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Abstract. This paper discusses our methodology for formal analysis
and automatic verification of software programs. It is currently appli-
cable to a large subset of the C programming language that includes
bounded recursion. We consider reachability properties, in particular
whether certain assertions or basic blocks are reachable in the source
code. We perform this analysis via a translation to a Boolean represen-
tation based on modeling basic blocks. The program is then analyzed by
a back-end SAT-based bounded model checker, where each unrolling is
mapped to one step in a block-wise execution of the program.

The main contributions of this paper are as follows: 1) This paper is the
first to use the block-based unrollings with SAT-based bounded model
checking. This allows us to take advantage of SAT-based learning inher-
ent to the best performing bounded model checkers. 2) We also present
various heuristics used in the SAT-based bounded model checking cus-
tomized for models automatically generated from software, allowing a
more efficient analysis. 3) We have implemented our methodology into
a prototype tool called F-SOFT and applied it on various case studies.
We present experimental results based on eight case studies including a
C-based implementation of a network protocol, and compare the perfor-
mance gains using the proposed heuristics.

1 Introduction

Although symbolic model checking algorithms using binary decision diagrams
(BDDs) offer the potential of exhaustive coverage of large state-spaces, they often
do not scale well in practice. An alternative is bounded model checking (BMC) [3]
focusing on the search for counterexamples of bounded length only. The problem
is translated to a Boolean formula, such that the formula is satisfiable iff there
exists a counterexample of length k. In practice, k can be increased incrementally
to find a shortest counterexample if it exists. However, additional reasoning is
needed to ensure completeness of the verification when no counterexample exists
[12,16]. The satisfiability check in the BMC approach is typically performed by
a back-end SAT-solver. Due to the many advances in SAT-solving techniques [9,
13], SAT-based BMC can often handle much larger designs than BDDs.
Software modeling. In this paper, we describe our overall methodology for
the analysis of software. Our prototype tool called F-SOFT is developed for the C



programming language. We translate a program into a Boolean representation to
be analyzed by a back-end SAT-based BMC. We currently consider reachability
properties, in particular whether certain (labeled) blocks are reachable in the
code. We perform this analysis via a translation to a circuit representation by
considering the control and data flow of the program. The salient feature of our
approach for software verification is the central role played by a basic block. From
the modeling of software, the abstraction of the source code, to the verification
of the generated software model using an unrolling based on blocks — the block
modeling approach is integral to the proposed method. For each block in the
source code we generate a label. Assuming the source code consists of N blocks,
we represent each block by a label consisting of [log N bits. A program counter
(pc) consisting of [log N bits is introduced to monitor progress in the state
transition graph consisting of blocks.

The first key contribution of this paper is to use the pc variables to track
progress of the allowed executions of the code during SAT-based BMC. This
allows us to take advantage of SAT-based learning inherent to the best perform-
ing bounded model checkers. Effectively, an unrolling during BMC is understood
to be one step in a block-wise execution of the program. In this context each
atomic step of the BMC consists of a basic block rather than individual state-
ments. This is an efficient way of performing BMC, since for each block there
are only a limited number of possible successors. Given a single initial block
label, there are thus only a limited number of possible next blocks reachable in
new unrollings. Thus, although each unrolling introduces all basic blocks into
the satisfiability problem, many blocks in the new unrolling can be declared un-
reachable by merely considering the control flow of the software program. This
intuition can be used to prune the search space considerably.

Comparison with CBMC. The most closely related work to ours is the
CBMC tool [5], which also translates a C program into a Boolean representation
to be analyzed by a back-end SAT-based BMC. However, there are many dif-
ferences in our approaches. One major difference is that we generate a Boolean
model of the software that can be analyzed by both SAT-based BMC and un-
bounded model checking using BDDs. Another major difference is the block-
based approach, rather than a statement-based approach. Additionally, CBMC
requires a full inlining and unwinding of the source code through a user-supplied
constant. This allows the SAT-solver to consider only loop-free paths which is
often fast for small pieces of code with no or few loops. However, this method of
inlining and unwinding loops is clearly not scalable to larger pieces of code or to
code with reactive behavior. Our translation method does not require multiple
inlining or unwinding of loops, and is therefore more scalable than CBMC as
shown in our experiments using F-SOFT and CBMC presented in Section 5.

We also differentiate our approach through the use of pre-processing analyses
such as program slicing and range analysis. A slice of a program with respect
to a set of program elements is a projection of the program that includes only
program elements that might affect the property [4]. Furthermore, we use range
analysis techniques [15] to limit the number of bits needed to represent various



variables compared to using a full bit encoding as implemented in CBMC. We
also do not need to rewrite the source code to single assignment form thus keep-
ing only one copy of each variable. We also propose new heuristics to exploit
many common features of Boolean models generated by our software modeling
approach. We discuss three main heuristics which prune the SAT search space
considerably, and the variations we have used for combining them. Finally, in
contrast to CBMC, our tool also allows partial abstraction of the software using
counterexample-guided predicate abstraction based on symbolic techniques sim-
ilar to work described in [6]. However, we limit the discussion in this paper to our
software modeling framework and our improved SAT-solver decision heuristics.

Verification problem. We define a state of a program to consist of a loca-
tion [ € L describing the current basic block, i.e. the pc variables, and a type-
consistent evaluation of data variables where out-of-scope variables at location
[ are assigned an undefined value. We consider initial states of the program to
be a single initial location, where each variable can take a random value that
is type-consistent with its specification. The set of global variables includes a
(bounded) fixed-length static variable modeling a function call stack, thus al-
lowing modeling of bounded recursion. We currently focus on checking reacha-
bility in programs. For this, we define a set of locations Bad C L to be unsafe,
and our model checking analysis tries to prove or disprove whether these basic
blocks can be reached. We have implemented our methodology in a prototype
framework called F-SOFT. At the back-end, it uses a Boolean analysis system
called DIVER [10], which includes various SAT-based and BDD-based methods
for performing both bounded and unbounded verification including BMC-based
proof techniques for providing correctness proofs [16].

Overview. In Section 2 we discuss our block-based software modeling ap-
proach. Section 3 discusses our analysis using SAT-based BMC and proposes cus-
tomized decision heuristics that improve the efficiency of the analysis. Section
4 introduces one of the analyzed network protocol case studies, while Section
5 presents experimental results for eight case studies using F-SOFT in detail.
Section 6 concludes this paper with some remarks and pointers to future work.

2 Basic Block Modeling and BMC

In this section, we describe our software modeling approach that is centered
around basic blocks. We perform reachability analysis via a translation to a cir-
cuit representation by considering the control flow and data flow of the program.
The control logic of the translated circuit captures the control flow graph of the
program. The data logic describes the assignments to variables. Assuming the
source code consists of NV blocks, we represent each block by a label consisting of
[log N bits. A program counter (pc) variable is introduced to monitor progress
in the control flow graph consisting of the basic blocks. The control logic de-
fines the transition relation for the pc given the block transition graph and the
conditions guarding the transitions between the blocks.



2.1 Control Logic Modeling

The key innovative contribution of this paper is to use the program counter to
track progress of allowed executions of the code during BMC. The model checking
analysis is performed by understanding an unrolling to be one step in a block-
wise execution of the program, where each atomic step consists of a basic block
rather than an individual statement. Similar approaches have been explored in a
non-BMC setting to software model checking (such as with tools like VeriSoft [8],
Java PathFinder [11,18] and Bogor [14]), which have also extended it to deal
with concurrency by using partial-order reduction. However, by incorporating
this idea into a SAT-based BMC we are able to take advantage of recent progress
in this research area, while also improving its efficiency for software verification
by customizing the back-end SAT-solver.

We use certain code pre-processing steps to simplify the source code. For
example, code simplification removes nested or embedded function calls inside
other function calls by adding temporary variables. During the computation
of the control flow graph (CFG), an edge from the calling block to the first
block of the called function is created. If the function call returns a value, we
add a statement assigning the return expression to the assigned variable. For
functions that are not called recursively, we add statements that assign actual
parameters to the corresponding formal parameters if parameters are needed. For
non-recursive functions the return point of the called function in the program is
recorded as a special parameter. The returning transitions from the function call
are guarded with checks on this special parameter. To allow modeling of bounded
recursion, we include a bounded function call stack, which is used to save the
current local state and determine which basic block to return to. With respect
to the subset of C that we currently consider, we support primitive data types,
pointers, static arrays and records. As to dynamically created data structures
such as dynamic arrays and linked-lists, an upper bound on the length is required
and should be provided by the user. Furthermore, all control flow logic constructs
are completely supported.

An example for our control logic modeling is shown in Figure 1, where the
right side shows the computed CFG for the simple C code on the left side. The
example shows how the basic blocks are computed for various types. Each basic
block is identified by a unique number shown inside the hexagon adjacent to
the basic block. The source node of the CFG is basic block 0, while the sink
node is the highlighted basic block 8. The example in Figure 1 pictorially shows
how non-recursive function calls are included in the control flow of the calling
function. A preprocessing analysis determines that function foo is not called in
any recursive manner. The two return points are recorded by an encoding that
passes a unique return location as a special parameter using the variable rtr.

2.2 Data Logic Modeling

Once the basic blocks of a C program are determined, we create the data logic
for the assignments. We first simplify the assignments in each basic block, and



int foo(int s){
int t=s+2;
if (£>6)
t -=3 ;
else
t--3
return t;

}

void bar(){
int x = 3, y = x - 3;
while ( x <= 4 ){
yt++

5

= . updating
X foo (X) 4 return
values

}
y = foo(y);
}

,,,,,,,,,,

Fig. 1. Computing the control flow graph

then create a Boolean representation. In order to obtain the logic for each vari-
able assignment var=expr, we then build a combinational circuit for expr. For
example, to handle an expression of type expri&expr2 (bitwise AND), we first
build circuits for the sub-expressions exprl and expr2. Let vectors vecl and
vec2 be the outputs of these circuits. The final result has the same bit-width as
vecl and vec2, and each result bit is the output of an AND gate with two inputs
being the corresponding bits in vecl and vec2. To handle an expression of type
exprl+expr2, we create an n-bit adder. For the case of a relational expression
the result has only one bit.

Additional variables are introduced when pointer variables are declared since
we are computing a Boolean representation. The declaration int **p creates
three variables vy, vy, v}/, where v, stands for p, v, for *p, and v, for **p. Simi-
larly, int *a, *b creates four variables v, v}, v, v, while a dereference in the
C code, such as &a, also leads to additional variables — in this case the variable
"vq. Additional assignments have to be inferred due to aliasing and newly intro-
duced variables. First, an assignment p=&a becomes v, = "v,. Since p=&a implies
*p=a and **kp=*a, two new assignments v, = v, and v, = v, are also inferred.
An assignment a=&x gives rise not only to the assignment v/, = v,, but also
to conditional assignments due to aliasing. Since p may equal &a, it is possible
that *p and **p are assigned new values when a is assigned. This results in
the conditional assignments *p=(p==&a) 7&x: *p and **p=(p==&a) 7x:**p. Some
of the conditions in the conditional assignments can be removed based on pre-
vious assignments in the same basic block. In order to convert the sequential



assignments to parallel assignments, we also remove all possible read-after-write
hazards through substitution. In addition, some assignments are redundant when
considering a basic block as one atomic step. In particular, the assignments at
later steps may overwrite previous assignments.

Next we consider how to convert the parallel assignments into a Boolean
representation. All the variables after simplification and the range analysis pro-
cedure have finite domains. Assume we need t bits to represent a variable var
with var;(1 < j <t) being the current state bits and var;(l < j <t) being the
next state bits. Let var be assigned in blocks {by, b2, - - , br} and not assigned in
the remaining blocks {by11,--- ,bn}. The logic assigned to var; is V}; at block
bi(1 <i < k). Also, let I; be the index of the block b;. The next-state data logic
for var; then is
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3 Model Analysis and Customized Decision Heuristics

The Boolean models generated by our software modeling contain many common
features that are based on the particular translation presented here. Although we
model the program counter to track progress in the control flow graph, there is
additional information in the original software that could improve the efficiency
of the SAT-based BMC. Although each unrolling introduces the whole code into
the satisfiability problem, many blocks in the new unrolling can be declared
unreachable by merely considering the control flow of the software program. In
the following we propose various heuristics that improve the performance of the
SAT-based BMC for the Boolean models generated from software. In section 5,
we show these heuristics to be successful in our experiments.

3.1 Scoring of PC Variables

We adjust the decision heuristics used by the SAT-solver in our DIVER verifi-
cation engine to take advantage of the fact that we are considering a Boolean
design generated from a piece of software. A simple decision heuristic that in-
creases the likelihood that the SAT-solver makes decisions first on variables that
correspond to the control flow rather than the data flow, takes advantage of the
fact that each new unrolling does not allow the whole code to be reached. We
implement this heuristic by increasing the score for the bits of the pc variables,
which in turn makes the back-end SAT-solver choose these variables as decision
variables first. In addition to scoring pc variables higher than other variables
in the system, we also control how to vary the scoring of variables over various
time-frames.



3.2 One-Hot Encoding of Basic Blocks using Selection Bits

Another heuristic that we implemented is a one-hot encoding of the pc variables
which allows the SAT-solver to make decisions on the full pc instead of the
individual pc bits. In addition to the binary encoded pc variable already present
in the circuit, we add a new selection bit for each basic block. The selection bit
is set iff the basic block is active, i.e. when a certain combination of pc variable
bits is valid. This provides a mechanism for word-level decisions since a certain
basic block selection bit automatically invalidates all other selection bits through
the pc variables. By increasing the score of the selection bits in comparison to
other variables in the system, we are able to influence the SAT-solver to make
quick decisions on the location first. An obvious disadvantage to this heuristic
is that we need to add one selection bit to the Boolean model per basic block in
the software code. However, this disadvantage is mitigated by the performance
improvements as described in Section 5.

In addition, we can increase the score intelligently for these basic block selec-
tion bits by considering the pre-computed static reachability information from
the CFG. We increase the score for only those basic block selection bits at depth
k, if the corresponding basic block can actually be reached statically in the CFG
at depth k. This requires an additional BFS of reachable basic blocks at various
depths in the CFG.

Let b; represent the selection bit for basic block i and let ¢;,0 < ¢ < 3
represent the four needed program counter variable bits for the code shown
in Figure 1. We add constraints for each basic block, asserting the equality
of the block selection variable with the binary-encoded pc label. For example,
by = ¢3¢2¢1¢p and bg = ¢3zcaciéy. Now, a decision by the SAT-solver to assign
by to 1 corresponds to a word-level decision on the program counter, which
immediately results in implying b; = 0,7 > 0, including bg = 0 in our example.
Furthermore, similar to the previously described technique of scoring variables
in later time-frames higher than in prior time-frames, we also use this strategy
for scoring of the selection bits.

3.3 Explicit Modeling of Incoming CFG Transitions

We can also aid the analysis of the back-end SAT-solver by constraining its search
space to eliminate impossible predecessor-successor basic block combinations in
the CFG. These constraints capture additional high-level information, which
helps to prune the search space of the SAT-solver. At each depth, the choice
of the SAT-solver to consider a particular basic block enables a limited number
of possible predecessor blocks and eliminates immediately all other basic blocks
from consideration. By increasing the likelihood that the SAT-solver decides first
on the pc, we take advantage of the fact that each new unrolling does not allow
the whole code to be reachable at each depth. We prefer to add these constraints
based on incoming transitions into a basic block since the Boolean model of the
software already encodes the outgoing transitions in terms of the pc variables.



This helps the SAT-solver since it provides bi-directional information about the
transitions in the CFG.

For example, let ¢}, 0 < ¢ < 3, denote the next state pc variable bits
in figure 1. The following constraint is added for basic block 7: cjchchch —
(scacico V C3cacicyp), to reflect the constraint that if the current block is 7, then
the predecessor block is either 3 or 4. Similarly, for basic block 3, we add the
following constraint: c_gc_’Qc'lc(’) — (E362¢100 N g), where g stands for the represen-
tation of x>4. We can also add such constraints in terms of the one-hot encoded
selection bits of the basic blocks if both these heuristics are being utilized. The
constraint for basic block 7 then simply becomes b, — (b V by).

We also allow the user to customize this heuristic by choosing a subset of
basic blocks for which to apply this heuristic. This customization allows the
user to fine-tune the amount of additional constraints generated, since too many
additional constraints may burden the SAT-solver rather than improve efficiency.
In addition, another optimization, that we have not yet implemented, is to limit
the additional constraints to basic blocks at depths that are actually reachable
at that depth. This optimization, similar to the optimization described in the
one-hot encoding heuristic, requires an additional BFS of reachable basic blocks.

4 Network Case Study: Point-to-Point Protocol

The verification of various network protocols has been a popular application of
model checkers [7]. Most of these approaches have analyzed models of network
protocols with respect to some temporal properties such as absence of deadlock
where the model is based on a textbook description or an RFC (Request for
Comments) document. In addition to this work, there have recently been at-
tempts to verify an implementation of a protocol with respect to its standard
defined in an RFC [2]. In this section, we describe the Point-to-Point protocol,
which is one of the case studies that we have analyzed using F-SOFT.

The Point-to-Point Protocol (PPP) provides a standard method for trans-
porting multi-protocol datagrams over point-to-point links. PPP contains three
main components, namely a method for encapsulating multi-protocol datagrams,
a Link Control Protocol (LCP) for establishing, configuring, and testing the
data-link connection, and a family of Network Control Protocols (NCPs) for
establishing and configuring different network-layer protocols. Similar to [2], we
focus on checking the implementation of the option negotiation automaton of
the LCP part of PPP for link establishment.

RFC 1661 [17] specifies the complete state transition table of the automa-
ton. It is a finite state-machine with 10 states, which reacts to 15 events. The
automaton can switch states when receiving an event, and also perform other
actions, such as sending replies. Any implementation of the PPP has to follow
the behavior described in the RFC, which is partly shown in Table 1 for the
states Stopped, Req-Sent and Opened. We only present the information about
which messages should be sent back, if any, and what the next state should be if



there is a change of states. An empty field describes the fact that the automaton
will simply ignore a received packet.

l H Stopped [Req-Sent [Opened ‘

Close Term-Req Term-Req
goto Closed|goto Closing |goto Closing
RCA ||Term-Ack

goto Ack-Rcvd|goto Req-Sent
RTR ||Term-Ack |Term-Ack Term-Ack
goto Stopping
RTA Conf-Req
goto Req-Sent
Table 1. A part of the PPP specification

We consider an open-source implementation of the protocol (ppp-2.4.0)
distributed in various Linux systems. In this paper we assume that events and
actions are handled correctly by the implementation. The following represents a
code fragment of the public implementation:

static void fsm_rtermack(f)

fsm *f;
{
switch (f->state) {
/*NOTE: other cases removed for brevity*/
case OPENED:
if (f->callbacks->down) /*Inform upper layers*/
(*f->callbacks—>down) (f);
fsm_sconfreq(f, 0);
break;
}
}

For the purpose of this paper, we edit the public implementation to be lim-
ited to LCP. We want to verify that the public implementation adheres to the
specification as it is given in RFC 1661. The current prototype implementation
of our verification engine does not allow verification of multi-threaded code. We
implemented the following scheme to analyze the implementation of PPP which
is illustrated in Figure 2: To check the public implementation we need a second
peer to engage it. We developed an environment peer based on the RFC in C,
that also initiates requests non-deterministically. Since our goal is to analyze
whether the public implementation adheres fully to the RFC specification, we
also implemented a specification model of the RFC in C.

The environment and the public implementation are engaged in communi-
cation, while the specification “listens in” on messages received by the public
implementation. Although the specification tries to respond to these messages,
its outgoing link is “grounded” and does not affect the environment peer. Our



analysis thus translates to the question whether the state of the public imple-
mentation always matches the state of the RFC-based specification.

’ msg
Implementation
State < *
| msg
Monitor Environment (RFC)
State -
Specification (RFC) msg

Fig. 2. PPP Verification Setup

In [2], the C-program as described here, has been manually translated to the
input language of the model checker MOCHA[1]. In contrast to that approach,
we actually perform model checking based on a slightly modified original source-
code after providing an appropriate environment for the property at hand. The
analysis in [2] shows that the public implementation does not fully adhere to the
specification given by RFC 1661. When the peer receives a packet RTA, it is sup-
posed to send back a configuration request, which is implemented correctly in the
public implementation. However, it is also supposed to update its internal state
to Req-Sent, which is missing in the implementation. We present experimental
results for this case study in more detail in the following section.

5 Experimental Results

We have performed various case studies comparing the various customized de-
cision heuristics using F-SOFT. In the following we describe the results of eight
case studies that we have recently completed. In all experiments we assume a
4-hour time limit for the analysis. For the first five case studies named W1-W5
the analysis finds that the stated property is incorrect and a witness trace ex-
ists, while for the later three case studies named P1-P3 the analysis finds a proof
for the property. We summarize the experimental results in Table 2. W3 is the
aforementioned PPP network protocol case study described in Section 4, while
W1 and W2 are related pieces of software of similar complexity. The designs W4
and W5 are based on the same source code but consider different properties.
The code for W4 and W5 is relatively small and is purely straight-line code with
no loops. The provable case studies P1 and P2 are based on the same software
describing a simple reactive and interleaved mutual exclusion example where we
use different proof strategies to derive the correctness proof. P3 is an unrelated
simple code fragment based on interface specification checking.

Results for customized heuristics used in BMC. For each case study,
Table 2 includes the number of latches in the circuit representation in the second



‘ H latches‘ gates ‘ in H std‘ sc ‘ 1h ‘ tr ‘sc&lh‘sc&tr‘lh&tr‘ all ‘

W1|| 62/1314 | 22k-24k |360(| TO | TO {1052| TO | 1035 | TO | 1048 |1040
W2|| 68/1311 | 20k-28k |30 || TO | TO |302 | TO| 300 TO | 302 |300
W3||209/1114| 14k-19k | 30 [|5706|5537|2240| TO | 2235 | 5619 | 2189 |2240
W4|| 406/709 |5210-6426| 0 || TO | TO |1463| TO | 1485 | TO | 1462 |1460
W5|| 444/747 |5731-7250| 0 || TO | TO |2933|6511| 2935 | 7448 | 2930 |2946
P1|| 18/50 | 459-621 | 6 |[1714|1692|1678|1198| 1688 | 1043 | 1694 |1747
P2|| 18/50 | 459-621 | 6 [|4087|5228(8289|3442| 8856 | 4006 | 6903 |6988
P3| 55/123 | 785-1065 | 15 || 194 | 205 | 255 | 197 | 255 215 255 | 255
Table 2. Experimental Results

column. We include two numbers, where the first number corresponds to the
number of latches when the one-hot encoding heuristic is not used, while the
second number represents the number of latches with one-hot encoding. Please
note that we use the aforementioned range analysis techniques [15] to limit the
number of bits per variable. We also compute the cone of influence of the circuit
model with respect to the property which further reduces the number of latches
to be considered. The next column contains the number of gates considered for
these case studies, where the range depends on the subset of heuristics used for
the various verification runs. The lower bound corresponds to the case that the
standard DIVER is used, while the upper bound represents the number of gates
considered when all heuristics are used. The following column labeled in denotes
the number of primary inputs used for the analysis of the respective property.

The following columns represent the experimental results with respect to
CPU time measured in seconds for our BMC analyses using the various combi-
nations of heuristics. The column labeled std represents the case when we use
standard DIVER without any of the customized heuristics described here. It can
be seen that the standard DIVER implementation is not able to complete the
analysis for four of the eight designs due to a time-out, denoted TO, where the
4-hour time-limit expires. The following columns give the experimental results
for various combination of heuristics used for the analysis. We abbreviate the
heuristics scoring of pc variables by sc, one-hot encoding by 1h and explicit mod-
eling of CFG transitions by tr. For example, the column 1h&tr corresponds to
the combination of one-hot encoding and explicit modeling of CFG transitions,
while all includes additionally the scoring of pc variables.

The data show that using just the one-hot encoding heuristic proves very
efficient for the analysis of the designs W1-W5 when compared to the stan-
dard DIVER heuristics, while the respective results for the designs P1-P3 are
somewhat mixed. Using the scoring pc variables heuristics by itself, on the other
hand, does not seem to benefit our analysis in this set of experiments. In con-
trast to the one-hot encoding heuristics, it is interesting to note that the explicit
modeling of CFG transitions seems to be helpful in the designs P1-P3, while
ineffective for designs W1-W5 when used individually.



When considering the possible combinations of heuristics, it is noteworthy
that for designs W1-W5 the advantage of using the one-hot encoding is sup-
ported by the addition of other heuristics. A similar statement can however not
be made for the provable designs P1-P3 where the results are currently incon-
clusive with respect to the best combination of heuristics. For P1 we find that
using scoring of pc variables with explicit modeling of CFG transitions improves
the performance somewhat over the case that only the explicit modeling of tran-
sitions is used. In summary, we find that in most cases a combination of one-hot
encoding of basic blocks with explicit modeling of incoming transitions is a good
default choice when the BMC searches for both a proof and a witness. During
standard witness searches, using one-hot encoding only seems effective.

Results using BDDs. In addition to the results presented in Table 2, we
have also used our BDD-based model checker on the generated models. For de-
signs W1, W2, W4 and W5 our BDD-based model checker was able to find a
witness trace, albeit being slower than BMC and taking up to four times the
amount of CPU time. In the case of W3, the BDDs were not able to complete
the analysis in the given time-bound. For designs P1-P3, BDDs were able to
complete the analysis in all cases rather quickly due to the small model sizes.
For these examples, the BDD-based model checker beat any of the BMC-based
analyses given in Table 2. However, our experience in hardware verification sug-
gests that SAT-based proof techniques become increasingly important compared
to BDDs when considering larger provable models. Our current results provide
preliminary evidence for the effectiveness of our customized SAT heuristics. In
the future we hope to try our technique on larger provable case studies.

Basic blocks vs. individual statements. We have also performed exper-
iments to compare our software modeling framework using basic blocks to an
analysis based on individual statements, as used in CBMC. Even for a small ex-
ample (W4), we found that a BMC analysis using the one-hot encoding heuristic
took about 25% more time for the statement analysis than our implementation
that uses basic blocks. The length of the witness trace increased from 151 to 187,
which corresponds to an increase of 24%. Therefore, the final SAT problem size
generated by the BMC unrolling for the case of individual statements increased
by about 27%, since each individual unrolling is about 11% larger than that for
basic blocks. We believe that our approach using basic blocks will be even more
effective for larger case studies.

Detailed results for PPP. Figures 3 and 4 show a more detailed compar-
ison of the individual heuristics and their performance for design W3. Figure 3
shows the cumulative time in seconds taken for all depths up to a given num-
ber, while Figure 4 shows the respective time each verification step needed for
a particular depth. The graphs labeled standard represent the standard decision
heuristics implemented in the DIVER tool. The graph shows the advantage of
using a SAT-based BMC for the analysis, since the standard includes various
peaks in the computation time, in particular for depths 20-35, but better perfor-
mance afterwards. That indicates that the SAT-solver is able to learn important
invariants of the design early on that enable a deeper analysis later.
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The figures also include three more graphs each, describing the respective
performance of BMC using the heuristics scoring of pc variables (score), one-hot
encoding (one-hot) and encoding of CFG transitions (trans) individually. It is
noteworthy that the inherent learning in the SAT-solver is preserved, which is
visible by the various peaks in the respective graphs. Figure 3, in particular,
shows the advantage of the one-hot encoding heuristic for the design W3 which
consistently outperforms the other heuristics.
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Experience with CBMC. We also used the CBMC tool to run the analysis
for the same examples. Our experience with CBMC was somewhat mixed. With
respect to applicability of the same source code, the needed transformations



were small. They involved changing the name of the function used to model
nondeterminism, removal of certain header file information that were included
during our code preprocessing and simplifications, which were not supported
by CBMC, moving certain variable declarations outwards to avoid redeclaration
during multiple unwindings, changing some goto statements with forward jumps,
as well as explicitly changing all fall-through statements in switch statements to
recopy the code as necessary since CBMC does not allow fall-through.

During our initial experiments we found that CBMC was able to analyze
various small code fragments rather quickly, especially if the code did not include
any loops. For example, for the small example of straight-line code used in designs
W4 and W5, CBMC was faster than F-SOFT. This is due to the fact that CBMC
generates a single SAT formula for all execution paths which is feasible for such
small examples, and can then be analyzed efficiently for small examples by the
back-end SAT-solver. While our tool can perform such an analysis as well, we
only report results for incremental BMC runs using F-SOFT here. For the PPP
example (W3) described in section 4 however, CBMC was not able to unwind the
software even once, and instead ran out of memory. One unwinding would also
not have been enough to produce the counterexample. For the example P1 and
P2, we were able to unwind the small software piece enough times, however the
zChaff [13] SAT-solver included in CBMC was not able to complete the analysis
in the provided 4 hour time-limit given only one large SAT formula. For the P3
example we were not able to parse it successfully using CBMC since P3 is a case
study written for Microsoft Windows.

6 Conclusions and Future Work

This paper describes the customized SAT-based heuristics we have used for effi-
cient analysis of models generated by our software verification methodology. This
methodology is founded upon block software modeling, BMC-unrolling and sym-
bolic predicate abstraction. It is currently applicable for a large subset of the
C programming language allowing bounded recursion. We consider reachability
properties, in particular whether certain assertions or basic blocks are reachable
in the source code. We translate a program into a Boolean representation to be
analyzed by a back-end SAT-based BMC, by interpreting an unrolling during
BMC as one step in a block-wise execution of the program. We have included new
SAT-based heuristics in our verification engine DIVER, which are able to take
advantage of the fact that we are considering a design automatically abstracted
and generated from software. Additionally, we presented detailed experimental
results using our customized heuristics for eight case studies.

There remain many research directions to follow in the future. We are cur-
rently implementing a counterexample-guided predicate abstraction method us-
ing symbolic techniques. In addition, we are studying the applicability of the
tool for verification of concurrent C programs. For this scenario, we will use the
feature that we are able to split basic blocks into smaller basic blocks to ensure
proper concurrent interleaving semantics based on the statements and the scope



of variables in the considered blocks. Our initial results for various case studies
are showing promising directions for future research.
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