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Abstract

We present a class of methods for the evaluation of loop integrals based on extrapolation. The method is based on generating a
sequence of approximations which converge to the loop integral value as a paramgtetuced in the integrand tends to zero.
We examine the applicability of laar and non-linear extrapolation processest Tesults are given for one-loop three-point
vertex and four-point functions and for a two-loop vertex diagram.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In high energy physics the computation of loop integrals is required to obtain higher order terms in perturbation
calculations of the scattering amplitude. The latter in turn deliver higher order corrections to the cross section for
the collision of elementary particles.

As in [9] the scalar one-loop-point integral is given by

[ dU 1
@)% (12— m2+ie)((I+ p1)2—m3+ie) - (I + Y11 pj)2 —m2 +ie)

1)

where! is the loop momentump; the momentum of thegth external particle and:; the mass carried by the
jthinternal line.e > 0 is a real constant which is supplied to prevent the integral from diverging. A physical
scattering amplitude contains this type of integrals and its value is defirzegt 8t Note that the integral defines

an analytic function of the external parameters, such as the Lorentz invagrians, and generally exhibits a real
and imaginary part.
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This integral is equal t()—l)"/(lez)In where

1
I, = / D) — iy 2 (2)

Snfl

is obtained from (1) by introducing Feynman paters and integrating over the loop momenturithe term
scalarrefers to the numerator of the integragadL; in general it is polynomial. The integration regii_; is the

n — 1 dimensional unit simplex anf, (x) is a quadratic; the integrand may have a non-integrable singularity if
D, (X) vanishes within the domain of integration. This happens, in general, when the integral is evaluated in the
physical region.

For the simplest cases, the results can be calculated analytically. So far, numerical techniques have been
successful only after considerable analytic maniputatisee, e.g., [5,6,9,14,18]). In this paper we present a
novel method, relying on multivariate integration and extrapolation, which has shown promise for an automatic
calculation of loop integrals. We apply several variations of the method to cases of one-loop wett8) (One-
loop box @ = 4) and two-loop planar vertex diagrams.

2. Numerical extrapolation and three-point vertex function

We consider the loop integral in the limit as—> 0. For example, forn = 3 in (2), let us consider

D
lim 1(s) = |im/%dxdy.
e—0 e—0) D3(x,y)*+e¢
Sz

As an example we take a fermion vertex witR exchange, which has a simple structure as depicted in Fig. 1. In
this case the quadratic in the denominator is
D3(x,y) = —xys + (x + y)’m® + (1 —x — y)M?,

Heres denotes the squared energy aménd M are particle masses corresponding to the fermionzthboson,
respectively.

It seems natural to construct a sequencé(©@f),: =0, 1,..., and extrapolate to the limit(0). Some methods
to perform this numerically are outlined in the remainder of this section and in the next section.

Fig. 1. Vertex example.
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Assume we obtain a sequence of approximati@ns) which satisfy an expansion of the form

Q) ~1(e)=10)+ Y ajp;() + Ryr1(e), 3)
j=1

whereR,11(¢) is a remainder term and it is assumed that the integration grtor= Q(e) — I (¢) is sufficiently

small. We can seip = 1(0), go(¢) = 1, and consider the functions ordered so that lim.op;+1(¢)/¢;(e) = 0.
Subsequently we adapt the procedure given in [12] to more general sequences (see also [4]). Denoting

B, = Q(e,) and disregarding the remainder term in (3), we sole & 1) x (v 4+ 1) linear system of equations,

®a = B, of the form

v
Z(ﬂj(&)ay}):ﬂl, t=0,...,v. (4)
Jj=0
For successive =1, 2, . .., this deliverm}” ~aj and,in particularaé” ~ ag = 1(0).

Considering an example of [13] witm = 40 GeV, M = 93 GeV, s = 9000 GeV¢, and assuming an
expansion (3) in integer powers ef i.e. ¢;(¢) = ¢/, solving (4) for a geometric sequence (G) with=
b~'e0,0 <t < v,b =2 andegg = 256 gives the results in the first half of the table in Fig. 2. Since in this case
9j(e)=¢J =b e/, we can also seb,; = b~ and solve fouﬁ.”) ~eolaj.

Allowing for a sequence of integer powerssin (4) corresponds to assuming thigt) satisfies a polynomial
approximation. Fig. 3 display®(¢) as a function ot for this example. The integral approximatioQ%e) were
calculated (in double precision) to a relative tolerated error of4@sing the multivariate integration routine (for
hyper-rectangular regions)cUHRE [2,3], after a transformation of the triangular domaitUHRE is a sequential
predecessor of the adaptive algorithms in [1]. We found that similar results can be obtained for snoaé
efficiently (i.e. with less function evaluations) via an iterated integration using a one-dimensional integration in
both coordinate directions.

It is interesting to note that the sequerteg does not need to be geometric for this procedure. The second half
of Fig. 2 shows the results obtained with a harmonic type progression (H) asiago/(t +1),0 < ¢ < v and
eo = 20. This helps to construct sequen¢€se,)} which may be easier to compute singalecreases slowly.

The number of function evaluations usinguHRE and H ranges between 491,335 (for 20) and 4.4 million
(for e = 20/9), for a total of 21.7 million, compared to G with 42,965 (fo= 256) to 9.8 million ¢ = 1) and

Geonetric sequence (G Har noni ¢ sequence (H)
nu eps Q eps) Ext r apol at ed eps Q eps) Ext r apol at ed
256 0.2120319070127095E- 03 20  0.2421479625475858E- 03
1 128 0.2280362779518554E-03 0.2440406488910013E-03 10 0.2434730201795342E- 03 0. 2447980778114825E- 03
2 64 0.2363491905451424E-03 0.2448692545542390E- 03 20/ 3 0.2439151979858242E-03 0.2448002914918651E- 03
3 32 0.2405610711989021E-03 0.2448014224054772E-03 5 0. 2441363743331252E-03 0. 2448002403715809E-03
4 16 0.2426777113780660E-03 0.2448002064167953E- 03 4 0.2442691075095314E- 03 0.2448002403543701E- 03
5 8 0.2437382985741919E- 03 0.2448002401471510E-03 20/6 0.2443576075549443E-03 0.2448002403553846E-03
6 4 0.2442691075095314E- 03 0.2448002403568659E- 03 20/ 7 0.2444208273439749E-03 0.2448002403552964E- 03
7 2 0.2445346343652990E- 03 0.2448002403554218E- 03 2.5 0.2444682451604905E-03 0.2448002403558393E- 03
8 1 0.2446674275837987E-03 0.2448002403554184E-03 20/9 0.2445051274397318E-03 0.2448002403553095E- 03
Anal ytic 0. 244800240355414541E- 03
nu 1 2 3 4 5 6 7 8
cond# G 3 5 6.4 7.3 7.8 8.0 8.1 8.2
cond# H 3 9 28 92 301 1007 3392 11506

Fig. 2. Three-point vertex diagrarextrapolated results for G and H.
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Fig. 3. Q(e) vs.« for m = 40 GeV, M = 93 GeV, s = 9000 Ge\?.
nu eps Q eps) Ext r apol at ed Q eps) Ext r apol at ed
Real part I magi nary part
sgrt(s) = 310 GeV
256 0.1047173152009391E- 03 0. 6907578453625810E- 04
1 128 0.1078275992484533E-03 0.1109378832959675E-03  0.7029122369380996E-04 0.7150666285136181E- 04
2 64 0.1093974677595504E-03 0.1109771539288741E- 03 0. 7094032845066672E- 04 0.7161702332624406E- 04
3 32 0.1101852766410460E-03 0.1109746945128348E-03 0.7127535323263800E- 04 0. 7161740765850366E- 04
4 16 0.1105797964830976E-03 0.1109746867736801E- 03 0. 7144548959594558E- 04 0. 7161737550102994E- 04
5 8 0.1107771972690049E-03 0.1109746870094049E- 03 0.7153121386874132E- 04 0. 7161737544194998E- 04
6 4 0.1108759312523575E-03 0.1109746870096540E- 03 0. 7157424000016181E-04 0.7161737544287511E- 04
sgrt(s) = 500 GeV
256 0.1785615265485312E- 05 0. 4679678048178459E- 04
1 128 0.2032748040828650E-05 0.2279880816171988E-05 0.4705358047333610E-04 0.4731038046488760E- 04
2 64 0.2158231498594798E-05 0.2284993003090598E-05 0.4718080844748737E-04 0.4730725507388898E- 03
3 32 0.2221447503631560E-05 0.2284977791296521E- 05 0.4724411947584019E- 04 0. 4730722473997146E- 04
4 16 0.2253173421175449E-05 0.2284977693474703E-05 0.4727569801868268E-04 0.4730722478064331E- 04
5 8 0.2269065775089006E-05 0.2284977693533693E-05  0.4729146789414364E-04 0.4730722478080402E- 04
6 4 0.2277019290263020E- 05 0.2284977693532246E-05  0.4729934796379781E-04 0.4730722478080829E- 04
sgrt(s) = 1000 GeV
256 -0.6202809433449274E- 05 0. 1535547333295052E- 04
1 128 -0.6153587856041095E-05 - 0. 6104366278632917E-05 0. 1543137710561741E-04 0.1550728087828429E- 04
2 64 -0.6128438412498485E- 05 - 0. 6102929865730195E-05 0. 1546906111539135E-04 0. 1550656654079230E- 04
3 32 -0.6109342860112937E-05 -0.6102933414928817E- 05 0. 1548783341649553E-04 0. 1550655820664246E- 04
4 16 -0.6109342860112937E-05 - 0. 6102933441501668E- 05 0. 1549720180233327E-04 0. 1550655821659544E- 04
5 8 -0.6106140908836059E- 05 -0.6102933441486279E- 05 0. 1550188151193241E-04 0. 1550655821664103E- 04
6 4 -0.6104537864311489E- 05 - 0. 6102933441487397E-05 0. 1550422024064742E- 04 0. 1550655821664028E- 04

Fig. 4. Three-point vertex diagrameal and imaginary parts using G.

a total of 19.4 million. As another comparison, using G and iterated integration with a versimpaafe from
QUADPACK [15], the number of integrand evaluations ranges between 71,085 £@&@56) and 661,81%(= 1),

for a total of 2.9 million. If the integieapproximations would be needed througk: 2 for H ande = 0.5 for G,

the totals listed above increase to 26.6 milliomc(UHRE, H), 39.8 million OCUHRE, G) and 3.7 million DQAGE,

G). With DQAGE it is possible to handle smaller valuessomore efficiently.

As in [12], the stability of the procedure can be checkgdomputing a condition number which is obtained

for eachv =1, 2, ... by solving the same system as in (4) but with the right hand side replacgdby—1)". It

is expected that the process is sfgrantly less stable using H; which is acceptable in this case as we do not need
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to solve large systems. We can also use sequences with properties in between those of G and H. These condition
numbers (in absolutealue) are included in Fig. 2. They give an indication of the accuracy which may be lost in
the calculation.

Fig. 4 shows results for the example from [13] with= m, = 150 Ge\V, M = Mz = 91 GeV, /s =
310,500, 1000 GeV and the G sequence. The integf&s were approximated to a 18 relative tolerance.

It emerges that the final results can be obtained to high accuracy as long é5sthealculations can be
performed to high accuracy. Note that it is not necessary to solve a system fov.e@ahdid so to show the
improvement in accuracy for increasingThe time for solving the linear systems is very small. It may be noted
that the computation fop;(¢) = ¢/ using G can also be carried out by a recursive procedure (cf., Richardson
extrapolation).

3. Extrapolation by the e-algorithm

In the method of the previous section it is required to know the nature of the fungtjdss Extrapolation by
thee-algorithm does not require this specific information, as long as the extrapolation method is known to be valid
for the class of expansions of interest. It is a recursive implementation by Wynn [19] of a nonlinear sequence to
sequence transformation by Shanks [16].

Subsequently we examine the validity of thalgorithm for a class of problems under consideration, and relate
its results to those of the previous section. Given a sequighge =0, 1, ... of real numbers, a triangular table is
computed as depicted in Fig. 5, according to

T,-1= o,
70 =B,
1
T+l =T4lp+l + ———.
T+l — Tk

Only the even-numbered columns have meaning; the odd-numbered ones are to store temporary values. The
following theorem captures a fundamental property of the transformation (see also [11,15]).

Theorem 1 (Convergence)f the sequencé,} satisfies a homogeneous linear difference equation of araégth
constant coefficienty,,_yc.0, =0,andifg, =S +0,,0=0,1,..., thent, 2, = S (pendingz, o, exist3.

Sufficient conditions validating Theorem 1 are given by the next theorem and its corollary.

700
0 701

710 702
0 1
0 T-1,1

0 T-1,2
0 71

T+1,0

Fig. 5.¢-algorithm table.
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Theorem 2 (Sufficient condition)The sequencg = u(1)i*s*, 1 =0, 1, ..., wherex > Ointeger,e € % and theu (1)
are periodic functions with period, satisfies a homogeneous linear difference equation with constant coefficients
of orderv = (« + Dp.

Corollary 3 (Extension)The sequence

12 %
olzg E ujc(Wfe;t, 1=0,1,...,

k=0 j=1

wherev > 1, u > Ointegere; € i, andu j, (1) are periodic functions with periog, satisfies a linear homogeneous
difference equation with constant coefficients.

As a special case of Corollary 3 with= 0 and constant; = u jo(¢) (0 = 1), if furthermore

ﬁt_SZZ“jgjl» (%)
=1

thent, 2, = S (pendingr, 2, exists).

Note the correspondence of (5) with (3) for a geometric sequepseb—f. Indeed if we letu; = ajé‘()j, then
uje;t =ajeo’ b/  =ajp;(e,). Itis clear that for this reasoning to work, the sequence needs to be geometric.

It should be noted that Corollary 3 allows extrapolation with4kedgorithm for significantly more complicated
expansions (3); for instangg; (¢) may be of the forme” log’ ¢, for § > 0 integer and reay > 0 (as long as a
geometric sequence is used £r

For comparison with the previous section we give results of extrapolation with-gigorithm for the case
of Figs. 2 and 3. A version of the-algorithm code from [15] was used. (We should point out that [15] uses
extrapolation inside some of its integration algorithms. This differs from what we are doing here in that we are now
extrapolating on a sequence of results obtained from an integration code.)

For everyB, = 1,0,t =0, 1, ..., thee-algorithm routine computes the lower diagonal of the table (see Fig. 5)
through column or: — 1 if ¢ is even or odd, respectively. For each element it also calculates an error estimate based
on how its value compares with nearby elements. It does not necessarily return the rightmost element computed
but rather the one with the least individual error estimate.

Fig. 6 gives results obtained with the sequenges eopb™*, for b = 2 andeg = 256 (left), and forb = 1.2 and
g0 = 1.2%0 (right). For the latter we display only every fourth result. The integfaly were approximated to a
relative tolerance of 102,

b =2 b=1.2( eps = 1.2%(41-p) )
p eps Q eps) Ext r apol at ed p Q eps) Ext r apol at ed
1 256 0.2120319070127095E-03 4 0.1528743894317701E-03 0.4316691758746829E- 03
2 128 0.2280362779518554E- 03 8 0.1941968510705258E-03 0.2311914999988003E- 03
3 64 0.2363491905451424E-03 0.2453337696296586E-03 12 0.2191889439432741E-03 0.2451361661323442E-03
4 32 0.2405610711989021E-03 0.2448867967487399E- 03 16 0.2322503791767422E-03 0. 2448034893044764E-03
5 16 0.2426777113780660E-03 0.2448017954351509E-03 20 0.2387139036026090E- 03 0.2448002168460955E-03
6 8 0.2437382985741919E-03 0.2448006914824931E-03 24 0.2418586009244202E- 03 0.2448002405705739E-03
7 4 0.2442691075095314E-03 0.2448001658003823E-03 28 0.2433802831821293E-03 0.2448002405705739E- 03
8 2 0.2445346343652990E- 03 0.2448002390032324E-03 32 0.2441151680705952E-03 0.2448002403563278E- 03
9 1 0.2446674275837987E-03 0.2448002403591474E-03 36 0.2444697959556787E-03 0.2448002403550793E- 03
10 0.5 0.2447338315398706E-03 0.2448002403553692E-03 40 0.2446408673684701E-03 0.2448002403552772E-03
Anal ytic 0. 244800240355414541E- 03

Fig. 6. Three-point vertex;-algorithm results foiG with b = 2 (left) andb = 1.2 (right).
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4. Four-point function

Here the integral ig4 given by (2), over the three-dimensional unit simpfex According to [9], the quadratic
Dy is expressed as

Dg="XAX+2v-x+C,

where

Aj=q.-qj, g1=—p1, q2 = p2, q3=p2+ p3, C=M§=m§

and

v = %(—qf + M? — MZ)  with My =m1, Mo =m3, M3=ma.

Fig. 7 displays the Feynman box diagram for the interactioa™ — ¢z. Fig. 8 illustrates the use of the
algorithm for the integral computation. Here, = m3z = Mz = 91 GeV,ma = m, = 0.511 MeV,m4 = m; =
150 GeV, /s = 500 GeV and) = Z(p1, p4) [9]. In this table the results are given for ¢bs- —0.5. The integrals
were approximated to a requested accuracy of’1(in each coordinate directionjsing an iterated integration
with DQAGE. The extrapolation table is displayed (even-nuredeolumns), together with the number of function
evaluations corresponding to each integral. Fordces0 and co® = 0.5 as well as for co& = —0.5, the final
extrapolation results agree to the 6-digitcuracy of the analytic results reported in [9].

In this case,DCUHRE was not able to approximate the integrédsthe desired accuracy. For the kind of
singularity involved it is expected that multivariate adaptive integration programs may neglect significant portions
of the domain, which is often due to inacate error estimates near the singitjaiAs a future intgration project,
it could be considered to furnish the adaptive multivariate integration algorithm with better error estimates near
singularities and/or a technique to force swiiding the neglead subregions.

It is interesting to observe that the integration errors corresponding t@ thecolumn of Fig. 8 for the real
part decrease by a factor of 2 from one entry to the next. In particulag, 064 through 0.5 they are: 0.064e-
09, 0.032e-09, 0.016e-09, 0.008e-09)04e-09, 0.002e-09, 0.001e-09 &nB005e-09. This corresponds to the
dominant error term being of ordéx(¢) since the ratio of the error from one term to the nextis 2. Indeed, denoting
the absolute error b (¢) = | Q(¢) — 1(#)], the error ratio is‘% ~2 =2,

The integrals for the imaginary part behave, however, quite differently. The error ratio sequence@®qt the
column of Fig. 8 for the imaginary partis: 1.20, 1.50, 1.630, 1.75, 1.77 and 1.79, indicating that the error does
not appear to be of ordé¥(¢). Thee-algorithm succeeds in the extrapolation to the limit.

t

~1

Fig. 7. Feynman diagram fere™ — .
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eps Q eps) extrapol ated results anal ytic #eval s
Real part
64 -0.6144285e-09 5. 9e07
32 -0.5822585e-09 -0.5497390e-09 8. 7e07
16 -0.5660866e-09 -0.5502165e-09 -0.5502169e-09 1.2e08
8 -0.5580768e-09 -0.5502169e-09 -0.5502165e-09 -0.5501814e-09 1. 6e08
4 -0.5541097e-09 -0.5501958e-09 -0.5501784e-09 -0.5501814e-09 -0.550181e-09 2.2e08
2 -0.5521396e-09 -0.5501862e-09 -0.5501811e-09 2.8e08
1 -0.5511587e-09 -0.5501829e-09 3. 5e08
0.5 -0.5506695e-09 4. 4e08
| magi nary part
64  0.1212204e-08 6. 3e07
32 0.1209017e-08 0.1217354e-08 9. 1e07
16  0.1203859e-08 0.1185690e-08 0.1193325e-08 1.3e08
8 0.1199841e-08  0.1192165e-08  0.1193381e-08 0.1193449e-08 1.7e08
4 0.1197203e-08  0.1193069e-08 0.1193413e-08 0.1193430e-08 0.119343e-08 2.3e08
2 0.1195593e-08 0.1193304e-08 0.1193424e-08 2.9e08
1 0.1194648e-08 0.1193381e-08 3. 6e08
0.5 0.1194106e-08 4.5e08

Fig. 8.¢~et — 11 extrapolation table for cas= —0.5.

5. Two-loop vertex

A general Feynman loop diagram far external particlesN internal lines andL independent loops is
proportional to

Lodi, \P 1 1\t
IW]Z/Q(@@%) Hktz_mtz_'_ig[{«?(kl,n-,kN):(W> Ilp], (6)

=1

where the momenta on thth propagator and the according masses are denotéddoydm,, respectively, for
t=1,..., N; the independent loop momenta &ea =1, ..., L; the external momenta ayg, j =1, ...,n; and
the internal momenturk, is a linear combination of thg and the external momenta.

In this section we will treat the scalar integral (wigh= 1) for the planar two-loop vertex diagram, which
corresponds to (6) witlh, =2, N = 6 internal lines and = 3 external lines. The Feynman diagram is shown in
Fig. 9.

t

Fig. 9. Feynman diagram for vertex correction of top quark with Zfcboson exchanges.
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Introducing of the Feynman parameters and integratireg the loop momenta then leads to the 5-dimensional
integral given in [10]:

1
Ss

with

D= C(xl(pf - m%) + xz(p% - m%) - xgm% + x;;(p% - mi) + x5(p§ - m%) — xem%)
— C1(xp5 + x5 0% — xaxs(p§ — pf — p3)) — Ca(x3p5 +x7pf — xaxa(pf — i — p3))
— 2xox3¥5p5 — 2v1x3%4p5 + x3(x2x4 + x1x5)(p5 — pZ — pi).

and where

xg=1—x1—x2 — X3 — x4 — X5,
C1=x1+x2+ x3,
Co=1—x1—x2,
C=x3(1—x1—x2—x3)+ (x1+x2)(1 —x1— x2).
In view of the fact thatD in (7) vanishes forx; = xp = x3 = 0 we perform a transformation,
x1 = x1(ro, X1) = rox1,

x2 = x2(ro, X1) =ro(1 — X1),

x3 = x3(ro, X1, ¥2) = ro(1 — X1 — X2). (8)

14 T T T T T T T T
'Fujimoto1’ +

12 F ’Ex‘!rabolatim‘ -

Rel

2
iEimd

Fig. 10. Approximations tdiel as a function ok?/mg,, mtop= 150 GeV andvz = 9117 GeV.
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Denoting the integrand of (7) by(x), the transformation (8) results in

1 1 1-X%1 1—x1—x2—x3 1—x1—x2—x3—X4
I:/drorgfdfl f f dxg / dxs f.
0 0 -1 % 0 0

Usingi; =2 — % — X1+ (% — 1)t3 to map the outer 3-dimensional integral to the 3d unit hypercube we obtain

1—x1—x2—x3 1—x1—x2—x3—X4

1 1 1
I:/droro(l—ro)[dﬁlfdtg f dxg f dxs f. (9)
0 0 0 0

0

To approximate the integral (9) we can transform it to Sh@dimensional unit hypercube. Alternatively, since the
inner two dimensions are the most difficult, we can perfoinm outer 3-dimensional integration of the inner 2d
integral and us®QAGE for the inner two dimensions. Using the lattaethod we generated the results displayed
on the curve labeled “Extrapolation” in Fig. 10, which repents the integral approximations to (9) as a function of
kz/mtzop pertaining to the vertex correction of the top quark with t#bboson exchanges. Also shown (as points)
are corresponding results from [10].

We applied thes-algorithm for the extrapolation, using inted approximations corresponding to a geometric
progression of, with base 12 or 2. While the integrals on the left of t}ké/mtzop threshhold are easy to compute,
those on the right are considerably hard and computation intensive, even for fairly large values of

6. Remarksregarding largemassratios

It is clear that the success (or otherwise) of an gdfation procedure will depend on whether it is able to
intrinsically model the behavior of the entry sequence. We have observed that, for the three-point vertex function,
the ratio% is a determining factor. The problem is more pronounced for higher values of the egierdy this
case, while the-algorithm appears to become unstable whés relatively large, the polynomial model delivers
an extrapolated sequence only a little “ahead” of the entry sequence but with a behavior similar to the latter.

As an example, Fig. 11(a) display8(¢) as a function ofe (= 1.220-/,j =0,1,...) for m = 150 GeV,

M = 10"3m, = 0.511e-6 GeV (fictitious photon mass) ands = 310 GeV, which pertains to thfrared
singularityarising from the photon exchange. Héreis used as the infrared cutoff usually denotediby

In (b) O(e) appears linear as a function of loge, indicating thatQ (¢) is logarithmic over the given range. The
value of Q(¢) — 1(0) is shown in (c) as a function of Iqgg(e), wherel (0) ~ —0.7451e-2 according to [8]. The
data of (d) are as in (b), but far = 0.1 GeV.

Fig. 12 showsQ(¢) as a function ot for s = 9000 Ge\f, m = 150 GeV,M = 0.1 GeV. These integrals are
easy, allowing the integration for arbitrarily smalllt emerges that the graph follows a logarithmic behavior over
a large range (see (a)). However, note how in (b) anch@xtrve gradually becomes as that of Fig. 3 over ranges
of smallere. This change of behavior for very smalheeds to be accurately modeledirder to treat small values
of M. Fors = 9000 Ge\f, m = 150 GeV, (d) depicts the integral as a functior@nd, showing the divergence
of the integral ag/ decreases.

With DQAGE we are able to calculate the integrals for the smaller valuesieéded to handle fairly considerable
mass ratios and energy, for exampte= 150 Ge\, M = 0.01 GeV and,/s = 310 GeV. Convergence results for
this case are given in the table of Fig. 13, based on the expansion (4) in integer powarglaising a geometric
sequence witth = 1.3 andeg = 1.3730, For this case, the method used yields results for mass ratios through about
five orders of magnitude.
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eps Q eps) Ext r apol at ed #eval s. | eps Q eps) Ext r apol at ed #eval s

0.381680e-03 -0.185652e-03 2.32e06 |

0.293600e-03 -0.181426e-03 -0.167341e-03  2.37e06 | 0.46790e-04 -0.989755e-04 -0.446396e-04 2.88e06
0.225847e-03 -0.174782e-03 -0.131318e-03  2.40e06 | 0.35992e-04 -0.878292e-04 -0.447056e-04 2.94e06
0.173728e-03 -0.165541e-03 -0.899977e-04  2.49e06 | 0.27686e-04 -0.785577e-04 -0.443406e-04 3.01e06
0.133637e-03 -0.153854e-03 -0.549082e-04 2.57e06 | 0.21297e-04 -0.710526e-04 -0.442841e-04 3.10e06
0.102798e-03 -0.140320e-03 -0.363915e-04 2.63e06 | 0.16382e-04 -0.650854e-04 -0.442955e-04 3.15e06
0.790751e-04 -0.125943e-03 -0.353284e-04 2.74e06 | 0.12602e-04 -0.603956e-04 -0.442976e-04 3.21e06
0.608270e-04 -0.111854e-03 -0.413304e-04 2.77e06 | 0.96938e-05 -0.567369e-04 -0.442978e-04 3.36e06

Fig. 13. One-loop vertex illustration of large/M ratio: /s = 310 Ge\, m = 150 GeV. M = 0.01 GeV. This should be compared with the
analytic value—0.442975219528810759e-04.

7. Conclusionsand futurework

In this paper we presented a class of methods for the evaluation of loop integrals based on extrapolation. The
extrapolation is based on generating a sequence of appativins which converge to the loop integral value as a
parametee introduced in the integrand tends to zero.

Using thes-algorithm for extrapolation this delivers an automatic method. Further work is needed to establish
properties of the transient behavior as a function a$ it relates to the convergence properties of the extrapolation
process. As an alternative method, the generalized Richardson extrapolation process by Sidi et al. [7,17] should
also be investigated. Further work is also needed to address the infrared singularity.

In view of the importance of the application, tailorio§ multivariate integration codes is warranted to make
these calculations more efficient. Furthermore, the large granularity of the integrands as well as the humber of
integrals involved makes the applicationemsonable candidate for parallel approaches.
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