Debugging Support Tool for MCAPI Applications

Mohamed Elwakil
Department of Computer Science
Western Michigan University
Kalamazoo, M| 49008

mohamed.elwakil@wmich.edu

ABSTRACT

The recently proposed MCAPI (Multicore Association
Communication API) specification provides multicgnegrams
developers with a standard API for inter-core mgssebased
communication and stream-based communication. Dghgg
MCAPI programs that use message-based communicéion
expected to be very challenging due to the nonraétésm
associated with the order of messages' arrivatscatre. In this
paper we present a tool that uses an off-the-SMIf solver to
symbolically explore all possible orders of messaggival in
an MCAPI program. If there is a specific order oéssages
arrival that leads to an error state, this ordegrissented to the
user as a debugging aid.

Categoriesand Subject Descriptors

D.2.4 [Software Engineering]: Model checking; D.2.5
[Softwar e Engineering]: Testing and Debugging

General Terms
Reliability, Verification

Keywords
MCAPI, message race, symbolic analysis, Satisftgdilodulo
Theory, multicore programs debugging

1. INTRODUCTION
OVERVIEW

Desktop computers and portable devices are incrglgsusing
multicore chips. With multicore-equipped devicescdming

commonplace, there is an urgent need for standardgools to
support multi-core applications development. The ItMore

Association [8] has developed the MCAPI specifizatf9] and
is developing the MRAPI specification [10] to adsBéwo basic
needs for multi-core applications. The MCAPI speeiion

provides an API library and a reference implemémtator

inter-core communication. The MRAPI specificationillw
provide an API library for coordinating concurremtcess to
shared resources such as memory regions.

AND MCAPI

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa fiist page. To copy
otherwise, or republish, to post on servers oreistribute to lists,
requires prior specific permission and/or a fee.

PADTAD’10, July 13, 2010, Trento, Italy.

Copyright 2010 ACM 1-58113-000-0/00/0010...510.00.

Zijiang Yang

Department of Computer Science

Western Michigan University
Kalamazoo, Ml 49008

zijiang.yang@wmich.edu

MCAPI is radically different from MPI [5]. MPI isntended for
inter-computer communication, and lives within apexating
system. MCAPI is intended for inter-core communaratand
can be a part of an operating system or reside core bare-
metal. Hence, MCAPI is designed to be lighter-weigihd less
flexible than MPI. MCAPI is also different from rérads, as
threads assume shared memory. MCAPI is designesotl

with multicore processors with either private meresr or
shared memory. The MCAPI specification defines twter-

core communication types: connectionless commubpitand
connection-oriented FIFO streams communication.

In connectionless communication, two or more cooes
exchange messages without setting up a transmissiannel
prior to communication. On the other hand, in catice-
oriented communication, a point-to-point unidireatl channel
between two communicating cores must be established
advance. There are two types of FIFO streams stgghdoy
MCAPI: packet streams, and scalar (word) streampaéket in
a packet stream can contain a combination of datasi A
scalar stream transfer words that belong to theesdata type
(e.g. integer, float...) throughout the life of thenaection.

In the MCAPI terminology, a core is referred toaasode. A
port is a socket-like communication termination poitiatt
belongs to a node. A node can have one or mors,fnrt a port
is owned by one node. Ports in a node are assignégle
numerical identifiers. Communication between twae® must
go through ports. Anendpoint is a logical entity that
corresponds to a specific port on a specific néae.example,
sending a message from endpoint (0,1) to endpdi@) (means
that the message was sent from the port with iflenfi, at node
0, to the port with identifier 2 at node 1. The RFEI
specification assumes that the number of the cosesl in an
application is static. A node creates and removelp@nts by
calling the functionscreate endpoint and delete endpoint
respectively. Calling the functiorget_endpoint retrieves a
handle to an endpoint by specifying a node and & e
major functions for connectionless communicatione: ar
msg_send, msg_send i, msg_recv, msg_recv_i, and wait. The
functionsmsg_send andmsg_send_i are used to send messages
between endpoints. The functionsg_send will block till the
message data has been copied from an applicatiber o the
MCAPI runtime buffers. The non-blocking functiomsg_send i
will return immediately before completing copyinbet data
from the application buffer to the MCAPI runtimeffaus. The
functions msg_recv and msg_recv i are used to retrieve
messages from the MCAPI runtime buffers. The fuamcti
msg_recv will block till a message has been retrieved fritra

runtime buffers, whilensg_recv_i will return immediately even

if there are no messages in the buffer. The MCAfetHication
providesrequest variables and thewait function to track the
status of a non-blocking call. A non-blocking fupat takes a
request variable as an input, and sets its valu@etmling.
Calling the functionwait with a request variable will block
execution till a non-blocking operation (i.eisg_send_i and
msg_recv_i) has completed. A blocking call is equivalent to a
non-blocking call followed by wait call.

There are two rules that govern the order of messagivals at

a destination endpoint: 1) Messages sent from éngessource
endpoint are guaranteed to arrive at their destinatccording

to their transmission order, and 2) Messages sent €ifferent
source endpoints will arrive at their destinationany order,
even if these source endpoints belong to the sawde.riThe
second rule combined with the fact thatsg_recv and
msg_recv_i calls don't specify the source endpoint, make it
possible formessage races to take place. Two or more messages

1 #define PORT_NUM 1

2

3 void* C1_routine (void *t)

4

5 int Msg=1;

6 initialize();

7 My_endpt = create_endpoint (PORT_NUM);
8 C2_endpt = get_endpoint (2,PORT_NUM);
9 C4_endpt = get_endpoint (4,PORT_NUM);

are said to beacing if their order of arrival at a destination (i.e.
a core) is non-deterministic [6]. Figure 1 showsngppet from
an MCAPI program in which four cores (C1, C2, CAd aC4)
communicate via messages. For brevity, unesseotide is
omitted. This program may have an assertion faitlre to an
unexpected order of arrival of messages.

The program in Figure 1 has six possible scendoiothe order
of arrival of messages at C2 and C4 which aredisteTable 1.
Only one scenario (when MO arrives before M3 and déats
M1 and M4) leads to an assertion failure at C4ufeéd depicts
the first and second scenarios in Table 1. Unfately, the
traditional testing approach that repeatedly exscutn
application is not effective in detecting this negsrace
induced assertion failure. Even if an assertiolufaitakes place
during testing, it is very difficult to find out ¢hspecific order of
messages arrival that caused it. Hence, debuggi@ARM

programs that use connectionless communicatiorpgeated to
be very challenging.

33 void* C3_routine (void *t)
34 {
35 int Msg=10;
36 initialize();
37 My_endpt = create_endpoint (PORT_NUM);
38 C2_endpt = get_endpoint (2,PORT_NUM);
39 €tipt = get_endpoint (4,PORT_NUM);
40 rsegd(My_endpt,C2_endpt, Msg);//M3
41 rsegd(My_endpt,C4_endpt, Msg);//M4

10 msg_send_i(My_endpt,C2_endpt, Msg,Req0);//MO 2 4 delete_endpoint(My_endpt);

11 msg_send_i (My_endpt,C4_endpt, Msg, Reql);/M43

12 wait(Req0);
13 wait(Reql);
14 delete_endpoint(My_endpt);

15 finalize();

16 }

17

18 void* C2_routine (void *t)
19 {

20 int X=0,Y=0,Z=0;

21 initialize();

22 My_endpt = create_endpoint (PORT_NUM);
23 C4_endpt = get_endpoint (4,PORT_NUM);
24 msg_recv_i(My_endpt,X,&recv_size,Req2);
25 msg_recv_i(My_endpt,Y,&recv_size,Req3);
26 wait(Req2);

27 wait(Req3);

28 Z=X-Y;

29 msg_send(My_endpt,C4_endpt,Z2);//M2

30 delete_endpoint(My_endpt);

31 finalize();

finalize();
44 '}
45
46 void* C4_routfmeid *t)
47 {

48 int U=0,Ww=0, O=0;
49 initialize();
50 My_endpt = creaendpoint (PORT_NUM);
51 msg_recv(My_endpt,U);
52 assert(U>0)
53 msg_recv(My_endpt,W);
54 gmmecv(My_endpt,O);
55 etielendpoint(My_endpt);
56 inalize();
57 }

Figure 1. A snippet of an MCAPI program

Table 1. Six ordersof arrival of messages

First MO wins M3 wins

Race

Second M1 M2 M4 M1 M2 M4
Race wins | wins wins wins | wins | wins
Z Z=-9 | Z=-9 Z=-9 Z=9 Z=9 Z=9
U U=1 | U=-9 | U=10 u=1 U= u10

In this paper we present a tool ttggmbolically explores all
possible orders of messages arrival in an MCAPgianm that
uses connectionless communication. Our tool stavith
instrumenting an MCAPI program, so that an executiall
produce a trace that contains a sebwhts for every MCAPI
node. These events correspond to the program staterthat
have actually been executed. Our tool exploresfeatible
orderings of these events. If there is a particatder of events,
and hence a particular order of messages arriaall¢ads to an
error state, this order will be presented to tha tser. Our tool
is able to predict the possibility of reaching aroestate from
an execution trace that doesn’t exhibit this estate. The rest
of this paper is organized as follows: Section #nds formally
an MCAPI program and its execution trace. In sectiowe
present our SMT-based symbolic encoding of a MCAPI
program trace. We review related work in section afd
conclude in section 5.

EP(1,1) EP(2,1) EP(3.1) EP(4,1)
3 T '3 L)
P—
MO— 74
— M1 —»(
/MB
M4
X=1
Y=10 \(
Z=9
D— 2\»{
U=1
Ww=10
0=-9
3 l °
Scenario 1
MO and M1 won
EP(1,1) EP(2,1) EP(3,1) EP(4.1)
® T ®
P—
Mo—
>\(M3
- A
x=1 M1
Y=10 M4
7Z=-9
U=-9
Ww=1
O=10
° l ° °

Scenario 2
MO and M2 won

Figure 2. Two possible scenarios for messagesarrival

2. An MCAPI program and its execution

trace

An MCAPI program runs on a finite set of nodes &mrdevery
node there is a finite set of local variables andalered list of
statements. LeV' = {N;, ..., N} be the set of noded; =

{Lix, -, Lijc,} be the set of local variables in nodg, and
M; = {Mjy, ..., My 50, be the set of statements in ndge An

endpoint at pork on node\; is denoted agP; ,. Let EP; be the
set of endpoints created in natle

The trace of an MCAPI program running @mmodes will haver
sub-traces; a sub-trace for each nodeR et { 7;, ..., 7,,} be the
trace of an MCAPI program with nodes.T; is the sub-trace
produced by node&V; and it consists of a sequence of events
5 =Ty ..Tyr- An event T, €7 is a tuple
< i,x, Guard, Action >, such thai is a node identifiery is the
order of the event appearancedin Guard is a condition that
must be true for this event to take place, Antdon is an atomic
computation that corresponds to an executed statemethe
MCAPI program.Guard is the conjunction of all conditions in
the program path leading to the statement that yoedi the
event. For example, if the statement that proddgess in the
then-part of anf statement, which in turn is insidenile loop,
thenGuard will be the conjunction of thié statement condition
and thewhile loop condition. Action can be any of the
following:

e Assign(v,exp) is an action that corresponds to an
assignment statement that assigns the valuatienpof
to v. v € L; is a variableexp is an expression over
L;.

e« Send(src,dest,exp) is an action that corresponds to
a blocking send statement that sends a message from
src to dest, which contains the valuation afxp.
src € EP; and dest € EP; are the source and
destination endpointexp is an expression ovet;.
Similarly, Send_i(src, dest,exp,req) is an action
that corresponds to a non-blocking send statement
wherereq € L; is a request variable.

e Recv(recv,v) is an action that corresponds to a
blocking receive statement that receives a mesaage
the receiving endpointrecv € EP;. The message
contents are assigned to variables £;. Similarly,
Recv_i(recv,v,req) corresponds to a non-blocking
receive statement wherereq € £; is a request
variable.

e Wait(req) is an action that corresponds to a wait
statement that waits for the completion of a non-
blocking action whose status is tracked with retues
variablereq € £;.

e Assert(exp) is an action that corresponds to an assert
statement with the boolean expressiap. exp must
be true when this event is executed; otherwise, an
error state has been reached

Table 2 shows an execution trace which correspdadthe
program in Figure 1. Note that tleiard condition is omitted
as it istrue for all events.

Table2. Thetrace of a MCAPI program in Figure 1
T T3

Ty, | Assign(Msg,1) Ts, | Assign(Msg,10)
T, | Send_i(EP1,EP2,Msg,r0)| T;, | Send(EP3,EP2,Msg
T3 | Send_i(EP1,EP4,Msg,rl)| T;; | Send(EP3,EP4,Msg

Ty, | Wait(r0) Ty
Tys | Wait(rl) T.1 | Assign(U,0)
T, T,, | Assign(W,0)
T,, | Assign(X,0) T,z | Assign(O,0)
T,, | Assign(Y,0) T,. | Recv(EP4,U)
T,3 | Assign(Z,0) T,s | Assert(U>0)
T,, | Recv_i(EP2,X,r2) T, | Recv(EP4,W)
T,s | Recv_i(EP2,Y,r3) T,; | Recv(EP4,0)

T,6 | Wait(r2)

T,, | Wait(r3)

T,g | Assign(Z,X-Y)

T,o | Send(EP2, EP4,7)

3. SMT-based Symbolic Encoding

Given a traceR, we create a quantifier-free first-order logic
formula F, that is satisfiable iff there exists feasible
permutation P, of the events iR that leads to an error state
(e.g. an assertion failure). A feasible permutatfoa strict total
order of all the events i, such that this order can occur in a
real execution of the original program. THg formula consists
of symbolic variables and Satisfiability Modulo Tmg (SMT)
constraints.

There are two types of symbolic variablesAgp: 1) For every
eventT € R, there is a symbolic variabl@, that reflects the
order of carrying outT in P;. 2) For every action that assigns a
new value to a local variable € Uj-; £;, we create a new
symbolic variable fol.. The values of these symbolic variables
record the history of the values bf This is similar to the SSA
form [4]. While the SSA form requires-functions to handle the
effect of branches, we needn't hagefunctions because in a
trace all branching decisions have already beenem@att add
two dummy variable®)g;,s; and 0,44, such thag;,s is the
first event inP; and O, is the last event itP;. The values
assigned to these symbolic variables are governedSMT
constraints that are crafted to ensure ti®at is a feasible
permutation. Table 3 shows the symbolic variablest tare
needed for encoding the trace in Table 2. A symbediriable
0;,j represents the order of the evapt. A symbolic variable
T;V; corresponds to the value of the variablat sub-trace;
after being assigned a value for thdifne.

TheF5 formula is the conjunction of four sub-formulas:

TR: = Torder A 7:‘asgn A T;’ecv A _‘Tprp (1)

Foraer €NSUres that itPz, No two events are assigned the same

ordering and that every two evefitg, and T;,,, such thak <y
(i.e. eventT;, appears in the trace before evépy) will be
assigned ordering®; , ando; ,,, such that); , < 0;,. Forger IS
constructed using the algorithm Construct_FOrder.

Table 3. The symbolic variables of thetracein Table 2

T T2 T3 Ty
01,1 02,1 03,1 O41
P 0z, 032 O4.
013 023 033 Ou3
O14 02,4 T3Msg, Osa
015 Oy Oss
TiMsg, Oz Oy
02,7 Ou7
0258 U,
029 A
T,X, T,04
T,Y; T, U,
Tz, W,
X, 1.0,
LY,
7,

Algorithm 1 Construct_FOrdeR)

1 Forger =true

2 fori=lton

3 Forder = Foraer\ Opirst < OT,-J)
4 for j=11t0|T;|

5 if (<IT;1) then Forger = Foraer (OTI-J- < OT”H)
6 for k=i+1ton

7 for [=1to |T;|

8 Forder = Foraer\ (OT”- * OTU)
9 end-for

10 end-for

11 end-for

12 Foraer = ForaerN(Opase > OT,-J-)
13 end-for

Fasgn €NCOdes events with assignment actidfs,,, is initially
set to true. For every evefit, whose action igdssign(v, exp):

Fasgn = FasgnN(S () = S(exp) A S(Guard)) 2)

Where S(v), S(exp) and S(Guard) replace the program
variables with the corresponding symbolic ones.

F.ecr €ncodes the events with an action that is eithBoeking
receive, or a wait of a non-blocking receive. Tazilitate
describing the %, constraint, we use the following notations:

For every event T;, whose Action is either

Send(src, dest, exp) or Send_i(src,dest,exp,req):

. DestEP(Ti,x) = dest

* Exp(Tiyx) = exp

e SOrder(T;,) is the order off;, with respect to other
events in7; whose actions are eithSend(src, dest, exp)
or Send_i(src,dest,exp,req) and have the same
destination endpoint &3 .

For every event;, whoseAction is eitherRecv(recv,v) or
Wait(req) such thatWait(req) is associated with a non-
blocking receive actioRecv_i(recv, v, req):

* RecvEP(T;,) = recv

e Var(Tiy) =v

* ROrder(T;,) is the order ofT;, with respect to other
events inJ7; whose actions are eithdétecv(recv,v) or
Wait(req) such thatWait(req) is associated with a non-
blocking receive actio®ecv_i(recv,v,req) and have the
same receiving endpoint @s,

e S;, is the set of events whose actions are either
Send(src, dest, exp) or Send_i(src,dest,exp,req) and
can potentially match with the receive actionTpf. S; ,
is defined as:

Six =A{Tjyl Dest(T]-,y) = Recv(Ti,x) A ROrder(T;,) =
SOrder(T;,)}. We call ;,, , the set of potential sender
events of T ,.

e P, is the set of events whose actions are 1) either
Recv(recv,v) or Wait(req) such thatWait(req) is
associated with a non-blocking receive
Recv_i(recv,v,req) 2) precedd;, in T;, and 3) have the
same receiving endpoint &s,. P;, is defined asP;, =
{T:,| ROrder(T;,) < ROrder(T;,)}. We callP, ,, theset
of related preceding receiving events of T; ,.

Frecy IS initially set to true. For an ever; , whose action is
either Recv(recv,v) or Wait(req) such thatWait(req) is
associated with a non-blocking receRecv_i(recv, v, req):

Frecv = Frecvl\ Vsesi,x(s(var(Ti,x)) = S(Exp(8)) A 3)
S(Guard) A CON7, A Apep,, ~CON})

CON:Z = (0;<0,) A /\nES,/\nms((On <0,V (0, < 4)
0,))

CON; encodes theonditions needed for matching an evest
with a send action to an event with a receive action. These
conditions are 1y must precede (0, < 0,.), and 2) for every
eventn, such thain € §,. An # 8, then eithem is befores or

7~ is beforen (/\nES,/\n$5((0n < 05) v (Or < On)))

Formula 3 states that the receive actiorT,gf will be matched
with the events, when the conditions for this matching are
satisfied CON7,), and when all the conditions needed for
matching s with any event in®;,, are not satisfiable
(Apep,, ~ CON}).

For example, the part af,., that corresponds to the evéqt,

is the disjunction of the formulas 5, 6 and 7. Falas 5, 6, and

7 match the receive action at evé@hf, with the send action at
eventsT, 3, T, 5 andT; 3 respectively and encodes the necessary
conditions. Only one formula of these three forrauwlaill be
satisfied.

(ToUp=T1Msgy A (013 <044 A(((033<0,3) V (5)
(04,4<033)) A ((02,0<01,3) V (04.4<0,9))))

(TaU3=T2Z1 A (029 < Oga A((O33<02,0) V (044<053)) A ©)
(01,3<02,0) V (04,4<0,))))

(T4U=T3sMsgy A (033 < Ogq A(((029<033) V)
(04,4<02,9)) A (01,303 3) V (04,4<05 3))))

Intuitively, F..., matches an event € S, with one eventr,
provided thats has not been matched with any evgng 7.,
and.s can occur before-. The effect of a matching is assigning
the valuation of the expression sentdip the variable of~.

Forp is initially set to true. For every evefit, whose action as
Assert(exp):

Forp: = Fprp A (S(exp) A S(Guard)) (8)

After the formulaF, has been constructed, it is passed to an
SMT solver such as Yices [2] or Z3 [1]. Hy is satisfiable,
then the SMT solver will produce a solution thatigss a value
for everyOr variable that indicates the order of carrying et
eventT in the permutationP;. Table 4 shows the solution
produced by Yices for the formula that corresponasthe
program in Figure 1. For example, any of the evéfits, Ts 3,

and T, 4) whose actions are send actions can match with the
eventT, , whose action is a receive action. The fact hag<0, 4,
0,3>0,, and0; 3>0, , indicates thal, 4 is the event that will

be matched witlT, ,. Similarly, all send/receive matchings can
be extracted from the solution and presented toutiee as the
trace that led to the error state.

Table 4. The solution of the F4 formula

Variable | Value Variable Value
011 1 T,Y, 10
01, 7 T,Z, -9
013 19 031 11
014 21 03, 13
01,5 22 03'3 23

T.Msg, 1 T:Msg, 10
0,1 2 041 9
0,3, 3 Oz 10
023 4 O43 12
03,4 5 Oy 17
035 6 Oys 18
0,6 8 Oup 20
027 14 047 24
0,8 15 T, Uy 0
0,9 16 T W,y 0
T, X, 0 T,0, 0
T,Y, 0 T, U, -9
T,7, 0 T, W, 1
T,X, 1 T,0, 10

4. Related work

In [7], S. Sharma et al. present MCC, the firstaiyit verifier
for MCAPI applications. MCC explores all possibleders of
messages arrival by repeatedly executing the agradram.
MCC creates a scheduling layer above the MCAPIimmt
which allows MCC to discover all potentially matabi
send/receive pairs by intercepting calls to the NRCAuntime.
MCC reduces the number of explored orders of messagival
via using DPOR [3] techniques. In [11], C. Wang &t
introduce a symbolic algorithm that detects corency errors
in all feasible permutations of statements in aecaon trace.
They use concurrent static single assignment (CSisssed
encoding to construct an SMT formula. Their aldorit has
been applied to detect concurrency errors in shanechory
multithreaded C programs.

5. Conclusion

We have presented a debugging tool for detectirggriasn
failures induced by message races in multi-cordiGatons.
Our tool aims at reducing the developer effortsacate the
source of an assertion failure. It uses an effic®T formula
that is decidable if and only if there is a partécuorder of
messages arrival that leads to an error statet@ureports the

possibility of an assertion failuend the sequence of events that

will lead to it. As there are no publicly availabMCAPI
benchmarks, we performed experiments on MCAPI apptins
developed by ourselves. For instance, the full coflethe
application in Figure 1 was found to have an agsefgilure in
0.01 seconds using Yices as the SMT solver. We tolaaxtend
our tool to support other MCAPI constructs.

6. References

[1] de Moura, L., Bjgrner, N., Z3: An efficient SMT set,
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008CEN
vol. 4963, pp. 337-340. Springer, Heidelberg (2008)

[2] Dutertre, B and de Moura, L.: A Fast Linear-Arithioe
Solver for DPLL(T), 18th Computer-Aided Verificatio
conference, volume 4144 of LNCS, pages 81-94. §erin
Verlag, 2006.

[3] Flanagan, C. and Godefroid, P., Dynamic partiakord

reduction for model checking software, the 32nd ACM

SIGPLAN-SIGACT symposium on Principles of

programming languages, POPL '05, pages 110-121, New

York,NY, USA, 2005. ACM Press.

[4] Lee, J., Padua, D., Midkiff, S., Basic compileralthms
for parallel programs, Principles and Practice afafel
Programming. (1999) 1-12

[5] MPI: A Message-Passing Interface
http://www.mpi-forum.org/docs/mpi-2.2/index.htm

[6] Netzer, R.H.B., Brennan, T.W., Damodaran-Kamal,.5.K
Debugging Race Conditions in Message-Passing Rregyra
ACM SIGMETRICS Symposium on Parallel and
Distributed Tools, Philadelphia, SPDT'96 ,PA, USgp.
31-40, 1996

[7] Sharma, S., Gopalakrishnan, G., Mercer, E and Hplt,
MCC: A runtime verification tool for MCAPI applicans,
the 9th International Conference on Formal Methouds

Computer-Aided Design, FMCAD 2009, 15-18 November

2009, Austin, Texas, USA.

Standard,

(8]
(9]

The Multicore Association, http://www.multicore-
association.org
The Multicore Association Communications API,

http://www.multicore-
association.org/workgroup/mcapi.php

[10] The Multicore Association Resource Management API,

http://www.multicore-
association.org/workgroup/mrapi.php

[11] Wang C., Kundu S., Ganai M., and Gupta A., Symbolic

Predictive Analysis for Concurrent Programs, tif&vorld
Congress on Formal Methods, Vol. 5850 of LNCS, Bage
256-272, Springer-Verlag, 2009.

