisfiable
cores. These models are known to be conservative for LTL
properties [1, 15]. We use various BDD-based and SAT-based
methods for performing unbounded model checking on these
models. A proof of correctness on any of these models
guarantees correctness on the concrete design, while a
counterexample may require a refinement, or going back to a
previous iteration in our iterative flow. In practice, we iterate the
loop until convergence of the seed model, or until a conclusive
result is obtained on some abstract model.

The key contribution of our work is that the overall flow is
targeted at reducing the size of the seed models across
successive iterations. The potential benefit is that for properties
that are false, BMC search for deeper counterexamples is
performed on successively smaller models, thereby increasing
the likelihood of finding them. For properties that are true, the
successive iterations help to reduce the size of the abstract
models, thereby increasing the likelihood of completing the
proof by unbounded verification methods.

We have implemented these ideas in a prototype verification
framework called DiVer [16], which includes other BDD-based
and SAT-based verification methods. We report on our
experience on some large industry designs. For some of these,
we have been able to complete proofs of correctness for the first
time ever. In most of these, we have been able to perform deeper
searches for counterexamples. We have also observed that our
iterative abstraction typically gives an order of magnitude
reduction in the final model sizes. For many examples, this
reduction was crucial in enabling the successful application of
the unbounded verification methods.

2. Related Work 3. Proof Analysis for a Hybrid SAT Solver
Our work is broadly related to the many efforts in verification
that use abstraction and refinement [12, 17-20]. Most of these
efforts are bottom-up approaches, where starting from a small
abstract model of the concrete design, counterexamples found
on these models are used to refine them iteratively. In practice,
many iterations are needed before converging on a model where
the proof succeeds. More frequently, the size of the refined
abstract model grows monotonically larger, on which
unbounded verification methods fail to complete.

There have been several independent efforts aimed at extracting
proofs of unsatisfiability from a CNF-based SAT solver [10-13].
They are based on recording additional information during
conflict analysis and conflict-driven learning [6], which form
important components of modern SAT solvers [7-9]. We start by
reviewing the basics.

3.1 Basics: Identification of An Unsatisfiable Core
Conflict analysis takes place whenever a conflict is discovered
by a SAT solver during BCP (Boolean constraint propagation).
The implications are typically stored in the form of an
implication graph. In this graph, a node denotes a variable with a
value (a literal), and an edge into a node denotes the clause,
called the antecedent, which caused the implication on the
node’s variable. Nodes with no incoming edges denote decision
variables. A conflict is obtained whenever the graph has two
nodes for the same variable with opposite values. A small
example of an implication graph leading up to a conflict is
shown in Figure 1.

The main reason for the popularity of the bottom-up approaches
has been a lack of techniques that could extract relevant
information from a relatively large concrete design. This is
changing now with the use of proof analysis techniques for SAT
solvers and other theorem-provers [13, 21], and use of
interpolants that approximate reachable state sets [22]. We too
have employed SAT proof analysis techniques effectively, to
obtain abstract models in a top-down iterative abstraction
framework based on use of BMC in the inner loop. In our
approach, a lack of a counterexample provides an opportunity to
perform further abstraction. On the other hand, the presence of a
counterexample does not necessarily require a refinement based
on that particular counterexample.

Clauses:
C1: x1’+ x2 + x6
C2: x2 + x3 + x7’
C3: x3 + x4’+ x8
C4: x1’+ x6’+ x5’
C5: x6’+ x7+ x8’+ x9’
C6: x5 + x9 + x10
C7: x9 + x10’

Conflict Clause C8:
x1’+ x2 + x3 + x8’
Due to conflict (x10, x10’)

Antecedents(C8) =
{C7, C6, C5, C4, C2, C1}

x1

x2’

x3’

x8

x5’
x6

x7’
x9’

x10

x10’

C1
C1

C2

C2

C4

C4

C5

C5

C5

C6

C6

C7

x4

C3
C3

Clauses:
C1: x1’+ x2 + x6
C2: x2 + x3 + x7’
C3: x3 + x4’+ x8
C4: x1’+ x6’+ x5’
C5: x6’+ x7+ x8’+ x9’
C6: x5 + x9 + x10
C7: x9 + x10’

Conflict Clause C8:
x1’+ x2 + x3 + x8’
Due to conflict (x10, x10’)

Antecedents(C8) =
{C7, C6, C5, C4, C2, C1}

x1

x2’

x3’

x8

x5’
x6

x7’
x9’

x10

x10’

C1
C1

C2

C2

C4

C4

C5

C5

C5

C6

C6

C7

x4

C3
C3

x1

x2’

x3’

x8

x5’
x6

x7’
x9’

x10

x10’

C1
C1

C2

C2

C4

C4

C5

C5

C5

C6

C6

C7

x4

C3
C3

Conflicting
Nodes

CUTSET

Conflicting
Nodes

CUTSET

Conflicting
Nodes

CUTSET

In comparison to bottom-up approaches, our top-down approach
may need to handle much larger models. However, note that we
do not require complete verification on these models for the
purpose of abstraction. Instead, our abstraction method is based
on SAT-based BMC, which we use up to some finite depth to
check for counterexamples anyway. Furthermore, in practice,
the first iteration of our iterative abstraction framework provides
a significant reduction in model sizes, such that all successive
iterations need to work on smaller models. Our broader goal is
to systematically exploit proof analysis with SAT-based BMC
wherever possible. Since it is unlikely that a purely top-down or
a purely bottom-up approach will work best in practice, we are
currently exploring combinations of the two.

Figure 1: Example for Conflict Analysis

Conflict analysis takes place by following back the edges
leading to the conflicting nodes up to any cutset in this graph. A
conflict clause can then be derived from the variables feeding
into the chosen cutset. A key feature of a learned conflict clause
is that it is also the result of resolution on all the antecedent
clauses, which are traversed up to the chosen cutset. For proof
analysis, these antecedents (reasons) are recorded and associated
with the learned conflict clause, as also shown in Figure 1.

The work by McMillan and Amla [12] is most closely related to
ours. Though our work was done independently, there are some
similarities. They also use SAT-based BMC, with extraction of
unsatisfiable cores as the basis for performing automatic
abstraction. Therefore, their abstract model also has the useful
property of ruling out counterexamples below a certain depth.
However, the specific abstraction that they use is slightly
different from ours, in that it is not latch-based, but is based on
individual gates. The biggest difference, however, is in the
application setting. They do not use BMC on successively
smaller abstract models within an iterative framework. This
forces them to perform deeper searches with BMC on the
concrete design itself, whenever a counterexample is found on
an abstract model. This is avoided in our approach, by
performing a deeper search on a less abstract model where
possible. A related issue is that they do not use counterexample-
driven refinement (other than noting its depth). In contrast, we
do use refinement, though sparingly. Finally, our iterative
abstraction method provides significant model size reductions in
the final iteration. This frequently enables the application of
unbounded verification methods, which often fail to complete on
abstract models generated in the initial iteration (directly from
the concrete design).

When a SAT solver determines that a given problem is
unsatisfiable, it does so because there is a conflict without any
decisions being taken. A conflict analysis can again be used to
record the antecedents for this final conflict. This time, the
learned conflict clause, i.e. a resolution of all its antecedents, is
an empty clause. Therefore, this final resolution tree constitutes
a proof of unsatifiability [23], except that it may include some
learned clauses. Recall that a learned clause is itself a resolution
of the antecedents associated with it. Therefore, by recursively
substituting the resolution trees corresponding to the learned
clauses into the final resolution tree, a resolution proof only on
the original clauses can be obtained. These original clauses
constitute an unsatisfiable core, i.e. they are sufficient for
implying the unsatisfiability. In practice, the resolution tree is
created only if a check is needed for the unsatisfiability result
[10, 11]. For the purpose of identifying an unsatisfiable core, a
marking procedure is used, which starts from the antecedents of
the final conflict graph, and recursively marks the antecedents

associated with any marked conflict clause. At the end, the set of
marked original clauses constitutes an unsatisfiable core.

3.2 Adaptation to Hybrid SAT Solver
We have extended the proof analysis technique to work with a
hybrid SAT solver. A hybrid SAT solver uses hybrid
representations of Boolean constraints, e.g. where a circuit
netlist is used to represent the original circuit problem, and CNF
is used to represent the learned constraints [9]. Conflict analysis
in a hybrid SAT solver also traverses back from the conflicting
nodes in an implication graph. However, edges in such a graph
may correspond to hybrid representations of constraints. For
example, while performing BCP directly on a circuit netlist,
edges might correspond to nodes in the circuit. We record the
reasons for the conflict, in their hybrid representations, and
associate them with the learned constraint (corresponding to the
conflict clause). When the final conflict is found, indicating the
unsatisfiability, a marking procedure is started from its
antecedents. Again, reasons for any learned constraints are
marked recursively. At the end of this procedure, the marked
constraints from the original problem constitute an unsatisfiable
core. For example, given an unsatisfiable circuit problem due to
external constraints, this procedure identifies a set of nodes in
the circuit that are sufficient for implying the unsatisfiability.

3.3 Reducing the Size of the Unsatisfiable Core
By iterating SAT checking on the unsatisfiable core, the number
of original clauses/variables needed for unsatisfiability can be
reduced significantly [10]. Also, the constraints constituting the
unsatisfiable core are related to the particular conflict clauses
learned by a SAT solver. These, in turn, depend upon other
heuristics in the SAT solver, e.g. decision heuristics, heuristics
for choosing a cutset during conflict analysis [24] etc. We vary
these heuristics in different runs of the SAT solver, in order to
obtain a potentially smaller unsatisfiable core.

4. Generation of Abstract Models
We use a proof analysis technique in the SAT solver used to
check BMC problems. For each depth checked, the lack of a
counterexample corresponds to an unsatisfiable SAT instance.
We identify an unsatisfiable core in each such instance.

4.1 SAT-based BMC with Proof Analysis
For ease of exposition, consider that we use SAT-based BMC to
search for counterexamples of increasing depth k, 1 ≤ k ≤ kmax. If
there is no counterexample of depth k, i.e. the check for depth k
is unsatisfiable, we obtain the unsatisfiable core, and denote it
R(k) (Reasons for depth k). Note that this corresponds to a set of
clauses for a CNF-based SAT solver, or a set of circuit nodes
and external constraints for a hybrid SAT solver using a circuit-
netlist representation for the given design. Our techniques
described in the rest of this paper do not depend upon which
representation is actually used.

4.2 Sufficient Abstract Models
Given an unsatisfiable core R(k), which was identified by BMC
with Proof Analysis at depth k, we generate an abstract model
which preserves the unsatisfiability implied by constraints in
R(k). At the same time, we want to keep the size of the abstract
model small. Rather than optimize at the level of each gate in

the original design, our abstraction tries to minimize the number
of latches to include in the abstract model, while still retaining
the useful property that there is no counterexample of depth k.

4.2.1 Latch Interface Abstraction
We use the following notation to describe our abstraction. For a
node v in the unrolled design, let F(v) denote the node
corresponding to it in the transition relation1 of the design. For a
given node e in the unrolled design, let Ext(e) denote the
(possibly empty) set of external constraints imposed on node e.
For a given latch L in the transition relation of the design, let
IF(k,L) denote the set of its latch interface constraints in the
unrolled design up to depth k. The set IF(k,L) consists of
constraints corresponding to equality of the latch output at time
frame i, with the latch input at time frame i-1, for 1 ≤ i ≤ k. Note
that this set includes the initial state constraint. Note also that
any k-depth unrolling of the design would necessarily include
these constraints for each latch, either explicitly, or implicitly, in
the problem representation. We propose a latch interface
abstraction, which works as follows:

Step 1: Given R(k), we first mark a node v in the unrolled
design, if variable v appears in some constraint in R(k). For each
such v, we say that node v is marked.

Step 2: For each marked node e, such that some constraint in
Ext(e) belongs to R(k), we perform a backward DFS traversal
starting from e, through only marked nodes, using the procedure
shown in Figure 2. Note that the recursive traversal on marked
nodes is terminated at any unmarked node, but is otherwise
continued through the fanin nodes. Any marked node which is
visited during such a traversal is called visited.

 rec_dfs_through_marked_nodes(node n) {
 if (visited(n)) return;
 if (!marked(n)) return;
 visited(n)=1;
 for each m in fanin(n) {
 rec_dfs_through_marked(m);
 }}

Figure 2: Recursive DFS through Marked Nodes

Step 3: For each latch L, we say that L is visited if any of the
nodes denoting its output at time frame i, 0 ≤ i ≤ k, is visited.

Step 4: We extract the combinational fanin cones of all latches
that are visited. We also extract combinational fanin cones of all
nodes F(e) such that Ext(e) is not empty. These fanin cones
represent the transition relation of our abstract model. In
particular, all latches that are not visited are abstracted away as
pseudo-primary inputs.

The resulting abstract model is called a sufficient model for
depth k, denoted SM(k). Since it is generated by abstracting
away some latches as pseudo-primary inputs, it is known to be
conservative for LTL properties [1, 15], i.e. truth of a property

1 We use the term transition relation to denote the entire
combinational logic of the design, including next-state logic for
the latches, as well as output logic for the external constraints,
either due to the property, or enforced by the designers.

on the abstract model guarantees its truth on the given design. It
has an additional useful property, stated in the following
theorem.

Theorem 1: The sufficient model SM(k) generated using the
latch interface abstraction does not have any counterexample of
depth k.

Proof: Recall that constraints in R(k) are sufficient to generate
implications (without taking any decisions), which lead to a
conflict at some node in the unrolled design, corresponding to
the final conflict graph. The latch interface abstraction uses
circuit connectivity information to prune away those constraints
in R(k) which are not needed to obtain the final conflict.
Consider a marked node that does not have a transitive fanout
path, through other marked nodes, to a marked node with an
external constraint in R(k). We claim that such a node is not
needed to obtain the final conflict. This is because implications
only on inputs of a circuit node cannot cause a final conflict on
the output of that node. The same reasoning can be used to show
that there can be no final conflict on any of its marked but
unvisited transitive fanouts. Therefore, at the end of Step 2, the
set of visited nodes and their associated constraints are
guaranteed to lead to a final conflict.

Due to the structure of the unrolled design, all transitive paths
connecting visited nodes in different time frames have to go
through latch interfaces between those time frames. Therefore,
each visited node is contained in the combinational fanin cone of
some visited latch output node, or some visited node on which
an external constraint is in R(k). The abstract model SM(k)
includes all such combinational fanin cones in its transition
relation (Step 4). Therefore, all visited nodes and their
constraints are included in a k-depth unrolling of the abstract
model. Therefore, we are guaranteed to get a final conflict
without any decisions, thereby proving that the abstract model
SM(k) cannot have any counterexample of depth k.

We also use an alternative abstraction, where we skip the
recursive DFS traversal in Step 2 altogether. We consider a latch
L to be marked, if any of its output nodes in any time frame is
marked (not visited), i.e. if any constraint in IF(k, L) belongs to
R(k). In this case, the abstract model consists of the
combinational fanin cones of all marked latches, and all external
constraint nodes. The reasoning in our proof works also for this
cheaper (to compute) abstraction. Indeed, the proof of
sufficiency works, while pruning R(k), for any subset S of
latches, such that {L| visited(L)} ⊆ S ⊆ {L| marked(L)}. In the
remainder of this paper, we denote the abstract model
corresponding to any such set S as SM(k), since it is guaranteed
to not have a counterexample of depth k.

4.2.2 Pruning due to Latch Interface Abstraction
The unsatisfiable core R(k) can include a node in the unrolled
design, on which constraints are not needed to generate the final
conflict. The pruning obtained by the latch interface abstraction
in Step 2 is geared at throwing away these nodes, without losing
sufficiency for the unsatisfiability.

A small example of how this can happen is shown in Figure 3.
Part (a) of this figure shows the implication graph at the time of
learning the conflict clause C1: (a’+b), and the associated

antecedents. In Part (b), we show a final conflict graph, where
implications from an external constraint on node e imply
variable a to 1, which leads to use of the conflict clause to imply
b to 1. This further leads to c and d being implied to 1, with the
implication on d leading to a final conflict on node v. Given this
final conflict graph, the recursive marking procedure for R(k)
starts by including antecedents for implications from the circuit
clauses (from e to a, from b to c, … etc.). Furthermore, it
substitutes the antecedents of the conflict clause, leading to R(k)
as shown in the figure.

c

d

a

b

b’

a
c

d

b

Conflict clause: C1 = a’+b
Ant(C1) = {(a’+c),(a’+d),(c’+d’+b)}

Part (a) Part (b)

c

d

a

b

ev

External
constraint

a b

c

d

v

e

v’

C1

Ant(Final) =
{e, (e’+a), C1, (c+b’), (d+b’), (d’+v), …}

R(k) =
{e, (e’+a),{a’+c),(a’+d),(c’+d’+b),(c+b’),(d+b’),
(d’+v), …}

v’

…

c

d

a

b

b’

a
c

d

b

Conflict clause: C1 = a’+b
Ant(C1) = {(a’+c),(a’+d),(c’+d’+b)}

Part (a)

c

d

a

b

b’

a
c

d

b

Conflict clause: C1 = a’+b
Ant(C1) = {(a’+c),(a’+d),(c’+d’+b)}

c

d

a

b

b’

a
c

d

b

Conflict clause: C1 = a’+b
Ant(C1) = {(a’+c),(a’+d),(c’+d’+b)}

Part (a) Part (b)

c

d

a

b

ev

External
constraint

a b

c

d

v

e

v’

C1

Ant(Final) =
{e, (e’+a), C1, (c+b’), (d+b’), (d’+v), …}

R(k) =
{e, (e’+a),{a’+c),(a’+d),(c’+d’+b),(c+b’),(d+b’),
(d’+v), …}

v’

…

Part (b)

c

d

a

b

ev

External
constraint

a b

c

d

v

e

v’

C1

Ant(Final) =
{e, (e’+a), C1, (c+b’), (d+b’), (d’+v), …}

R(k) =
{e, (e’+a),{a’+c),(a’+d),(c’+d’+b),(c+b’),(d+b’),
(d’+v), …}

v’

Part (b)

c

d

a

b

ev

External
constraint

a b

c

d

v

e

v’

C1

Ant(Final) =
{e, (e’+a), C1, (c+b’), (d+b’), (d’+v), …}

R(k) =
{e, (e’+a),{a’+c),(a’+d),(c’+d’+b),(c+b’),(d+b’),
(d’+v), …}

v’
c

d

a

b

ev

External
constraint

a b

c

d

v

e

v’

C1

Ant(Final) =
{e, (e’+a), C1, (c+b’), (d+b’), (d’+v), …}

R(k) =
{e, (e’+a),{a’+c),(a’+d),(c’+d’+b),(c+b’),(d+b’),
(d’+v), …}

v’

…

Conflict

Final
Conflict

Final
Conflict

ConflictConflictConflict

Final
Conflict

Final
Conflict

Final
Conflict

Final
Conflict

Final
Conflict

Final
Conflict

Final
Conflict

Final
Conflict

Figure 3: Example for Pruning the Set R(k)

Suppose there is no implication from any external constraint on
the value of variable b, i.e. it does not matter what value b takes.
The reason that constraints involving b even appear in R(k) is
that the required values on c and d, needed for the final conflict,
are used to imply a consistent value on their fanout variable b.
As noted in our proof, implication values existing only on inputs
of node b cannot lead to a conflict on b. Therefore, our
abstraction prunes away the constraints associated with b. Note
from the circuit shown at the top of Part (b), that when the gate
corresponding to variable b is removed, the implication from a
to d can still be used to obtain the final conflict. Indeed, if the
SAT solver had used this implication directly, the conflict clause
C1 may never have been used at all. However, in general, we
cannot rely on the SAT solver to use the implication from a to d,
instead of the transitive implications from a to b, and b to d. In
case d is far away from a, say through a chain of buffers, it may
actually be faster for the SAT solver to use the learned clause
C1, than not to use it (which is how conflict clauses help to
improve SAT solver performance).

4.2.3 Other Applications
It is instructive to recall that the set R(k) is sufficient, but not
necessary, for unsatisfiability. As described in the previous
section, the latch interface abstraction prunes the given
sufficient set R(k) further, to yield another sufficient set. We can
use this pruned sufficient set for other applications as well. In
particular, we can use it to identify refinement candidates for
counterexample guided abstraction refinement [12]. Rather than
choosing all latch nodes at the failure interface marked by R(k),
we can use the latch nodes in the pruned sufficient set as
refinement candidates. This can potentially reduce the number
of candidates.

5.1 Inner Loop of the Framework Another application is in verification of safety properties. If the
pruned set of constraints does not include any constraint due to
initial state of a latch, then it represents an inductive invariant.
Note that though initial state constraints are enforced in the
BMC SAT problem at depth k, if the pruned set of sufficient
constraints does not contain any, then this constitutes a proof of
unsatisfiability when starting from an arbitrary initial state. This
corresponds to an inductive step in a proof by induction with
increasing depth [5, 16]. By separately checking the basis step, a
complete proof by induction can be obtained for the safety
property.

A_1 = Concrete Design

Run BMC with Proof Analysis
On Seed Model A_n

Continue?

Choose Reasons AR(k)

n= n+1

Iterative Abstraction

Concrete Design and Correctness Property

n=1

Extract Abstract Model ASM(k) from AR(k)
A_n+1 = ASM(k)

Yes

Handle Counterexample
on A_n at depth d

Verify Abstract Models

Handle Counterexample
on A_n+1 at depth d

No
Conclusive
Result

Inconclusive Result
Counterexample Found

Counterexample Found
No Counterexample

Next Iteration

A_1 = Concrete Design

Run BMC with Proof Analysis
On Seed Model A_n

Continue?Continue?

Choose Reasons AR(k)

n= n+1

Iterative Abstraction

Concrete Design and Correctness Property

n=1

Extract Abstract Model ASM(k) from AR(k)
A_n+1 = ASM(k)

Yes

Handle Counterexample
on A_n at depth d

Verify Abstract Models

Handle Counterexample
on A_n+1 at depth d

No
Conclusive
Result

Inconclusive Result
Counterexample Found

Counterexample Found
No Counterexample

Next Iteration

4.3 Accumulated Sufficient Abstract Models
When using BMC on increasing depth k, it is useful to identify
the accumulated unsatisfiable core for depth k, denoted AR(k).
(It can also be identified from a single unsatisfiable BMC
problem, which checks the existence of a counterexample of any
depth up to k.)

We use an abstraction similar to that defined in the previous
section, where the accumulated unsatisfiable core AR(k) is used
in place of R(k). The resulting model is called an accumulated
sufficient model for depth k, denoted ASM(k). Following a
similar reasoning as in the proof of Theorem 1, it can be shown
that the model ASM(k) does not have any counterexample of
depth less than or equal to k. Figure 4: Iterative Abstraction Framework

 Each iteration of our framework, indexed by n as shown in the
figure, consists of applying SAT-based BMC with Proof
Analysis on a given seed model An. The seed model for the
initial iteration is the concrete design. In each iteration, we run
BMC with Proof Analysis up to some fixed depth (potentially
different for each iteration). The proof analysis technique is used
to identify the unsatisfiable cores for each depth k when there is
no counterexample. If a counterexample is found at some depth
d, it is handled as described in the next section. The result of
such handling is that we may obtain a new seed model An'
potentially larger than An, and we repeat the current iteration.

4.4 Insufficient Abstract Models
The main purpose of generating abstract models is to enable use
of complete verification methods, such as symbolic model
checking [1, 2], or a proof by induction for safety properties [5,
16]. Typically, such methods do not work well on large models.
Therefore, if the abstract models resulting from the entire
unsatisfiable core are too large, we may not be able to apply
these methods. This is typically the case for many industry
designs, especially when k gets large (some data are provided in
Section 6).

The latch interface abstraction already includes some pruning of
the set R(k) (or AR(k)), which is guaranteed to retain the
unsatisfiability at (or up to) depth k. It is also possible to
arbitrarily pick any subset of visited latches required by the latch
interface abstraction. The choice can be dictated by heuristic
criteria such as – at what depth was its output node visited, at
how many depths was its output node visited, etc. The abstract
model derived by retaining some, but not all, of the visited
latches is called an insufficient model. It is not guaranteed to
exclude a counterexample of any length. However, it can
potentially exclude many in practice. The important point is that
it is still conservative for verification of LTL properties. In
comparison to models derived from localization reduction [17],
which is based on a static cone of influence analysis, an
insufficient model based on proof analysis may better capture
the needed invariant for all depths. We are currently exploring
heuristics for obtaining useful insufficient abstract models.

On the other hand, if no counterexample is found by BMC, we
heuristically choose one of the sets AR(k) at some depth k. For
example, we can choose a set that remains unchanged for a
certain number of time frames. Then we use any abstraction
technique which is guaranteed to exclude all counterexamples of
depth less than or equal to k, in order to generate the
corresponding accumulated sufficient model ASM(k).
Specifically, we can use any version of the latch interface
abstraction proposed in this paper, or the abstraction proposed
by others [13]. The ASM(k) model is used as the seed model
An+1 for the next iteration. If we don't wish to continue, e.g. if
the seed model An+1 is small enough, or if model An+1 is
unchanged from model An, we attempt to verify the abstract
models generated in this iteration. This is described in more
detail in Section 5.4. The result of such verification is that we
can get a counterexample (handled as described next), or a
conclusive result (we can stop), or an inconclusive result. In the
last case, we try to reduce the size of the seed model by
performing another iteration. 5. Iterative Abstraction Framework

 Our verification methodology is centered around a novel
iterative abstraction framework, based on the use of BMC with
Proof Analysis and the related abstractions in the inner loop.
The overall flow is shown in Figure 4.

5.2 Handling Counterexamples
Our scheme for handling counterexamples is shown in Figure 5.
Given a counterexample on a model An at depth d, we first check

if model An is the concrete design. If it is, then we have found a
true counterexample. However, for n>1, the counterexample
could be spurious, since it was obtained not on the concrete
design, but on an abstract model.

We briefly mention the techniques we use, and highlight the
benefit of using them on smaller abstract models.
� We use symbolic model checking techniques [1, 2] on the

abstract model. If the correctness property is proved true, it
is guaranteed to be true on the concrete design as well. Due
to the limited capacity of such methods, they are more
likely to work on smaller abstract models.

Re-Enter Iterative Abstraction Flow
With New Abstract Model A_n’

Given Counterexample
On Model A_n at depth d

Run BMC with Proof Analysis
On Model A_n-1 up to some d’ > d

Perform Refinement to
Obtain New Model A_n’

n > 1

Extract Model ASM(d’)
from AR(d’)

True Counterexample

Completed Did not complete

no
yes

Re-Enter Iterative Abstraction Flow
With New Abstract Model A_n’

Given Counterexample
On Model A_n at depth d

Run BMC with Proof Analysis
On Model A_n-1 up to some d’ > d

Perform Refinement to
Obtain New Model A_n’

n > 1

Extract Model ASM(d’)
from AR(d’)

True Counterexample

Completed Did not complete

Re-Enter Iterative Abstraction Flow
With New Abstract Model A_n’

Re-Enter Iterative Abstraction Flow
With New Abstract Model A_n’

Given Counterexample
On Model A_n at depth d

Run BMC with Proof Analysis
On Model A_n-1 up to some d’ > d

Perform Refinement to
Obtain New Model A_n’

n > 1n > 1

Extract Model ASM(d’)
from AR(d’)

True Counterexample

Completed Did not complete

no
yes

� We also use symbolic traversal techniques to perform a
reachability analysis on the abstract model [1, 2, 25]. The
computed reachable set corresponds to an over-
approximate reachable set for the concrete design. These
are used as additional reachability constraints for the BMC
methods described below.

� We use BMC (optionally with reachability constraints [16])
to search for a counterexample [4]. If there is no
counterexample up to depth d, then it is guaranteed that
there is no counterexample up to depth d in the concrete
design either. In many examples, BMC can complete
deeper searches on the smaller abstract models than on the
larger concrete design.

� For safety properties, we use BMC (optionally with
reachability constraints [16]) to perform a proof by
induction with increasing depth [5]. In many cases, a
smaller model enables a proof of increased depth, which
may succeed.

Figure 5: Handling Counterexamples

In case the counterexample is spurious, we run a deeper search
on seed model An-1 from the previous iteration, in order to
choose AR(d’), at some depth d’≥ d. Note that, in practice, it
may not always be possible to run BMC deeper than d. If we
can, we extract the corresponding model ASM(d’). Otherwise,
we perform a resolution-based refinement to remove the
counterexample in case it is spurious [12]. For refinement, we
use the pruned set of sufficient constraints, rather than the entire
set R(k), to identify suitable refinement candidates (as described
in Section 4.2.3). Finally, we re-enter the iterative abstraction
flow with the new model An’. This model is guaranteed to
exclude at least the given counterexample, but is potentially
larger than the model An.

6. Experimental Results
We have implemented the iterative abstraction framework in a
prototype verification platform called DiVer [16]. The BMC
engine in DiVer has been successfully used for verification of
many large industry designs. For our experiments here, we
chose the most difficult of these designs, ranging in size up to
416k gates and 12k flip-flops in the static cone of influence. We
verified safety properties, i.e. the BMC search was for simple
counterexamples without loops. All experiments were
performed on a 2.2 GHz Dual Xeon processor machine, with 4
GB memory, running Linux 7.2.

5.3 Potential Benefits of Iterative Abstraction 6.1 Results for Iterative Abstraction
Due to the sufficiency property of the abstractions, the seed
model in each iteration can have counterexamples only at depths
strictly greater than the depth d, from which it was generated in
the previous iteration. Furthermore, it is no bigger than the seed
model of the previous iteration, provided there are no
refinements (which we use only when we cannot do a deeper
search with BMC). The combined effect is that for properties
that are false, BMC search for deeper counterexamples is
performed on successively smaller models, thereby increasing
the likelihood of finding them. For properties that are true, the
successive iterations help to reduce the size of the abstract
models, thereby increasing the likelihood of completing the
proof by unbounded verification methods.

The results for use of iterative abstraction are summarized in
Table 1. The size of the concrete design is listed in Column 2 in
terms of number of flip-flops (#FF), and number of gates
(#Gates). The results for the different iterations are shown in the
remaining columns, where for each iteration, we report the size
of the abstract model (#FF, number of flip-flops), the depth at
which it was derived (k), and the total CPU time taken by BMC
with Proof Analysis to check up to that depth (T(s), in seconds).

Typically, we used a 3-hour time limit for each iteration. Within
each iteration, we used either the last depth completed by BMC,
or a simple heuristic to pick the depth, from which to generate
the seed model for the next iteration. The heuristic we used was
to look for a stable set AR(k) which did not change for 10 time
frames. For these experiments, we used the cheaper latch
interface abstraction, which skips the recursive DFS traversal.
Also, we iterated over the inner loop till the size of the seed
model converged.

5.4 Verification of Abstract Models
We apply various complete, as well as incomplete, verification
methods on the abstract models generated in any iteration of the
iterative abstraction flow. We prefer to perform verification on
the seed models (ASM(d) models), in order to derive benefits of
iterative abstraction. However, in practice, if these models are
too large, we use either the SM(k) models, or the insufficient
abstract models, derived from any depth k checked by BMC.

Note that the first iteration was quite successful in generating
small abstract models. For most designs, we obtained a
magnitude of order reduction, in comparison to the size of the

Concrete
Design

#FF / #Gates #FF k T(s) #FF k T(s) #FF k T(s) #FF k T(s) #FF k T(s) #FF k T(s) #FF k T(s)
D1 12.7k / 416.1k 1269 63 32815 541 63 486 439 63 140 259 63 75 212 63 34 118 61 20 113 60 5
D2 4.2k / 37.8k 523 47 10043 451 56 2540 445 41 4163 444 43 2293
D3 5.2k / 46.4k 1530 30 10515 1468 28 2763 1434 29 4354 1406 27 6812 1356 28 8650
D4 910 / 18k 476 80 6274 420 78 3250 405 80 8765 397 85 9588 396 78 2660
D5 4.2k / 37.8k 330 43 882 303 34 27
D6 3.6k / 155k 105 15 1786 103 15 7

Abstract Models Generated by Iterative Abstraction
Iteration 1 Iteration 2 Iteration 3 Iteration 4

Table 1: Results for Iterative Abstraction

Iteration 5 Iteration 6 Iteration 7

concrete design. Typically, the first iteration was also the most
expensive in CPU time. Next, note that for some designs, we can
clearly see a reduction across the iterations also. In particular,
for the design D1, iterative abstraction allowed the size of the
abstract model to be reduced from 1269 (Iteration 1) to 113
(Iteration 7) flip-flops. Though other designs did not exhibit the
same level of reduction, we did manage to reduce their sizes as
well.

This effect is related to that observed by others, i.e. when proof
analysis techniques are applied iteratively, the final unsatisfiable
core can be much smaller than the original problem [10].
However, note that we are not applying the iterative technique to
the unsatisfiable core at each depth. We are choosing the core at
a particular depth, and applying proof analysis on the resulting
abstract model at all depths in the next iteration. We are
currently experimenting with combining the two, to see if we
can reduce the sizes of the abstract models even further.

6.2 Results for Verification of Abstract Models
After we performed iterative abstraction, we tried verification of
the generated abstract models. These results are summarized in
Table 2, and discussed in more detail in this section.

For each design, we ran basic BMC with a 3-hour time limit,
and these results are shown in the first set of columns. We report
the size of the concrete design (#FF / #Gates), the maximum
depth for which BMC search was completed (Depth), and the
total CPU time taken for searching all depths up to the
maximum (T(s), in seconds). Note that our basic BMC engine is
able to search fairly deep even for large designs. However, we
were unable to find a counterexample for any of these designs.

The next set of columns shows results for basic BMC on an
abstract seed model generated during iterative abstraction.
Again, we report the size of the abstract model (#FF / #Gates),

the maximum depth searched by BMC (Depth), and the total
CPU time taken to search up to that depth (T(s), in seconds). For
all designs except D3, we were able to search deeper on the
abstract models than on the concrete designs. For some, there
was an increase by an order of magnitude in the maximum depth
searched. This is due to an improvement in the SAT checking
time on smaller problems, and the ability to unroll the model
deeper with bounded memory resources. Since no
counterexample were still found, these results constituted at
least an increased level of confidence in the correctness.

The last set of columns report the results for complete
verification of the abstract models. We report the status of the
verification (Status), i.e. whether or not we were able to prove
the property correct. Note that we were able to prove the
correctness of 3 of the 6 designs. For successful instances, we
also report the time taken (T(s), in seconds) and the verification
method used.

For design D1, we were able to prove the property correct on the
abstract model in 40 seconds, by using standard BDD-based
symbolic model checking. In fact, we had not been able to prove
this design correct using any other techniques so far. For design
D5, we were given external constraints by the designers, which
needed to be enforced at every cycle. However, these constraints
were not enough to help a proof by induction. Therefore, we
performed a BDD-based reachability analysis on a much smaller
abstract model derived from depth 4, with 40 flip-flops, which
took 1 second. The computed reachable state set was used as a
reachability invariant by the BMC engine [18], to successfully
perform a proof by induction on the concrete design, in less than
1 second. Similarly, for design D6 also, we performed a
reachability analysis on the shown model with 103 flip-flops,
taking 2737 seconds. Again, with the BDD-based reachability
invariant, our BMC engine was able to successfully prove the
property on the concrete design in less than 1 second. So far, we

#FF / #Gates Depth T (s) #FF / #Gates Depth T (s) Status T (s) Verification Method
D1 12.7k / 416.1k 96 10230 113 / 1.5k 1012 10788 Yes 40 BDD-based model checking
D2 4.2k / 37.8k 64 7519 451 / 14.5k 115 7129 No
D3 5.2k / 46.4k 32 8667 1356 / 20.8k 30 7513 No
D4 910 / 18k 89 9760 396 / 6k 96 10134 No
D5 4.2k / 37.8k 82 3968 303 / 12.4k 211 10603 Yes 2 * BDD Constraints for BMC-based Induction
D6 3.6k / 155k 307 3099 ** 103 / 17.3k 3034 2635 ** Yes 2738 BDD Constraints for BMC-based Induction

Proof of Property Using Abstract ModelAbstract ModelConcrete Design

 **: mem-out within 3-hour time limit.)

Table 2: Results for Verification of Concrete and Abstract Models
(Notes *: BDD analysis performed on a different abstract model, with 40 FF, derived from depth 4.

Basic BMC Performance Basic BMC Performance

have not been able to conclusively verify the remaining designs
D2, D3, and D4. We are currently experimenting with abstract
models generated from lower depths, and hope to obtain further
improvement.

We are also investigating the comparison of our results against
use of counterexample-driven refinement methods [12]. It would
be interesting to compare the sizes of the abstract models, which
allow complete proofs for the successful instances among these
designs, and the total time and number of iterations required.
Though our overall iterative abstraction framework allows
refinement to be used, so far we have focused more on the top-
down abstraction. We also plan to examine more flexible
combinations of the two approaches.

7. Conclusions
We have presented a novel approach for utilizing SAT-based
proof analysis in an abstraction-refinement flow using BMC.
Our contributions are in the specific abstraction we generate
from the proof analysis, and the manner in which we iterate
through successive abstractions, leading to successively smaller
abstract models. The small abstract models enable deeper BMC
search for counterexamples. They also enable a conclusive proof
of the correctness property using BDD-based model checking,
or SAT-based inductive methods. We are able to show
significant model reductions on industry designs, including a
100x reduction in the number of flip-flops leading to a
conclusive proof for a large production design.

References

[1] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking:

MIT Press, 1999.
[2] K. L. McMillan, Symbolic Model Checking: An Approach to

the State Explosion Problem: Kluwer Academic Publishers,
1993.

[3] R. E. Bryant, "Graph-based algorithms for Boolean function
manipulation," IEEE Transactions on Computers, vol. C-
35(8), pp. 677-691, 1986.

[4] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, "Symbolic
Model Checking without BDDs," in Proceedings of
Workshop on Tools and Algorithms for Analysis and
Construction of Systems (TACAS), vol. 1579, LNCS, 1999.

[5] M. Sheeran, S. Singh, and G. Stalmarck, "Checking Safety
Properties using Induction and a SAT Solver," in
Proceedings of Conference on Formal Methods in
Computer-Aided Design, 2000.

[6] J. P. Marques-Silva and K. A. Sakallah, "GRASP: A Search
Algorithm for Propositional Satisfiability," IEEE
Transactions on Computers, vol. 48, pp. 506-521, 1999.

[7] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S.
Malik, "Chaff: Engineering an Efficient SAT Solver," in
Proceedings of Design Automation Conference, 2001.

[8] E. Goldberg and Y. Novikov, "BerkMin: A Fast and Robust
SAT-Solver," in Proceedings of Conference on Design
Automation & Test Europe (DATE), 2002, pp. 142-149.

[9] M. Ganai, L. Zhang, P. Ashar, and A. Gupta, "Combining
Strengths of Circuit-based and CNF-based Algorithms for a
High Performance SAT Solver," in Proceedings of the
Design Automation Conference, 2002.

[10] L. Zhang and S. Malik, "Validating SAT Solvers Using an
Independent Resolution-Based Checker: Practical
Implementations and Other Applications," in Proceedings of
Conference on Design Automation & Test Europe (DATE),
2003.

[11] E. Goldberg and Y. Novikov, "Verification of Proofs of
Unsatisfiability for CNF Formulas," in Proceedings of
Conference on Design Automation & Test Europe (DATE),
2003.

[12] P. Chauhan, E. M. Clarke, J. Kukula, S. Sapra, H. Veith,
and D. Wang, "Automated Abstraction Refinement for
Model Checking Large State Spaces using SAT based
Conflict Analysis," in Proceedings of Conference on Formal
Methods in CAD (FMCAD), 2002.

[13] K. L. McMillan and N. Amla, "Automatic Abstraction
Without Counterexamples," in Proceedings of Tools for
Algorithms for Construction and Analysis of Systems
(TACAS), 2003.

[14] A. Kuehlmann, M. Ganai, and V. Paruthi, "Circuit-based
Boolean Reasoning," in Proceedings of Design Automation
Conference, 2001.

[15] E. M. Clarke, O. Grumberg, and D. E. Long, "Model
Checking and Abstraction," in Proceedings of Conference
on Principles of Programming Languages, 1992.

[16] A. Gupta, M. Ganai, C. Wang, Z. Yang, and P. Ashar,
"Abstraction and BDDs Complement SAT-based BMC in
DiVer," in Proceedings of International Conference on
Computer Aided Verification, vol. 2725, LNCS, 2003.

[17] R. P. Kurshan, Computer-Aided Verification of Co-
ordinating Processes: The Automata-Theoretic Approach:
Princeton University Press, 1994.

[18] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
"Counterexample-guided abstraction refinement," in
Proceedings of Conference on Computer Aided Verification,
vol. 1855, LNCS, 2000, pp. 154-169.

[19] D. Wang, P.-H. Ho, J. Long, J. Kukula, Y. Zhu, H. Keung,
T. Ma, and R. Damiano, "Formal Property Verification by
Abstraction Refinement with formal, simulation, and hybrid
engines," in Proceedings of Design Automation Conference,
2001.

[20] E. M. Clarke, A. Gupta, J. Kukula, and O. Strichman,
"SAT based abstraction-refinement using ILP and machine
learning techniques," in Proceedings of Conference on
Computer Aided Verification, 2002.

[21] R. Majumdar, T. A. Henzinger, R. Jhala, and G. Sutre,
"Lazy Abstraction," in Proceedings of Conference on
Principles of Programming Languages, 2002.

[22] K. L. McMillan, "Interpolation and SAT-based Model
Checking," in Proceedings of Conference on Computer-
Aided Verification, vol. 2725, LNCS, 2003.

[23] M. Davis and H. Putnam, "A Computing Procedure for
Quantification Theory," Journal of ACM, vol. 7, pp. 201-
214, 1960.

[24] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik,
"Efficient Conflict Driven Learning in a Boolean
Satisfiability Solver," in Proceedings of the International
Conference on Computer-Aided Design, 2001.

[25] A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik,
"Partition-Based Decision Heuristics for Image Computation
using SAT and BDDs," in Proceedings of International
Conference on Computer-Aided Design, 2001.

	Iterative Abstraction using SAT-based BMC with Proof Analysis
	
	
	Aarti Gupta, Malay Ganai, Zijiang Yang, Pranav Ashar

	Abstract

	Introduction
	Related Work
	Proof Analysis for a Hybrid SAT Solver
	Basics: Identification of An Unsatisfiable Core
	Adaptation to Hybrid SAT Solver
	Reducing the Size of the Unsatisfiable Core

	Generation of Abstract Models
	SAT-based BMC with Proof Analysis

	Sufficient Abstract Models
	4.2.1 Latch Interface Abstraction

	Figure 2: Recursive DFS through Marked Nodes
	
	Pruning due to Latch Interface Abstraction
	Other Applications
	4.3 Accumulated Sufficient Abstract Models
	4.4 Insufficient Abstract Models

	5. Iterative Abstraction Framework
	5.1 Inner Loop of the Framework
	5.2 Handling Counterexamples
	5.3 Potential Benefits of Iterative Abstraction
	5.4 Verification of Abstract Models

	Experimental Results
	Results for Iterative Abstraction

	7. Conclusions

