
Exceptions and File

Processing

Exceptions

On occasion a segment of code in a program may
result in an error condition, such as an attempt to
divide by zero, an array index out of bounds, failure
to open a file when requested, etc.

Careful program design can help minimize the number
of exceptions that occur; however, occasionally they
do happen.

In this material we will show how you can handle
exceptions when they occur, rather than letting the
program just terminate. This is done with try and
catch.

try

Suppose a program segment has a chance of
causing an exception. That code can be
placed in a try segment.

try
{

//code that might cause the error.
}

catch

If the code in the try does indeed result in an
error, an exception is thrown, which can then
be handled in a catch.

catch
{

//process the error.
}

while (M!=0 || N!=0)
{

Console.WriteLine("Enter two integers.");
try
{ Console.Write("First Integer: ");

M = Int32.Parse(Console.ReadLine());
Console.Write("Second Integer: ");
N = Int32.Parse(Console.ReadLine());
Console.WriteLine("The quotient is {0}.", M / N);

}
catch (DivideByZeroException)
{ Console.WriteLine("Attempt to divide by zero");

continue;
}
catch (FormatException)
{

Console.WriteLine("Both must be integers:");
continue;

}
}

Run the Program

Let’s take a look at this program segment, first
running it with the try, and then running it with
the try and catch removed.

throw an exception

int N = 2;
Exception NegativeValueException=new Exception("No Negatives");
int M=0;
do
{

try
{

Console.Write("Enter a positive number: ");
M = Int32.Parse(Console.ReadLine());
if (M < 0)

throw (NegativeValueException);
Console.WriteLine("You entered " + M + " Hit Enter to continue.");
Console.ReadLine();

}

throw example (cont.)

catch(Exception error)
{

Console.WriteLine("Message: " +
error.ToString());

continue;
}

} while (M < 1);

overflow Exception

while (true) //infinite loop for illustration purposes only
{

try
{

Console.Write("Take product in checked mode.");
N = checked(N * 2);
Console.WriteLine("The next product is " + N);

}
catch (OverflowException overflowException)
{

Console.WriteLine(overflowException.ToString());
break;

}
}

Now run the program

1. What happens with bad data in each case?
2. What happens if checked is removed in the

segment on overflow exceptions?
3. Carefully comment out the try and the catch

blocks and see what happens. Of course,
in this part you need to leave the block of
code that resides in the try block.

File IO

“C# views each file as a sequential stream of
bytes. Each file ends either with an end-of-
file marker or at a specific byte number that is
recorded in a system-maintained
administrative data structure.” (Textbook –
page 759)

� To perform file processing in C#, namespace
System.IO must be referenced.

� There are two classes that we will
concentrate on for doing I/O.

StreamWriter
StreamReader

You can probably guess which does what.

The following code segment prepares a file for output.

StreamWriter outStream = null;
string outFileName = "FILEIO_1.txt";
try
{

outStream = new StreamWriter(outFileName);
}
catch(Exception e)
{

Console.WriteLine("Can't open file {0} ",outFileName);
Console.WriteLine("The reason is: {0}",e.ToString());
Environment.Exit(1);

}

Questions

� What is the name of the object for doing
output?

� What is the name of the file?
� Why is the attempt to open the file placed

within a try block? What might cause it to
fail?

Once open what does the following code

segment do?

int i,j;
for(i=1; i<= 10; i++)
{

for(j=1; j<=10; j++)
outStream.Write((j+i) + " ");

outStream.WriteLine();
}

outStream.Close();

Question

What are the primary differences and
similarities between Console.Write,
Console.WriteLine, outStream.Write, and
outStream.WriteLine?

Now we will run the program.

It’s name is FileIO_1.cs.

Download it and run it, but before you run it, do
a dir *.txt. After you run it do a dir *.txt

Open the new file in Notepad. Is it what we
expected?

Now for some file reading

try
{

inStream = new StreamReader(inFileName);
}
catch (Exception e)
{

Console.WriteLine("Can't open file {0} ", inFileName);
Console.WriteLine("The reason is: {0}", e.ToString());
Environment.Exit(1);

}

string str;

str = inStream.ReadLine();
while(str != null)
{

Console.WriteLine(str);
str = inStream.ReadLine();

}

An alternate way to read the file. It currently is commented out

in the program.

// while ((i = inStream.Read()) != -1)
// {
// Console.Write((char)i);
// }

