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ABSTRACT 
The recently proposed MCAPI (Multicore Association 
Communication API) specification provides multicore programs 
developers with a standard API for inter-core messages-based 
communication and stream-based communication. Debugging 
MCAPI programs that use message-based communication is 
expected to be very challenging due to the non-determinism 
associated with the order of messages' arrivals at a core. In this 
paper we present a tool that uses an off-the-shelf SMT solver to 
symbolically explore all possible orders of messages arrival in 
an MCAPI program. If there is a specific order of messages 
arrival that leads to an error state, this order is presented to the 
user as a debugging aid.  
 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Model checking; D.2.5 
[Software Engineering]: Testing and Debugging 
 

General Terms 
Reliability, Verification 
 

Keywords 
MCAPI, message race, symbolic analysis, Satisfiability Modulo 
Theory, multicore programs debugging 

1. INTRODUCTION AND MCAPI 
OVERVIEW 
Desktop computers and portable devices are increasingly using 
multicore chips. With multicore-equipped devices becoming 
commonplace, there is an urgent need for standards and tools to 
support multi-core applications development. The Multicore 
Association [8] has developed the MCAPI specification [9] and 
is developing the MRAPI specification [10] to address two basic 
needs for multi-core applications. The MCAPI specification 
provides an API library and a reference implementation for 
inter-core communication. The MRAPI specification will 
provide an API library for coordinating concurrent access to 
shared resources such as memory regions.  

 
 
 
 
MCAPI is radically different from MPI [5]. MPI is intended for 
inter-computer communication, and lives within an operating 
system. MCAPI is intended for inter-core communication and 
can be a part of an operating system or reside on a core bare-
metal. Hence, MCAPI is designed to be lighter-weight and less 
flexible than MPI.  MCAPI is also different from threads, as 
threads assume shared memory. MCAPI is designed to work 
with multicore processors with either private memories or 
shared memory. The MCAPI specification defines two inter-
core communication types: connectionless communication and 
connection-oriented FIFO streams communication.  
 
In connectionless communication, two or more cores can 
exchange messages without setting up a transmission channel 
prior to communication. On the other hand, in connection-
oriented communication, a point-to-point unidirectional channel 
between two communicating cores must be established in 
advance. There are two types of FIFO streams supported by 
MCAPI: packet streams, and scalar (word) streams. A packet in 
a packet stream can contain a combination of data items. A 
scalar stream transfer words that belong to the same data type 
(e.g. integer, float…) throughout the life of the connection. 
 
In the MCAPI terminology, a core is referred to as a node. A 
port is a socket-like communication termination point that 
belongs to a node. A node can have one or more ports, but a port 
is owned by one node. Ports in a node are assigned unique 
numerical identifiers. Communication between two nodes must 
go through ports. An endpoint is a logical entity that 
corresponds to a specific port on a specific node. For example, 
sending a message from endpoint (0,1) to endpoint (1,2) means 
that the message was sent from the port with identifier 1, at node 
0, to the port with identifier 2 at node 1.  The MCAPI 
specification assumes that the number of the cores used in an 
application is static. A node creates and removes endpoints by 
calling the functions create_endpoint and delete_endpoint 
respectively. Calling the function get_endpoint retrieves a 
handle to an endpoint by specifying a node and a port. The 
major functions for connectionless communication are: 
msg_send, msg_send_i, msg_recv, msg_recv_i, and wait. The 
functions msg_send and msg_send_i are used to send messages 
between endpoints. The function msg_send will block till the 
message data has been copied from an application buffer to the 
MCAPI runtime buffers. The non-blocking function msg_send_i 
will return immediately before completing copying the data 
from the application buffer to the MCAPI runtime buffers. The 
functions msg_recv and msg_recv_i are used to retrieve 
messages from the MCAPI runtime buffers. The function 
msg_recv will block till a message has been retrieved from the 
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runtime buffers, while msg_recv_i will return immediately even 
if there are no messages in the buffer. The MCAPI specification 
provides request variables and the wait function to track the 
status of a non-blocking call. A non-blocking function takes a 
request variable as an input, and sets its value to pending. 
Calling the function wait with a request variable will block 
execution till a non-blocking operation (i.e. msg_send_i and 
msg_recv_i) has completed. A blocking call is equivalent to a 
non-blocking call followed by a wait call. 
 
There are two rules that govern the order of messages arrivals at 
a destination endpoint: 1) Messages sent from the same source 
endpoint are guaranteed to arrive at their destination according 
to their transmission order, and 2) Messages sent from different 
source endpoints will arrive at their destination in any order, 
even if these source endpoints belong to the same node. The 
second rule combined with the fact that msg_recv and 
msg_recv_i calls don’t specify the source endpoint, make it 
possible for message races to take place. Two or more messages 

are said to be racing if their order of arrival at a destination (i.e. 
a core) is non-deterministic [6].  Figure 1 shows a snippet from 
an MCAPI program in which four cores (C1, C2, C3, and C4) 
communicate via messages. For brevity, unessential code is 
omitted. This program may have an assertion failure due to an 
unexpected order of arrival of messages.  
 
The program in Figure 1 has six possible scenarios for the order 
of arrival of messages at C2 and C4 which are listed in Table 1. 
Only one scenario (when M0 arrives before M3 and M2 beats 
M1 and M4) leads to an assertion failure at C4. Figure 2 depicts 
the first and second scenarios in Table 1. Unfortunately, the 
traditional testing approach that repeatedly executes an 
application is not effective in detecting this message-race 
induced assertion failure. Even if an assertion failure takes place 
during testing, it is very difficult to find out the specific order of 
messages arrival that caused it. Hence, debugging MCAPI 
programs that use connectionless communication is expected to 
be very challenging.  

 
 

1 #define PORT_NUM 1 33 void* C3_routine (void *t) 

2  34 { 

3 void* C1_routine (void *t) 35   int Msg=10;  

4 { 36   initialize(); 

5   int Msg=1;  37   My_endpt = create_endpoint (PORT_NUM); 

6   initialize(); 38   C2_endpt = get_endpoint (2,PORT_NUM); 

7   My_endpt = create_endpoint (PORT_NUM); 39   C4_endpt = get_endpoint (4,PORT_NUM); 

8   C2_endpt = get_endpoint (2,PORT_NUM); 40   msg_send(My_endpt,C2_endpt, Msg);//M3 

9   C4_endpt = get_endpoint (4,PORT_NUM); 41   msg_send(My_endpt,C4_endpt, Msg);//M4 

10   msg_send_i(My_endpt,C2_endpt, Msg,Req0);//M0 42   delete_endpoint(My_endpt); 

11   msg_send_i (My_endpt,C4_endpt, Msg, Req1);//M1 43   finalize(); 

12   wait(Req0); 44 } 

13   wait(Req1); 45  

14   delete_endpoint(My_endpt); 46 void* C4_routine (void *t)  

15   finalize(); 47 { 

16 } 48   int U=0,W=0, O=0; 

17  49   initialize(); 

18 void* C2_routine (void *t) 50   My_endpt = create_endpoint (PORT_NUM); 

19 { 51   msg_recv(My_endpt,U); 

20   int X=0,Y=0,Z=0;  52   assert(U>0) 

21   initialize(); 53   msg_recv(My_endpt,W); 

22   My_endpt = create_endpoint (PORT_NUM); 54   msg_recv(My_endpt,O); 

23   C4_endpt = get_endpoint (4,PORT_NUM); 55   delete_endpoint(My_endpt); 

24   msg_recv_i(My_endpt,X,&recv_size,Req2); 56   finalize(); 

25   msg_recv_i(My_endpt,Y,&recv_size,Req3); 57 } 

26   wait(Req2);   

27   wait(Req3);   

28   Z=X-Y;   

29   msg_send(My_endpt,C4_endpt,Z);//M2   

30   delete_endpoint(My_endpt);   

31   finalize();   

32 }   

Figure 1. A snippet of an MCAPI program 
 



Table 1. Six orders of arrival of messages 

First 
Race 

M0 wins M3 wins 

Second 
Race 

M1 
wins 

M2 
wins 

M4 
wins 

M1 
wins 

M2 
wins 

M4 
wins 

Z Z=-9 Z=-9 Z=-9 Z=9 Z=9 Z=9 
U U=1 U=-9 U=10 U=1 U=9 U10 
 
In this paper we present a tool that symbolically explores all 
possible orders of messages arrival in an MCAPI program that 
uses connectionless communication. Our tool starts with 
instrumenting an MCAPI program, so that an execution will 
produce a trace that contains a set of events for every MCAPI 
node. These events correspond to the program statements that 
have actually been executed. Our tool explores all feasible 
orderings of these events. If there is a particular order of events, 
and hence a particular order of messages arrival that leads to an 
error state, this order will be presented to the tool user. Our tool 
is able to predict the possibility of reaching an error state from 
an execution trace that doesn’t exhibit this error state. The rest 
of this paper is organized as follows: Section 2 defines formally 
an MCAPI program and its execution trace. In section 3 we 
present our SMT-based symbolic encoding of a MCAPI 
program trace. We review related work in section 4, and 
conclude in section 5. 

 
Figure 2. Two possible scenarios for messages arrival 

2. An MCAPI program and its execution 
trace  
An MCAPI program runs on a finite set of nodes and for every 
node there is a finite set of local variables and an ordered list of 
statements. Let � = {��, … , �|�|} be the set of nodes, ℒ� =
{��,�, … , ��,|ℒ
|} be the set of local variables in node ��, and 
ℳ� = {ℳ�,�, … , ℳ�,|ℳ
|} be the set of statements in node �� . An 
endpoint at port � on node �� is denoted as ���,�. Let ℰ��  be the 
set of endpoints created in node ��.  
 
The trace of an MCAPI program running on � nodes will have � 
sub-traces; a sub-trace for each node. Let ℛ = { ��, … , ��} be the 
trace of an MCAPI program with � nodes. �� is the sub-trace 
produced by node �� and it consists of a sequence of events 
�� = ��,� … ��,|�
|. An event ��,� ∈ �� is a tuple 
< �, �, �� !", #$%�&� >, such that � is a node identifier, � is the 
order of the event appearance in ��, �� !" is a condition that 
must be true for this event to take place, and #$%�&� is an atomic 
computation that corresponds to an executed statement in the 
MCAPI program. �� !" is the conjunction of all conditions in 
the program path leading to the statement that produced the 
event. For example, if the statement that produces ��,� is in the 
then-part of an if statement, which in turn is inside a while loop, 
then �� !" will be the conjunction of the if statement condition 
and the while loop condition. #$%�&� can be any of the 
following: 

• #((�)�(+, ,�-) is an action that corresponds to an 
assignment statement that assigns the valuation of ,�- 
to +. + ∈ ℒ� is a variable. ,�- is an expression over 
ℒ�. 

• /,�"((!$, ",(%, ,�-) is an action that corresponds to 
a blocking send statement that sends a message from 
(!$ to ",(%, which contains the valuation of ,�-. 
(!$ ∈ ℰ��  and ",(% ∈ ℰ�0 are the source and 
destination endpoints. ,�- is an expression over ℒ�. 
Similarly, /,�"_�((!$, ",(%, ,�-, !,2) is an action 
that corresponds to a non-blocking send statement 
where !,2 ∈ ℒ� is a request variable. 

• 3,$+(!,$+, +) is an action that corresponds to a 
blocking receive statement that receives a message at 
the receiving endpoint !,$+ ∈ ℰ��. The message 
contents are assigned to variable + ∈ ℒ�. Similarly, 
3,$+_�(!,$+, +, !,2) corresponds to a non-blocking 
receive statement where  !,2 ∈ ℒ� is a request 
variable. 

• 4 �%(!,2) is an action that corresponds to a wait 
statement that waits for the completion of a non-
blocking action whose status is tracked with request 
variable !,2 ∈ ℒ�. 

• #((,!%(,�-) is an action that corresponds to an assert 
statement with the boolean expression ,�-. ,�- must 
be true when this event is executed; otherwise, an 
error state has been reached. 

Table 2 shows an execution trace which corresponds to the 
program in Figure 1. Note that the �� !" condition is omitted 
as it is %!�, for all events. 



Table 2. The trace of a MCAPI program in Figure 1 

67 68 

��,� Assign(Msg,1) �9,� Assign(Msg,10) 
��,: Send_i(EP1,EP2,Msg,r0) �9,: Send(EP3,EP2,Msg) 
��,9 Send_i(EP1,EP4,Msg,r1) �9,9 Send(EP3,EP4,Msg) 
��,; Wait(r0) 6< 
��,= Wait(r1) �;,� Assign(U,0) 

6> �;,: Assign(W,0) 
�:,� Assign(X,0) �;,9 Assign(O,0) 
�:,: Assign(Y,0) �;,; Recv(EP4,U) 
�:,9 Assign(Z,0) �;,= Assert(U>0) 
�:,; Recv_i(EP2,X,r2) �;,? Recv(EP4,W) 
�:,= Recv_i(EP2,Y,r3) �;,@ Recv(EP4,O) 
�:,? Wait(r2)   
�:,@ Wait(r3)   
�:,A Assign(Z,X-Y)   
�:,B Send(EP2, EP4,Z)   

 

3. SMT-based Symbolic Encoding 
Given a trace ℛ, we create a quantifier-free first-order logic 
formula ℱℛ that is satisfiable iff there exists a feasible 
permutation �D of the events in ℛ that leads to an error state 
(e.g. an assertion failure). A feasible permutation is a strict total 
order of all the events in ℛ, such that this order can occur in a 
real execution of the original program. The ℱℛ formula consists 
of symbolic variables and Satisfiability Modulo Theory (SMT) 
constraints.  
 
There are two types of symbolic variables in ℱℛ: 1) For every 
event � ∈ ℛ, there is a symbolic variable EF that reflects the 
order of carrying out � in �D. 2) For every action that assigns a 
new value to a local variable � ∈ ⋃  ℒ�

�
�H� , we create a new 

symbolic variable for �. The values of these symbolic variables 
record the history of the values of �. This is similar to the SSA 
form [4]. While the SSA form requires I-functions to handle the 
effect of branches, we needn’t have I-functions because in a 
trace all branching decisions have already been made. We add 
two dummy variables EJ�KLM and ENOLM, such that EJ�KLM is the 
first event in �D and ENOLM is the last event in �D. The values 
assigned to these symbolic variables are governed by SMT 
constraints that are crafted to ensure that �D is a feasible 
permutation. Table 3 shows the symbolic variables that are 
needed for encoding the trace in Table 2. A symbolic variable  
E�,0 represents the order of the event ��,0. A symbolic variable 
��P0 corresponds to the value of the variable P at sub-trace �� 
after being assigned a value for the jth time. 
 
The ℱℛ formula is the conjunction of four sub-formulas:  
 

ℱℛ: =  ℱRKSTK ∧ ℱOLV� ∧ ℱKTWX ∧ ¬ℱZKZ (1) 
 
ℱRKSTK ensures that in �D, no two events are assigned the same 
ordering and that every two events ��,� and  ��,[, such that � < \ 
(i.e. event ��,� appears in the trace before event ��,[) will be 
assigned orderings E�,� and E�,[, such that E�,� < E�,[.  ℱRKSTK is 
constructed using the algorithm Construct_FOrder. 

 

Table 3. The symbolic variables of the trace in Table 2 

67 6> 68 6< 

E�,� E:,� E9,� E;,� 
E�,: E:,: E9,: E;,: 
E�,9 E:,9 E9,9 E;,9 
E�,; E:,; �9]()� E;,; 
E�,= E:,=  E;,= 

��]()� E:,?  E;,? 
 E:,@  E;,@ 
 E:,A  �; �̂ 
 E:,B  �;4� 
 �:_�  �; �̀ 
 �:a�  �; :̂ 
 �:b�  �;4: 
 �:_:  �;`: 
 �:a:   
 �:b:   

 
 

Algorithm 1 Construct_FOrder(ℛ) 
1 ℱRKSTK ≔ %!�,  
2 for �=1 to � 
3    ℱRKSTK ≔ ℱRKSTK⋀ (EJ�KLM < EF
,f

) 
4    for g=1 to |��| 
5       if (j<|��|) then  ℱRKSTK ≔ ℱRKSTK⋀ (EF
,h

< EF
,hif
) 

6       for j=� + 1 to � 
7          for l=1 to |�m| 
8          ℱRKSTK ≔ ℱRKSTK⋀ (EF
,h

≠ EFo,p
) 

9          end-for 
10       end-for 
11    end-for 
12    ℱRKSTK ≔ ℱRKSTK⋀(ENOLM > EF
,h

) 

13 end-for 
 

ℱOLV� encodes events with assignment actions. ℱOLV� is initially 
set to true. For every event ��,� whose action is #((�)�(+, ,�-):  
 

ℱOLV� ≔ ℱOLV�⋀(/(+) = /(,�-) ∧ /(�� !"))  (2) 
 
Where /(+), /(,�-) and /(�� !") replace the program 
variables with the corresponding symbolic ones.  
 
 ℱKTWX encodes the events with an action that is either a blocking 
receive, or a wait of a non-blocking receive.  To facilitate 
describing the   ℱKTWX constraint, we use the following notations: 
 
For every event ��,� whose #$%�&� is either 
/,�"((!$, ",(%, ,�-) or  /,�"_�((!$, ",(%, ,�-, !,2): 

• q,(%��r��,�s = ",(% 
• ��-(��,�) = ,�- 
• /`!",!(��,�) is the order of ��,� with respect to other 

events in �� whose actions are either /,�"((!$, ",(%, ,�-) 
or /,�"_�((!$, ",(%, ,�-, !,2) and have the same 
destination endpoint as ��,�. 



For every event ��,� whose #$%�&� is either 3,$+(!,$+, +) or 
4 �%(!,2) such that 4 �%(!,2) is associated with a non-
blocking receive action 3,$+_�(!,$+, +, !,2): 

• 3,$+��(��,�) = !,$+ 
• P !(��,�) = + 
• 3`!",!(��,�) is the order of ��,� with respect to other 

events in �� whose actions are either 3,$+(!,$+, +) or 
4 �%(!,2) such that 4 �%(!,2) is associated with a non-
blocking receive action 3,$+_�(!,$+, +, !,2) and have the 
same receiving endpoint as ��,� 

• t�,� is the set of events whose actions are either 
/,�"((!$, ",(%, ,�-) or /,�"_�((!$, ",(%, ,�-, !,2) and 
can potentially match with the receive action of ��,�.   t�,� 
is defined as: 
t�,� = {�0,[| q,(%r�0,[s = 3,$+r��,�s  ∧  3`!",!(��,�) ≥
/`!",!(�0,[)}. We call t�,� , the set of potential sender 
events of ��,�. 

• ��,� is the set of events whose actions are 1) either 
3,$+(!,$+, +) or 4 �%(!,2) such that 4 �%(!,2) is 
associated with a non-blocking receive 
3,$+_�(!,$+, +, !,2) 2) precede ��,� in ��, and 3) have the 
same receiving endpoint as ��,�.  ��,� is defined as ��,� =
v��,[w 3`!",!r��,[s < 3`!",!r��,�sx. We call ��,�, the set 
of related preceding receiving events of ��,�. 
 

 ℱKTWX is initially set to true. For an event  ��,� whose action is 
either 3,$+(!,$+, +) or 4 �%(!,2) such that 4 �%(!,2) is 
associated with a non-blocking receive 3,$+_�(!,$+, +, !,2): 
 

 ℱKTWX ≔  ℱKTWX⋀ ⋁ (/(P !r��,�s) = /(��-(z∈t
,{
z)) ∧

/(�� !") ∧  |`�F
,{
z  ∧  ⋀ ¬|`�}

z
}∈�
,{

)  
(3) 

 
|`�~

z =  ( z̀ < ~̀)  ∧ ⋀ (( �̀ < z̀) ∨ ( ~̀ <�∈t~∧��z

�̀))  
(4) 

 

|`�~
z encodes the conditions needed for matching an event z 

with a send action to an event ~ with a receive action. These 
conditions are 1) z must precede ~ ( z̀ < ~̀), and 2) for every 
event �, such that � ∈ t~ ∧ � ≠ z,  then either � is before z or  
~ is before �  (⋀ (( �̀ < z̀) ∨ ( ~̀ < �̀))�∈t~∧��z ).  
 
Formula 3 states that the receive action of ��,� will be matched 
with the event z, when the conditions for this matching are 
satisfied (|`�F
,{

z ), and when all the conditions needed for 

matching z with any event in ��,�, are not satisfiable  
(⋀ ¬}∈�
,{

|`�}
z). 

 
For example, the part of  ℱKTWX that corresponds to the event �;,; 
is the disjunction of the formulas 5, 6 and 7. Formulas 5, 6, and 
7 match the receive action at event �;,; with the send action at 
events ��,9, �:,B and �9,9 respectively and encodes the necessary 
conditions. Only one formula of these three formulas will be 
satisfied. 

(�; :̂=��]()� ∧ (E�,9 < E;,; ∧ (((E9,9<E�,9) ∨ 

(E;,;<E9,9)) ∧ ((E:,B<E�,9) ∨ (E;,;<E:,B)))) 
(5) 

  

(�; :̂=�:b� ∧ (E:,B < E;,; ∧ (((E9,9<E:,B) ∨ (E;,;<E9,9)) ∧ 

(E�,9<E:,B) ∨ (E;,;<E:,B)))) 
(6) 

  
(�; :̂=�9]()� ∧ (E9,9 < E;,; ∧ (((E:,B<E9,9) ∨ 

(E;,;<E:,B)) ∧ (E�,9<E9,9) ∨ (E;,;<E9,9)))) 
(7) 

 
Intuitively,  ℱKTWX  matches an event z ∈ tK with one event ~, 
provided that z has not been matched with any event } ∈ �K, 
and z can occur before ~. The effect of a matching is assigning 
the valuation of the expression sent by z to the variable of ~. 

ℱZKZ is initially set to true. For every event ��,� whose action as 
#((,!%(,�-):  
 

ℱZKZ: = ℱZKZ ∧ (/(,�-) ∧ /(�� !")) (8) 
 
After the formula ℱℛ has been constructed, it is passed to an 
SMT solver such as Yices [2] or Z3 [1].  If ℱℛ is satisfiable, 
then the SMT solver will produce a solution that assigns a value 
for every EF variable that indicates the order of carrying out the 
event � in the permutation �D. Table 4 shows the solution 
produced by Yices for the formula that corresponds to the 
program in Figure 1. For example, any of the events (��,9, �9,9, 
and �:,B) whose actions are send actions can match with the 
event �;,; whose action is a receive action. The fact that E:,B<E;,;, 
E�,9>E;,; and E9,9>E;,; indicates that �:,B is the event that will 
be matched with �;,;. Similarly, all send/receive matchings can 
be extracted from the solution and presented to the user as the 
trace that led to the error state. 

Table 4. The solution of the �� formula 

Variable Value Variable Value 

E�,� 1 �:a: 10 
E�,: 7 �:b: -9 
E�,9 19 E9,� 11 
E�,; 21 E9,: 13 
E�,= 22 E9,9 23 

��]()� 1 �9]()� 10 
E:,� 2 E;,� 9 
E:,: 3 E;,: 10 
E:,9 4 E;,9 12 
E:,; 5 E;,; 17 
E:,= 6 E;,= 18 
E:,? 8 E;,? 20 
E:,@ 14 E;,@ 24 
E:,A 15 �; �̂ 0 
E:,B 16 �;4� 0 
�:_� 0 �; �̀ 0 
�:a� 0 �; :̂ -9 
�:b� 0 �;4: 1 
�:_: 1 �;`: 10 

 
 

 



4. Related work 
In [7], S. Sharma et al. present MCC, the first dynamic verifier 
for MCAPI applications. MCC explores all possible orders of 
messages arrival by repeatedly executing the actual program. 
MCC creates a scheduling layer above the MCAPI runtime 
which allows MCC to discover all potentially matching 
send/receive pairs by intercepting calls to the MCAPI runtime. 
MCC reduces the number of explored orders of messages arrival 
via using DPOR [3] techniques. In [11], C. Wang et al. 
introduce a symbolic algorithm that detects concurrency errors 
in all feasible permutations of statements in an execution trace. 
They use concurrent static single assignment (CSSA) based 
encoding to construct an SMT formula. Their algorithm has 
been applied to detect concurrency errors in shared memory 
multithreaded C programs.  
 

5. Conclusion 
We have presented a debugging tool for detecting assertion 
failures induced by message races in multi-core applications. 
Our tool aims at reducing the developer efforts to locate the 
source of an assertion failure. It uses an efficient SMT formula 
that is decidable if and only if there is a particular order of 
messages arrival that leads to an error state. Our tool reports the 
possibility of an assertion failure and the sequence of events that 
will lead to it. As there are no publicly available MCAPI 
benchmarks, we performed experiments on MCAPI applications 
developed by ourselves. For instance, the full code of the 
application in Figure 1 was found to have an assertion failure in 
0.01 seconds using Yices as the SMT solver. We plan to extend 
our tool to support other MCAPI constructs. 
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