
Debugging Support Tool for MCAPI Applications

Mohamed Elwakil Zijiang Yang
Department of Computer Science

Western Michigan University
Kalamazoo, MI 49008

Department of Computer Science
Western Michigan University

Kalamazoo, MI 49008
mohamed.elwakil@wmich.edu zijiang.yang@wmich.edu

ABSTRACT
The recently proposed MCAPI (Multicore Association
Communication API) specification provides multicore programs
developers with a standard API for inter-core messages-based
communication and stream-based communication. Debugging
MCAPI programs that use message-based communication is
expected to be very challenging due to the non-determinism
associated with the order of messages' arrivals at a core. In this
paper we present a tool that uses an off-the-shelf SMT solver to
symbolically explore all possible orders of messages arrival in
an MCAPI program. If there is a specific order of messages
arrival that leads to an error state, this order is presented to the
user as a debugging aid.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Model checking; D.2.5
[Software Engineering]: Testing and Debugging

General Terms
Reliability, Verification

Keywords
MCAPI, message race, symbolic analysis, Satisfiability Modulo
Theory, multicore programs debugging

1. INTRODUCTION AND MCAPI
OVERVIEW
Desktop computers and portable devices are increasingly using
multicore chips. With multicore-equipped devices becoming
commonplace, there is an urgent need for standards and tools to
support multi-core applications development. The Multicore
Association [8] has developed the MCAPI specification [9] and
is developing the MRAPI specification [10] to address two basic
needs for multi-core applications. The MCAPI specification
provides an API library and a reference implementation for
inter-core communication. The MRAPI specification will
provide an API library for coordinating concurrent access to
shared resources such as memory regions.

MCAPI is radically different from MPI [5]. MPI is intended for
inter-computer communication, and lives within an operating
system. MCAPI is intended for inter-core communication and
can be a part of an operating system or reside on a core bare-
metal. Hence, MCAPI is designed to be lighter-weight and less
flexible than MPI. MCAPI is also different from threads, as
threads assume shared memory. MCAPI is designed to work
with multicore processors with either private memories or
shared memory. The MCAPI specification defines two inter-
core communication types: connectionless communication and
connection-oriented FIFO streams communication.

In connectionless communication, two or more cores can
exchange messages without setting up a transmission channel
prior to communication. On the other hand, in connection-
oriented communication, a point-to-point unidirectional channel
between two communicating cores must be established in
advance. There are two types of FIFO streams supported by
MCAPI: packet streams, and scalar (word) streams. A packet in
a packet stream can contain a combination of data items. A
scalar stream transfer words that belong to the same data type
(e.g. integer, float…) throughout the life of the connection.

In the MCAPI terminology, a core is referred to as a node. A
port is a socket-like communication termination point that
belongs to a node. A node can have one or more ports, but a port
is owned by one node. Ports in a node are assigned unique
numerical identifiers. Communication between two nodes must
go through ports. An endpoint is a logical entity that
corresponds to a specific port on a specific node. For example,
sending a message from endpoint (0,1) to endpoint (1,2) means
that the message was sent from the port with identifier 1, at node
0, to the port with identifier 2 at node 1. The MCAPI
specification assumes that the number of the cores used in an
application is static. A node creates and removes endpoints by
calling the functions create_endpoint and delete_endpoint
respectively. Calling the function get_endpoint retrieves a
handle to an endpoint by specifying a node and a port. The
major functions for connectionless communication are:
msg_send, msg_send_i, msg_recv, msg_recv_i, and wait. The
functions msg_send and msg_send_i are used to send messages
between endpoints. The function msg_send will block till the
message data has been copied from an application buffer to the
MCAPI runtime buffers. The non-blocking function msg_send_i
will return immediately before completing copying the data
from the application buffer to the MCAPI runtime buffers. The
functions msg_recv and msg_recv_i are used to retrieve
messages from the MCAPI runtime buffers. The function
msg_recv will block till a message has been retrieved from the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PADTAD’10, July 13, 2010, Trento, Italy.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

runtime buffers, while msg_recv_i will return immediately even
if there are no messages in the buffer. The MCAPI specification
provides request variables and the wait function to track the
status of a non-blocking call. A non-blocking function takes a
request variable as an input, and sets its value to pending.
Calling the function wait with a request variable will block
execution till a non-blocking operation (i.e. msg_send_i and
msg_recv_i) has completed. A blocking call is equivalent to a
non-blocking call followed by a wait call.

There are two rules that govern the order of messages arrivals at
a destination endpoint: 1) Messages sent from the same source
endpoint are guaranteed to arrive at their destination according
to their transmission order, and 2) Messages sent from different
source endpoints will arrive at their destination in any order,
even if these source endpoints belong to the same node. The
second rule combined with the fact that msg_recv and
msg_recv_i calls don’t specify the source endpoint, make it
possible for message races to take place. Two or more messages

are said to be racing if their order of arrival at a destination (i.e.
a core) is non-deterministic [6]. Figure 1 shows a snippet from
an MCAPI program in which four cores (C1, C2, C3, and C4)
communicate via messages. For brevity, unessential code is
omitted. This program may have an assertion failure due to an
unexpected order of arrival of messages.

The program in Figure 1 has six possible scenarios for the order
of arrival of messages at C2 and C4 which are listed in Table 1.
Only one scenario (when M0 arrives before M3 and M2 beats
M1 and M4) leads to an assertion failure at C4. Figure 2 depicts
the first and second scenarios in Table 1. Unfortunately, the
traditional testing approach that repeatedly executes an
application is not effective in detecting this message-race
induced assertion failure. Even if an assertion failure takes place
during testing, it is very difficult to find out the specific order of
messages arrival that caused it. Hence, debugging MCAPI
programs that use connectionless communication is expected to
be very challenging.

1 #define PORT_NUM 1 33 void* C3_routine (void *t)

2 34 {

3 void* C1_routine (void *t) 35 int Msg=10;

4 { 36 initialize();

5 int Msg=1; 37 My_endpt = create_endpoint (PORT_NUM);

6 initialize(); 38 C2_endpt = get_endpoint (2,PORT_NUM);

7 My_endpt = create_endpoint (PORT_NUM); 39 C4_endpt = get_endpoint (4,PORT_NUM);

8 C2_endpt = get_endpoint (2,PORT_NUM); 40 msg_send(My_endpt,C2_endpt, Msg);//M3

9 C4_endpt = get_endpoint (4,PORT_NUM); 41 msg_send(My_endpt,C4_endpt, Msg);//M4

10 msg_send_i(My_endpt,C2_endpt, Msg,Req0);//M0 42 delete_endpoint(My_endpt);

11 msg_send_i (My_endpt,C4_endpt, Msg, Req1);//M1 43 finalize();

12 wait(Req0); 44 }

13 wait(Req1); 45

14 delete_endpoint(My_endpt); 46 void* C4_routine (void *t)

15 finalize(); 47 {

16 } 48 int U=0,W=0, O=0;

17 49 initialize();

18 void* C2_routine (void *t) 50 My_endpt = create_endpoint (PORT_NUM);

19 { 51 msg_recv(My_endpt,U);

20 int X=0,Y=0,Z=0; 52 assert(U>0)

21 initialize(); 53 msg_recv(My_endpt,W);

22 My_endpt = create_endpoint (PORT_NUM); 54 msg_recv(My_endpt,O);

23 C4_endpt = get_endpoint (4,PORT_NUM); 55 delete_endpoint(My_endpt);

24 msg_recv_i(My_endpt,X,&recv_size,Req2); 56 finalize();

25 msg_recv_i(My_endpt,Y,&recv_size,Req3); 57 }

26 wait(Req2);

27 wait(Req3);

28 Z=X-Y;

29 msg_send(My_endpt,C4_endpt,Z);//M2

30 delete_endpoint(My_endpt);

31 finalize();

32 }

Figure 1. A snippet of an MCAPI program

Table 1. Six orders of arrival of messages

First
Race

M0 wins M3 wins

Second
Race

M1
wins

M2
wins

M4
wins

M1
wins

M2
wins

M4
wins

Z Z=-9 Z=-9 Z=-9 Z=9 Z=9 Z=9
U U=1 U=-9 U=10 U=1 U=9 U10

In this paper we present a tool that symbolically explores all
possible orders of messages arrival in an MCAPI program that
uses connectionless communication. Our tool starts with
instrumenting an MCAPI program, so that an execution will
produce a trace that contains a set of events for every MCAPI
node. These events correspond to the program statements that
have actually been executed. Our tool explores all feasible
orderings of these events. If there is a particular order of events,
and hence a particular order of messages arrival that leads to an
error state, this order will be presented to the tool user. Our tool
is able to predict the possibility of reaching an error state from
an execution trace that doesn’t exhibit this error state. The rest
of this paper is organized as follows: Section 2 defines formally
an MCAPI program and its execution trace. In section 3 we
present our SMT-based symbolic encoding of a MCAPI
program trace. We review related work in section 4, and
conclude in section 5.

Figure 2. Two possible scenarios for messages arrival

2. An MCAPI program and its execution
trace
An MCAPI program runs on a finite set of nodes and for every
node there is a finite set of local variables and an ordered list of
statements. Let � = {��, … , �|�|} be the set of nodes, ℒ� =
{��,�, … , ��,|ℒ
|} be the set of local variables in node ��, and
ℳ� = {ℳ�,�, … , ℳ�,|ℳ
|} be the set of statements in node �� . An
endpoint at port � on node �� is denoted as ���,�. Let ℰ�� be the
set of endpoints created in node ��.

The trace of an MCAPI program running on � nodes will have �
sub-traces; a sub-trace for each node. Let ℛ = { ��, … , ��} be the
trace of an MCAPI program with � nodes. �� is the sub-trace
produced by node �� and it consists of a sequence of events
�� = ��,� … ��,|�
|. An event ��,� ∈ �� is a tuple
< �, �, �� !", #$%�&� >, such that � is a node identifier, � is the
order of the event appearance in ��, �� !" is a condition that
must be true for this event to take place, and #$%�&� is an atomic
computation that corresponds to an executed statement in the
MCAPI program. �� !" is the conjunction of all conditions in
the program path leading to the statement that produced the
event. For example, if the statement that produces ��,� is in the
then-part of an if statement, which in turn is inside a while loop,
then �� !" will be the conjunction of the if statement condition
and the while loop condition. #$%�&� can be any of the
following:

• #((�)�(+, ,�-) is an action that corresponds to an
assignment statement that assigns the valuation of ,�-
to +. + ∈ ℒ� is a variable. ,�- is an expression over
ℒ�.

• /,�"((!$, ",(%, ,�-) is an action that corresponds to
a blocking send statement that sends a message from
(!$ to ",(%, which contains the valuation of ,�-.
(!$ ∈ ℰ�� and ",(% ∈ ℰ�0 are the source and
destination endpoints. ,�- is an expression over ℒ�.
Similarly, /,�"_�((!$, ",(%, ,�-, !,2) is an action
that corresponds to a non-blocking send statement
where !,2 ∈ ℒ� is a request variable.

• 3,$+(!,$+, +) is an action that corresponds to a
blocking receive statement that receives a message at
the receiving endpoint !,$+ ∈ ℰ��. The message
contents are assigned to variable + ∈ ℒ�. Similarly,
3,$+_�(!,$+, +, !,2) corresponds to a non-blocking
receive statement where !,2 ∈ ℒ� is a request
variable.

• 4 �%(!,2) is an action that corresponds to a wait
statement that waits for the completion of a non-
blocking action whose status is tracked with request
variable !,2 ∈ ℒ�.

• #((,!%(,�-) is an action that corresponds to an assert
statement with the boolean expression ,�-. ,�- must
be true when this event is executed; otherwise, an
error state has been reached.

Table 2 shows an execution trace which corresponds to the
program in Figure 1. Note that the �� !" condition is omitted
as it is %!�, for all events.

Table 2. The trace of a MCAPI program in Figure 1

67 68

��,� Assign(Msg,1) �9,� Assign(Msg,10)
��,: Send_i(EP1,EP2,Msg,r0) �9,: Send(EP3,EP2,Msg)
��,9 Send_i(EP1,EP4,Msg,r1) �9,9 Send(EP3,EP4,Msg)
��,; Wait(r0) 6<
��,= Wait(r1) �;,� Assign(U,0)

6> �;,: Assign(W,0)
�:,� Assign(X,0) �;,9 Assign(O,0)
�:,: Assign(Y,0) �;,; Recv(EP4,U)
�:,9 Assign(Z,0) �;,= Assert(U>0)
�:,; Recv_i(EP2,X,r2) �;,? Recv(EP4,W)
�:,= Recv_i(EP2,Y,r3) �;,@ Recv(EP4,O)
�:,? Wait(r2)
�:,@ Wait(r3)
�:,A Assign(Z,X-Y)
�:,B Send(EP2, EP4,Z)

3. SMT-based Symbolic Encoding
Given a trace ℛ, we create a quantifier-free first-order logic
formula ℱℛ that is satisfiable iff there exists a feasible
permutation �D of the events in ℛ that leads to an error state
(e.g. an assertion failure). A feasible permutation is a strict total
order of all the events in ℛ, such that this order can occur in a
real execution of the original program. The ℱℛ formula consists
of symbolic variables and Satisfiability Modulo Theory (SMT)
constraints.

There are two types of symbolic variables in ℱℛ: 1) For every
event � ∈ ℛ, there is a symbolic variable EF that reflects the
order of carrying out � in �D. 2) For every action that assigns a
new value to a local variable � ∈ ⋃ ℒ�

�
�H� , we create a new

symbolic variable for �. The values of these symbolic variables
record the history of the values of �. This is similar to the SSA
form [4]. While the SSA form requires I-functions to handle the
effect of branches, we needn’t have I-functions because in a
trace all branching decisions have already been made. We add
two dummy variables EJ�KLM and ENOLM, such that EJ�KLM is the
first event in �D and ENOLM is the last event in �D. The values
assigned to these symbolic variables are governed by SMT
constraints that are crafted to ensure that �D is a feasible
permutation. Table 3 shows the symbolic variables that are
needed for encoding the trace in Table 2. A symbolic variable
E�,0 represents the order of the event ��,0. A symbolic variable
��P0 corresponds to the value of the variable P at sub-trace ��
after being assigned a value for the jth time.

The ℱℛ formula is the conjunction of four sub-formulas:

ℱℛ: = ℱRKSTK ∧ ℱOLV� ∧ ℱKTWX ∧ ¬ℱZKZ (1)

ℱRKSTK ensures that in �D, no two events are assigned the same
ordering and that every two events ��,� and ��,[, such that � < \
(i.e. event ��,� appears in the trace before event ��,[) will be
assigned orderings E�,� and E�,[, such that E�,� < E�,[. ℱRKSTK is
constructed using the algorithm Construct_FOrder.

Table 3. The symbolic variables of the trace in Table 2

67 6> 68 6<

E�,� E:,� E9,� E;,�
E�,: E:,: E9,: E;,:
E�,9 E:,9 E9,9 E;,9
E�,; E:,; �9]()� E;,;
E�,= E:,= E;,=

��]()� E:,? E;,?
 E:,@ E;,@
 E:,A �; �̂
 E:,B �;4�
 �:_� �; �̀
 �:a� �; :̂
 �:b� �;4:
 �:_: �;`:
 �:a:
 �:b:

Algorithm 1 Construct_FOrder(ℛ)
1 ℱRKSTK ≔ %!�,
2 for �=1 to �
3 ℱRKSTK ≔ ℱRKSTK⋀ (EJ�KLM < EF
,f

)
4 for g=1 to |��|
5 if (j<|��|) then ℱRKSTK ≔ ℱRKSTK⋀ (EF
,h

< EF
,hif
)

6 for j=� + 1 to �
7 for l=1 to |�m|
8 ℱRKSTK ≔ ℱRKSTK⋀ (EF
,h

≠ EFo,p
)

9 end-for
10 end-for
11 end-for
12 ℱRKSTK ≔ ℱRKSTK⋀(ENOLM > EF
,h

)

13 end-for

ℱOLV� encodes events with assignment actions. ℱOLV� is initially
set to true. For every event ��,� whose action is #((�)�(+, ,�-):

ℱOLV� ≔ ℱOLV�⋀(/(+) = /(,�-) ∧ /(�� !")) (2)

Where /(+), /(,�-) and /(�� !") replace the program
variables with the corresponding symbolic ones.

 ℱKTWX encodes the events with an action that is either a blocking
receive, or a wait of a non-blocking receive. To facilitate
describing the ℱKTWX constraint, we use the following notations:

For every event ��,� whose #$%�&� is either
/,�"((!$, ",(%, ,�-) or /,�"_�((!$, ",(%, ,�-, !,2):

• q,(%��r��,�s = ",(%
• ��-(��,�) = ,�-
• /`!",!(��,�) is the order of ��,� with respect to other

events in �� whose actions are either /,�"((!$, ",(%, ,�-)
or /,�"_�((!$, ",(%, ,�-, !,2) and have the same
destination endpoint as ��,�.

For every event ��,� whose #$%�&� is either 3,$+(!,$+, +) or
4 �%(!,2) such that 4 �%(!,2) is associated with a non-
blocking receive action 3,$+_�(!,$+, +, !,2):

• 3,$+��(��,�) = !,$+
• P !(��,�) = +
• 3`!",!(��,�) is the order of ��,� with respect to other

events in �� whose actions are either 3,$+(!,$+, +) or
4 �%(!,2) such that 4 �%(!,2) is associated with a non-
blocking receive action 3,$+_�(!,$+, +, !,2) and have the
same receiving endpoint as ��,�

• t�,� is the set of events whose actions are either
/,�"((!$, ",(%, ,�-) or /,�"_�((!$, ",(%, ,�-, !,2) and
can potentially match with the receive action of ��,�. t�,�
is defined as:
t�,� = {�0,[| q,(%r�0,[s = 3,$+r��,�s ∧ 3`!",!(��,�) ≥
/`!",!(�0,[)}. We call t�,� , the set of potential sender
events of ��,�.

• ��,� is the set of events whose actions are 1) either
3,$+(!,$+, +) or 4 �%(!,2) such that 4 �%(!,2) is
associated with a non-blocking receive
3,$+_�(!,$+, +, !,2) 2) precede ��,� in ��, and 3) have the
same receiving endpoint as ��,�. ��,� is defined as ��,� =
v��,[w 3`!",!r��,[s < 3`!",!r��,�sx. We call ��,�, the set
of related preceding receiving events of ��,�.

 ℱKTWX is initially set to true. For an event ��,� whose action is
either 3,$+(!,$+, +) or 4 �%(!,2) such that 4 �%(!,2) is
associated with a non-blocking receive 3,$+_�(!,$+, +, !,2):

 ℱKTWX ≔ ℱKTWX⋀ ⋁ (/(P !r��,�s) = /(��-(z∈t
,{
z)) ∧

/(�� !") ∧ |`�F
,{
z ∧ ⋀ ¬|`�}

z
}∈�
,{

)
(3)

|`�~

z = (z̀ < ~̀) ∧ ⋀ ((�̀ < z̀) ∨ (~̀ <�∈t~∧��z

�̀))
(4)

|`�~
z encodes the conditions needed for matching an event z

with a send action to an event ~ with a receive action. These
conditions are 1) z must precede ~ (z̀ < ~̀), and 2) for every
event �, such that � ∈ t~ ∧ � ≠ z, then either � is before z or
~ is before � (⋀ ((�̀ < z̀) ∨ (~̀ < �̀))�∈t~∧��z).

Formula 3 states that the receive action of ��,� will be matched
with the event z, when the conditions for this matching are
satisfied (|`�F
,{

z), and when all the conditions needed for

matching z with any event in ��,�, are not satisfiable
(⋀ ¬}∈�
,{

|`�}
z).

For example, the part of ℱKTWX that corresponds to the event �;,;
is the disjunction of the formulas 5, 6 and 7. Formulas 5, 6, and
7 match the receive action at event �;,; with the send action at
events ��,9, �:,B and �9,9 respectively and encodes the necessary
conditions. Only one formula of these three formulas will be
satisfied.

(�; :̂=��]()� ∧ (E�,9 < E;,; ∧ (((E9,9<E�,9) ∨

(E;,;<E9,9)) ∧ ((E:,B<E�,9) ∨ (E;,;<E:,B))))
(5)

(�; :̂=�:b� ∧ (E:,B < E;,; ∧ (((E9,9<E:,B) ∨ (E;,;<E9,9)) ∧

(E�,9<E:,B) ∨ (E;,;<E:,B))))
(6)

(�; :̂=�9]()� ∧ (E9,9 < E;,; ∧ (((E:,B<E9,9) ∨

(E;,;<E:,B)) ∧ (E�,9<E9,9) ∨ (E;,;<E9,9))))
(7)

Intuitively, ℱKTWX matches an event z ∈ tK with one event ~,
provided that z has not been matched with any event } ∈ �K,
and z can occur before ~. The effect of a matching is assigning
the valuation of the expression sent by z to the variable of ~.

ℱZKZ is initially set to true. For every event ��,� whose action as
#((,!%(,�-):

ℱZKZ: = ℱZKZ ∧ (/(,�-) ∧ /(�� !")) (8)

After the formula ℱℛ has been constructed, it is passed to an
SMT solver such as Yices [2] or Z3 [1]. If ℱℛ is satisfiable,
then the SMT solver will produce a solution that assigns a value
for every EF variable that indicates the order of carrying out the
event � in the permutation �D. Table 4 shows the solution
produced by Yices for the formula that corresponds to the
program in Figure 1. For example, any of the events (��,9, �9,9,
and �:,B) whose actions are send actions can match with the
event �;,; whose action is a receive action. The fact that E:,B<E;,;,
E�,9>E;,; and E9,9>E;,; indicates that �:,B is the event that will
be matched with �;,;. Similarly, all send/receive matchings can
be extracted from the solution and presented to the user as the
trace that led to the error state.

Table 4. The solution of the �� formula

Variable Value Variable Value

E�,� 1 �:a: 10
E�,: 7 �:b: -9
E�,9 19 E9,� 11
E�,; 21 E9,: 13
E�,= 22 E9,9 23

��]()� 1 �9]()� 10
E:,� 2 E;,� 9
E:,: 3 E;,: 10
E:,9 4 E;,9 12
E:,; 5 E;,; 17
E:,= 6 E;,= 18
E:,? 8 E;,? 20
E:,@ 14 E;,@ 24
E:,A 15 �; �̂ 0
E:,B 16 �;4� 0
�:_� 0 �; �̀ 0
�:a� 0 �; :̂ -9
�:b� 0 �;4: 1
�:_: 1 �;`: 10

4. Related work
In [7], S. Sharma et al. present MCC, the first dynamic verifier
for MCAPI applications. MCC explores all possible orders of
messages arrival by repeatedly executing the actual program.
MCC creates a scheduling layer above the MCAPI runtime
which allows MCC to discover all potentially matching
send/receive pairs by intercepting calls to the MCAPI runtime.
MCC reduces the number of explored orders of messages arrival
via using DPOR [3] techniques. In [11], C. Wang et al.
introduce a symbolic algorithm that detects concurrency errors
in all feasible permutations of statements in an execution trace.
They use concurrent static single assignment (CSSA) based
encoding to construct an SMT formula. Their algorithm has
been applied to detect concurrency errors in shared memory
multithreaded C programs.

5. Conclusion
We have presented a debugging tool for detecting assertion
failures induced by message races in multi-core applications.
Our tool aims at reducing the developer efforts to locate the
source of an assertion failure. It uses an efficient SMT formula
that is decidable if and only if there is a particular order of
messages arrival that leads to an error state. Our tool reports the
possibility of an assertion failure and the sequence of events that
will lead to it. As there are no publicly available MCAPI
benchmarks, we performed experiments on MCAPI applications
developed by ourselves. For instance, the full code of the
application in Figure 1 was found to have an assertion failure in
0.01 seconds using Yices as the SMT solver. We plan to extend
our tool to support other MCAPI constructs.

6. References
[1] de Moura, L., Bjørner, N., Z3: An efficient SMT solver,

Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 337–340. Springer, Heidelberg (2008).

[2] Dutertre, B and de Moura, L.: A Fast Linear-Arithmetic
Solver for DPLL(T), 18th Computer-Aided Verification
conference, volume 4144 of LNCS, pages 81–94. Springer-
Verlag, 2006.

[3] Flanagan, C. and Godefroid, P., Dynamic partial-order
reduction for model checking software, the 32nd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’05, pages 110–121, New
York,NY, USA, 2005. ACM Press.

[4] Lee, J., Padua, D., Midkiff, S., Basic compiler algorithms
for parallel programs, Principles and Practice of Parallel
Programming. (1999) 1–12

[5] MPI: A Message-Passing Interface Standard,
http://www.mpi-forum.org/docs/mpi-2.2/index.htm

[6] Netzer, R.H.B., Brennan, T.W., Damodaran-Kamal, S.K.,
Debugging Race Conditions in Message-Passing Programs.
ACM SIGMETRICS Symposium on Parallel and
Distributed Tools, Philadelphia, SPDT’96 ,PA, USA, pp.
31-40, 1996

[7] Sharma, S., Gopalakrishnan, G., Mercer, E and Holt, J,
MCC: A runtime verification tool for MCAPI applications,
the 9th International Conference on Formal Methods in
Computer-Aided Design, FMCAD 2009, 15-18 November
2009, Austin, Texas, USA.

[8] The Multicore Association, http://www.multicore-
association.org

[9] The Multicore Association Communications API,
http://www.multicore-
association.org/workgroup/mcapi.php

[10] The Multicore Association Resource Management API,
http://www.multicore-
association.org/workgroup/mrapi.php

[11] Wang C., Kundu S., Ganai M., and Gupta A., Symbolic
Predictive Analysis for Concurrent Programs, the 2nd World
Congress on Formal Methods, Vol. 5850 of LNCS, Pages:
256-272, Springer-Verlag, 2009.

