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Abstract

Loop integration results have been obtained using numerical integration and extrapolation. An extrapolation to the

limit is performed with respect to a parameter in the integrand which tends to zero. Results are given for a non-scalar

four-point diagram. Extensions to accommodate loop integration by existing integration packages are also discussed.

These include: using previously generated partitions of the domain and roundoff error guards.
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1. Introduction and background

In a general form, loop integrals used for cross-
section corrections are given by
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where N is the number of propagators, L the number
of loops, the momentum on the ‘th internal line is k‘

and the corresponding mass is m‘; 1p‘pN :
As a special case, scalar one-loop integrals of the

form ð�1Þn=ð16p2ÞIn where

In ¼

Z
Sn�1

1

ðDnðxÞ � ieÞn�2
dx ð2Þ

are obtained from Eq. (1) by introducing Feynman
parameters and integrating over the loop momen-
tum l. The integration region Sn�1 is the n � 1
dimensional unit simplex.
For the simplest cases, the results can be

obtained analytically. Numerical techniques have
d.
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Fig. 2. D4 ¼ 0 surface.
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been successful with considerable analytic manip-
ulation (see, e.g., Refs. [1,2]). In previous work [3],
we reported results for integrals of the form (2)
treated numerically using extrapolation by the e-
algorithm [4]. We will now consider the case of a
one-loop integral where the numerator in the
integrand is a polynomial of the Feynman para-
meters. A sample problem involving the e�eþ !

W�Wþ interaction is given in the next section of
this paper. Results for this problem are given in
Section 3. Section 4 discusses enhancements to the
ParInt parallel integration package.
2. Non-scalar integral

The matrix element of one-loop corrections is
given by the real part of the product of a one-loop
amplitude and the (conjugate of) a tree amplitude.
Fig. 1 shows an example of a box diagram and a
tree diagram of a Z-boson exchange for the
interaction e�eþ ! W�Wþ: The Feynman dia-
gram and the corresponding matrix element are
generated automatically by GRACE-loop [5]
system.

After introducing the Feynman parameters as in
Fig. 1, and integrating over the loop momentum,
the matrix element is of the following form

M4ðf ; g; eÞ ¼
Z

dxdydz
f ðx; y; zÞ

ðD4 � ieÞ2
� 2

gðx; y; zÞ

D4 � ie

� �

where D4¼
txAxþ 2v 	 xþ C; and Aij ¼

qi 	 qj ; q1 ¼ �pe� ; q2 ¼ peþ ; q3 ¼ peþ � pWþ ; C ¼
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Fig. 1. Feyman diagram for e�eþ ! W�Wþ:
M2
0 ¼ M2

Z; vi ¼
1
2
ð�q2

i þ M2
i � M2

0Þ with M1 ¼

me;M2 ¼ MW ;M3 ¼ me:
Fig. 2 shows the D4 ¼ 0 surface of the singular-

ity over �1px; yp1; and delineates the integra-
tion domain S3:

f and g are polynomials of Feynman parameters,
of which the coefficients are determined by
external momenta and masses of internal lines.
Here MZ ¼ 91:187GeV;MW ¼ 80:22GeV;me ¼

0:511MeV;
ffiffi
s

p
¼ 500GeV and y ¼ ffðpe� ; pW�Þ:

The numerical results are evaluated for cos y ¼

0:956811390:
The generalized non-linear gauges [5] are

implemented for the amplitude. The result depends
on the gauge parameters because only one diagram
is picked up. For the numerical evaluation, the
non-linear gauge parameters are set as ~a ¼ 2; ~b ¼

3; ~d ¼ 4; ~� ¼ 5 and ~k ¼ 6:
3. Graph 216 results

Table 1 illustrates the use of the e-algorithm for
the integral computation of the term involving f

(the symbolic code of which has about 2000 lines
as FORTRAN code). We show the results of the
extrapolation for the real part of M4ðf ; 0; eÞ: The
method is based on generating a sequence of
integral values corresponding to a geometric
sequence of e and extrapolating to the limit as
e ! 0:
The table shows the sequence of integral

approximations for e ¼ 1:230�‘; ‘ ¼ 0; 1; . . . (ob-
tained numerically) in the first (leftmost) column.
Using the integral approximations corresponding
to ‘ ¼ 0; 1; 2; the first extrapolated result is
obtained (top element of column 2). Using the ‘ ¼
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Table 1

Extrapolation table for the real part of M4ðf ; 0; eÞ

‘

0 �0.65001198

�0.65102708 �0.65168630

2 �0.65142675 �0.65143432 �0.64911741

3 �0.65143418 �0.65142699 �0.64873688 �0.64669569

4 �0.65121543 �0.65186148 �0.64837272 �0.64766170 �0.64787059

5 �0.65088469 �0.65400251 �0.64811405 �0.64780004 �0.64784821 �0.64784032

6 �0.65051471 �0.61144371 �0.64796871 �0.64783212 �0.64784301 �0.64784011 �0.64784042

7 �0.65014820 �0.64536958 �0.64789843 �0.64783979 �0.64784142 �0.64783917 �0.64783494 �0.64783735

8 �0.64980779 �0.64694643 �0.64786686 �0.64784110 �0.64784083 �0.64783800 �0.64783707 �0.64783723 �0.647837056

9 �0.64950358 �0.64742949 �0.64785289 �0.64784075 �0.64784147 �0.64783737 �0.64783720 �0.64783719

10 �0.64923827 �0.64763299 �0.64784650 �0.64784000 �0.64782758 �0.64783723 �0.64783718

11 �0.64901060 �0.64773083 �0.64784332 �0.64783920 �0.64783650 �0.64783719

12 �0.64881731 �0.64778110 �0.64784155 �0.64783848 �0.64783702

13 �0.64865441 �0.64780784 �0.64784045 �0.64783791

14 �0.64851780 �0.64782228 �0.64783970

15 �0.64840361 �0.64783009

16 �0.64830839
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3 element of column 1, the second extrapolated
result is obtained in column 2; the ‘ ¼ 4 element of
column 1 is then used to generate the third element
of column 2 and the top element of column 3. In
all the following iterations, the new element in
column 1 is used to generate a new lower diagonal
of the triangular table.

The table elements are shown to 8-digit accu-
racy, which is the final accuracy obtained in this
run. Convergence is apparent down the columns
and along the lower diagonal. Relying on a
heuristic error estimate of the table elements along
the lower diagonal, an element is selected as the
result (printed boldface). The result calculated
analytically is �0:647837287:

To generate the integral approximation in the
first column, we used an iterated integration where
the adaptive Quadpack [6] routine DQAGE was used
in each direction, requesting a relative accuracy of
10�10: So far, this technique has outperformed
other numerical integration approaches using
multivariate (cubature) rules.
4. ParInt enhancements

ParInt is a software package for parallel multi-
variate integration [7]. It has components for
multivariate integration using Monte Carlo (MC),
Quasi-Monte Carlo (QMC) and adaptive methods.
ParInt is written in C and runs over MPI [8] on a
distributed platform.

4.1. Iterated integration

While the adaptive approach could not be
applied directly using 3D multivariate rules, results
to 6-figure accuracy were obtained by treating the
problem as a 2D integration of a 1D integral. The
1D inner integral was calculated with Quadpack
routine DQAGE.
The 2D integration was performed with ParInt

and with its Fortran sequential predecessor,
DCUHRE [9]. The local region error estimate was
changed to make it less conservative. Fig. 3
illustrates the integrand of the 2D problem for e ¼
1:225; which was drawn using evaluation points of
the integration. We are currently considering a
design of ParInt which will allow incorporating
iterated integration in a transparent way.
It recently came to our attention that in the

work by Binoth et al. [10], 3D box integrals are
obtained by performing the inner integration
analytically, which leaves the resulting 2D inte-
grand with an integrable (though still problematic)
singularity. Note further that their 3D box
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Fig. 3. 2D of 1D integrand for graph 216 real part.
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together with 2D vertex diagram evaluations are at
the basis of reductions performed to treat scalar
hexagon integrals.

4.2. Re-use of subregions between extrapolations

A sequence of extrapolation steps uses a series
of similar integrations which share similar sub-
regions when performed adaptively. At each step
of the extrapolation, PARINT can avoid a signifi-
cant number of region evaluations by re-using
previously ‘‘discovered’’ sub-regions as the initial
set of regions for the next extrapolation step,
potentially avoiding a significant amount of
computation.

ParInt has been modified to support this activity
by storing the active integration regions at the end
of every parallel run and providing the user with
the option to load a set of regions to initialize a
run. Regions may be saved either locally on each
compute node or in a single file managed by the
controller. Regions loaded at the start of a
subsequent computation may also be read from a
single global file or individual files on each
compute node. We are currently developing a
distributed I/O system which will allow compute
nodes to retrieve previously saved regions from
files on any other compute node [11].

4.3. Kahan summation

The global adaptive integration algorithm first
developed by De Ridder and Van Dooren [12] is
also used by ParInt. At each step, one region (per
worker) is selected and subdivided into subregions.
The selected integration rule is applied over each
subregion. Next, the estimated error and result for
the selected region and subregions must be
subtracted from and added to the total estimated
error and result, respectively. For difficult pro-
blems, ParInt will select many regions and
subdivide them. Numerical summation of millions
of terms can introduce round off error and greatly
reduce the accuracy of the result and estimated
error in a numerical integration routine.
We have looked at several techniques to reduce

round-off error in sums with a large number of
terms. Each of these techniques has its own merits
and flaws. A good method would be one whose
accuracy does not depend on the number of terms
in the sum and would not greatly impact the
runtime performance of a numerical integration
routine. A compensated summation method devel-
oped by Kahan [13] and further studied by
Higham [14] best fits these needs. Several advan-
tages of this method are low computational
overhead, low storage requirements, and in error
analysis it is shown to have an error constant of
order 1.
5. Conclusions

We presented results for a non-scalar one-loop
box diagram, where the integral is obtained
using numerical integration and extrapolation
with the e-algorithm. We described enhancements
to the ParInt parallel integration package, which
are in various stages of development. Further-
more, in future work, we plan to investigate
combinations of our numerical methods with
symbolic techniques.
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Kahaner, Springer Series in Computational Mathematics,

Springer, Berlin, 1983.

[7] http://www.cs.wmich.edu/parint, PARINT web site.

[8] http://www-unix.mcs.anl.gov/mpi/index.html, MPI web

site.
[9] J. Berntsen, T.O. Espelid, A. Genz, A. ACM Trans. Math.

Software 17 (1991) 437.

[10] T. Binoth, G. Heinrich, N. Kauer, hep-ph/0210023.

[11] L. Cucos, Ph.D. Dissertation, Western Michigan Uni-

versity, November 2003.

[12] L. De Ridder, P. Van Dooren, J. Comput. Appl. Math. 2

(3) (1976) 207.

[13] W. Kahan, Commun. ACM 8 (1965) 40.

[14] N.J. Higham, SIAM J. Sci. Comput. 14 (4) (1993) 783.

http://www.cs.wmich.edu/parint
http://www-unix.mcs.anl.gov/mpi/index.html

	Loop integration results using numerical extrapolation for a non-scalar integral
	Introduction and background
	Non-scalar integral
	Graph 216 results
	ParInt enhancements
	Iterated integration
	Re-use of subregions between extrapolations
	Kahan summation

	Conclusions
	References


