
What Causes My Test Alarm?

Automatic Cause Analysis for Test Alarms in System and Integration Testing

He Jiang1,2,4 Xiaochen Li1 Zijiang Yang3 Jifeng Xuan4

1School of Software, Dalian University of Technology, Dalian, China
2Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, China

3Western Michigan University, Kalamazoo, MI, USA
4State Key Lab of Software Engineering, Wuhan University, Wuhan, China

jianghe@dlut.edu.cn li1989@mail.dlut.edu.cn zijiang.yang@wmich.edu jxuan@whu.edu.cn

Abstract—Driven by new software development processes and

testing in clouds, system and integration testing nowadays tends

to produce enormous number of alarms. Such test alarms lay an

almost unbearable burden on software testing engineers who

have to manually analyze the causes of these alarms. The causes

are critical because they decide which stakeholders are

responsible to fix the bugs detected during the testing. In this

paper, we present a novel approach that aims to relieve the

burden by automating the procedure. Our approach, called

Cause Analysis Model, exploits information retrieval techniques

to efficiently infer test alarm causes based on test logs. We have

developed a prototype and evaluated our tool on two industrial

datasets with more than 14,000 test alarms. Experiments on the

two datasets show that our tool achieves an accuracy of 58.3%

and 65.8%, respectively, which outperforms the baseline

algorithms by up to 13.3%. Our algorithm is also extremely

efficient, spending about 0.1s per cause analysis. Due to the

attractive experimental results, our industrial partner, a leading

information and communication technology company in the

world, has deployed the tool and it achieves an average accuracy

of 72% after two months of running, nearly three times more

accurate than a previous strategy based on regular expressions.

Keywords- software testing; system and integration testing;

test alarm analysis; multiclass classification

I. INTRODUCTION

System and Integration Testing (SIT) is necessary
immediately after the integration of various software
components. With increasing number of companies
advocating to conduct continuous integration [32] by
following modern software development practices such as
DevOps [31], the frequency of SIT has significantly increased.
Fortunately, emerging techniques such as testing in the cloud
have dramatically improved the efficiency of such testing. For
example, a cloud-based system is able to run 1,000 test scripts
in less than 25 minutes. In the past the same amount of testing
required 77 hours [33]. Since running test scripts has an
average failure rate of approximately 5% [14], the frequent
automated SIT produces tremendous number of test alarms
that have to be analyzed by testers.

There are various causes that may lead to test alarms, such
as product code defect, test script defect and device anomaly.
Each type of cause has its unique way to handle, including
submitting bug reports to developers, correcting the test
scripts and submitting exception messages to instrument

suppliers. Therefore, the analysis of test alarms is critical as it
determines who is responsible to fix the potential bugs.

In order to figure out the causes, testers have to carefully
read test logs [20], each of which may consist of hundreds of
test steps and thousands of lines of text [4]. Considering the
fact that thousands of test alarms may be produced per day for
a production line with several similar products, as we have
observed during collaboration with our industrial partner
Huawei-Tech Inc., a leading information and communication
technology company in the world, test alarm cause analysis
lays an almost unbearable burden on testers and has become a
bottleneck in SIT. Realizing the urgent need to alleviate the
burden of cause analysis, our collaborators manually build
regular expressions over the test logs to analyze test alarm
causes. The accuracy of their approach is about 20%-30% on
different projects.

In this paper, we present a novel approach named Cause
Analysis Model (CAM) that infers test alarm causes by
analyzing test logs. The test logs, generated by test scripts,
record important runtime information during testing. The
basic idea of CAM is to detect the test logs of historical test
alarms that may share the same causes with the new test logs.
CAM first utilizes Natural Language Processing (NLP)
techniques to partition test logs into terms. Next CAM selects
partial historical test logs for further processing with function
point filtering. Thirdly, CAM constructs attribute vectors
based on test log terms. The cause of a new alarm is predicted
according to the ranked similarity between a new test log and
each historical one. Finally, CAM reports the causes along
with the difference between the new and historical test logs.
CAM is efficient as it is an information retrieval based
algorithm without the overhead of training.

In the experiments, we collect more than 14,000 test logs,
forming two datasets, from two industrial projects at Huawei-
Tech Inc. CAM achieves accuracy rates of 58.3% and 65.8%,
respectively, outperforming baseline algorithms by up to
13.3%. For more than one-third of the testing days, the
accuracy of CAM is over 80%. In addition, CAM is very
efficient, taking on average about 0.1s per test alarm analysis
with 4GB memory. After deploying CAM at Huawei-Tech
Inc., it achieves an average accuracy of 72% after two months
of running, which is nearly three times more accurate than
their previous strategy based on regular expressions.

In summary, this study makes the following contributions:
(1) We propose a new approach to address the challenge

of automatically analyzing the test alarm causes in SIT.

mailto:jianghe@dlut.edu.cn
mailto:li1989@mail.dlut.edu.cn
mailto:zijiang.yang@wmich.edu
mailto:jxuan@whu.edu.cn

(2) We construct two industrial datasets with more than
14,000 test logs. The failure causes of these test alarms are
manually labeled and verified by testers.

(3) We conduct a series of experiments to investigate the
performance of our approach. Experimental results show that
CAM is both effective and efficient.

(4) We deploy and evaluate CAM at Huawei-Tech Inc. in
a real development scenario.

This paper is structured as follows. In Section 2, we
introduce the background of this study. We describe the
overall framework of CAM in Section 3. The experimental
setup and research questions are introduced in Section 4. We
experiment to answer the research questions in Section 5.
Section 6 and 7 show the threats to validity and related work,
respectively. Finally, Section 8 concludes this paper.

II. BACKGROUND

In this section, we present relevant background regarding
system and integration testing and the cause analysis problem.

A. System and Integration Testing (SIT)

SIT is performed immediately after various components
are integrated to form an entire system. The system under test
is more complex than those individual components considered
in the unit testing. Therefore, SIT uses a new set of test drivers
for revalidation with black-box testing strategies [36].

The function points are a set of functional requirements for
a software project [46]. In SIT, testers play the role of users to
work through a variety of scenarios for covering the required
function points [45]. The function points of test scripts are
predefined when testers develop test scripts [45]. For example,
if a test script is designed to verify the function of “configure
network proxy”, testers may add "NETCONF_PROXY
_FUNC" as the function point of the test script.

Test logs record the runtime information in software
testing. In SIT, testers develop test scripts (also called test
codes [34]) to check for system functions, performance, etc.
Each test script contains a sequence of test steps with
numerous logging statements. Test logs are generated by these
logging statements when running test scripts.

A test alarm is an alarm to warn the failure of a test script.
Each test alarm is associated with a failure cause. Testers are
responsible to analyze the causes of test alarms.

B. Cause Analysis Process

Cause analysis for test alarms is critical due to its effect on
both testers and developers [4]. The overall analysis procedure
is depicted in Fig. 1. In a software company, SIT is conducted
over the code changes in each branch to reduce software bugs
[4]. Before developers merge code changes into a trunk branch,
testers select test scripts of some given function points to
verify the correctness of these code changes (Fig. 1(1)).
During the testing, test scripts automatically log important
runtime information to form test logs. Code changes are
merged into a trunk branch only if they pass all the test scripts.
If a test script fails, testers are required to analyze the cause to
the failure (Fig. 1(2)).

Testers analyze failure causes by examining test logs (Fig.
1(2)). After detecting failure causes, testers submit the test
logs with the corresponding causes to the software repository

for unified management (Fig. 1(3)). After that, different
stakeholders, e.g., testers, developers, instrument suppliers,
etc., have to resolve the failures depending on the types of the
causes (Fig. 1(4)). If a cause indicates product code defect,
testers need to submit a bug report to developers and request
them to fix the bug [51]. If it is a defect in test scripts, testers
need to correct test scripts. For other causes, testers may either
adjust the configuration files, or request instrument suppliers
to diagnose the infrastructures, etc. The above process may
repeat several times before code changes are merged into a
trunk branch (Fig. 1(5)).

C. Cause Analysis Problem

As shown in Fig. 2, each test alarm (A) is associated with
a test log (L) and its failure cause (C), which forms a triple
〈𝐴, 𝐿, 𝐶〉. When a set of test scripts completes running, several
〈𝐴, 𝐿, ? 〉𝑆 arise for analysis. Testers analyze the causes of test
alarms with their test logs, and then continuously submit the
〈𝐴, 𝐿, 𝐶〉𝑆 to the software repository along with the testing days.

We represent 〈𝐴, 𝐿, 𝐶〉𝑆 for analysis as 〈𝐴, 𝐿, ? 〉𝑆𝑛𝑒𝑤
, and those

in the software repository as 〈𝐴, 𝐿, 𝐶〉𝑆ℎ𝑖𝑠𝑡𝑜𝑟𝑦
. Following this

representation, the cause analysis problem is to predict C in

〈𝐴, 𝐿, ? 〉𝑆𝑛𝑒𝑤
 with the assistance of 〈𝐴, 𝐿, 𝐶〉𝑆ℎ𝑖𝑠𝑡𝑜𝑟𝑦

, which can be

viewed as a multiclass classification problem due to the

various failure causes (C) for test alarms. The multiclass

classification problem aims to classify instances into one out

of more than two classes. In this study, the new test logs of

test alarms are instances for classifying, and their causes are

the multiple classes.
Despite previous studies [4] [34] attempt to classify test

alarms into product code defect and non-product code defect,
these techniques are not suitable for this problem, since they
either require expensive costs to collect complex information in

Test alarm (A) Test log (L) Failure cause (C)

〈𝐴, 𝐿, 𝐶〉𝑆

〈𝐴, 𝐿, 𝐶〉𝑆ℎ𝑖𝑠𝑡𝑜𝑟𝑦

〈𝐴, 𝐿, 𝐶〉𝑆ℎ𝑖𝑠𝑡𝑜𝑟𝑦

〈𝐴, 𝐿, 𝐶〉𝑆ℎ𝑖𝑠𝑡𝑜𝑟𝑦

〈𝐴, 𝐿, ? 〉𝑆𝑛𝑒𝑤

Analyze

C2

〈𝐴, 𝐿, ? 〉𝑆𝑛𝑒𝑤

C1

C𝑁

predicted cause

Figure 2. Cause analysis problem.

Change Bug fix Changes Change

Branches

Build Build Build Build

Product code
defect

Device
anomaly

Re-testing 5

Select test scripts 1

Analyze test alarms
by test logs

2

Tester

Find and
submit causes

3

Handle failures 4

Trunk branch

Figure 1. Cause analysis process.

Tester/
Developer/
Instrument
supplier/…

Software

repository

Software testing & Cloud computing

large integrated system [34] or need additional efforts to decide
how to deal with each non-product code defect [4].

D. Test Logs and Failure Causes

We exhibit some examples of test logs and failure causes
from the industrial projects at Huawei-Tech Inc. to better
understand the cause analysis problem. The projects are
launched to test the codes of two communication systems.

1) Test Logs

Logging is a conventional programming practice to record
important runtime information [1]. In some open-source
software, there is one line of logging code in less than 50 lines
of code on average [2]. When testers develop test scripts, they
also insert a mass of logging statements [3]. During the runs
of test scripts, these logging statements record some critical
information to test logs.

Fig. 3 exhibits a snippet of test logs. Test logs in these
projects are bilingual documents with English and Chinese
terms. In practice, non-English speaking testers prefer adding
some native terms, e.g., Chinese terms, to better understand
test logs. Apart from the languages, test logs in these projects
contain all the information that a test log needs [3].

The contents of the industrial test logs can be summarized
in four types, including test steps, echo messages, exception
messages, and miscellaneous messages.

A test step (segment 1) is a command or code snippet to
display or verify some specific steps of the software under test.
A test script contains a sequence of test steps, simulating the
operations of a user to cover the required function points.

An echo message (segments 2 and 3) is a feedback of the
test step, which may contain output actions, state of object,
environment variables, etc.

Exception messages (segment 5) record the critical
information when a test script fails, which often contain the
functions or files being called during the test alarm.

All the segments except the test steps, echo messages, and
exception messages, are classified as miscellaneous message
(segment 4), which may include prompt messages and
messages from related infrastructures.

In conclusion, test logs record information about testing
activities, including the state of test scripts, the software under
test, and related infrastructures, etc. However, it is a non-
trivial work to fully distinguish all the information, since the
distribution of the information varies over distinct projects.
Testers peruse the entire test logs to analyze testing activities.

2) Failure Causes

Table 1 exhibits the explanations of the test alarm causes
in the two projects. We also present the solutions to these test
alarms, namely how testers deal with each test alarm.

 There are seven types of causes in the projects. We find

that handling test alarms in SIT is a complex process. On the
one hand, different causes lead to distinct solutions.
Debugging or locating bugs in test scripts (C4) is not enough
for testers to handle test alarms. Testers may conduct obsolete
test (C1), wrongly configure some files (C3), or face several
environment issues (C6), etc. On the other hand, testers also
need to cooperate with distinct stakeholders to handle test
alarms. Testers send all the product code defects (C2) to
developers. Some device anomalies (C5) also require the
instrument suppliers to deal with. Site reliability engineers are
responsible for fixing third-party software problems (C7).

Hence, automatically deciding the type of causes can help
testers focus on some specific resources. For example, if it is
already known that a test alarm is caused by the test script
defect, testers can further run some bug location and fixing
tools for deeper analysis.

In addition, many types of causes in Table 1 also exist in
open-source software. After investigating the causes for false
test alarms (all test alarms caused by non-product code defects)
of Apache software [35], we find that causes C1, C3, C4, and
C6 are also detected in [35].

III. CAUSE ANALYSIS MODEL

In this section, we present our Cause Analysis Model
(CAM) in detail. The basic idea of CAM is to search the test
logs of historical test alarms that may have the same failure
cause with the new test log. As shown in Fig. 4, CAM first
pre-processes test logs with bilingual NLP techniques. Then,
historical test logs are selected according to the function
points. Third, CAM predicts the cause of a new test alarm
based on similarity between new and historical test logs.
Finally, both the cause and the difference between new and
historical test logs are presented to facilitate the examination
of prediction results.

CAM is efficient as it is an information retrieval based
algorithm without the overhead of training models. Besides,

Table 1. Causes for test alarms and solutions

ID
Type of
cause Explanation Solution

C1 Obsolete test
Test scripts or product codes are obsolete
when continuous integration, e.g., testers

conduct testing with out-of-date test scripts.

Testers update test scripts
or product codes.

C2
Product code

defect

Defects in product code, e.g., the product
code does not meet the requirement of a

function point.

Testers submit bug
reports to developers

C3
Configuration

error

Configuration files are incorrectly edited,
e.g., testers set conflict parameters in

configuration files.

Testers correct
configuration files

C4
Test script

defect

Faults in assertion expression, arguments,
statement of test scripts, e.g., quotation

marks mismatch in test script.
Testers debug test scripts

C5
Device

anomaly

Defects exist in the devices for running the
test bed, e.g., the interface board of running

the communication system breaks down.

Testers submit bug
reports to instrument
suppliers

C6
Environment

issue

Environment issues include the problems of
the network, CPU, memory, etc., e.g., the

space of hard disk is not enough for
executing test scripts.

Testers diagnose the
environment

C7
Third-party

Software
problem

Defects or incompatible issues exist in the
third- party software, e.g., there are

problems for the automatic testing system.

Testers ask site reliability
engineers to diagnose the
third-party software

Test step 1

3

Echo message

2

Miscellaneous
message

4

Exception
message

5

Figure 3. A snippet of test logs.

testers could better understand and verify the prediction
results after examining the information presented by CAM.

We exhibit a running example to predict the cause of the
test log snippet in Fig. 4(1). The test log is generated by a test
script for verifying the function point "AUTO_UPDATE
_SCHEMA” (AUS for short). The test log shows that "time
out while waiting for more data". In addition, testers use some
Chinese messages to warn that "exception happens
continuously for more than 20 times". We translate and
present the Chinese part in bold.

A. Test Log Preprocessing

In this study, test logs are bilingual documents, which
makes test log preprocessing more complex than that in a
single language. CAM preprocesses these test logs with a
series of bilingual NLP techniques. For test logs written in
merely English, only English NLP is needed.

Language Detection. We first distinguish the texts in a
test log by the language type. Since languages are located at
independent areas in the UTF-8 encoding table, we apply a
regular expression “[\\u4e00-\\u9fa5]+” to detect the areas.
Terms matching the regular expression are classified as
Chinese terms. The remaining ones are English terms.
Therefore, a test log is separated into two independent parts,
namely the English part and the Chinese part.

English NLP. We apply three widely used English NLP
steps to preprocess the English part, including tokenization,
stop words removal, and stemming. First, the English part is
tokenized with a regular expression “[\w-]+(\.[\w-]+)*” [38].
String meets the regular expression is tokenized as a term.
Second, we consider the single letter terms, punctuation marks,
and numbers as stop words and remove them, e.g., ‘E’ and
“2015-06-28” in Fig. 4(1). Third, porter-stemming algorithm
[39] is employed to stem each term.

Chinese NLP. Word segmentation is a major difference
between Chinese and English NLP steps, since Chinese
documents are written without any spaces between terms [7].
We utilize IKAnalyzer, an open source NLP tool [41], for
Chinese word segmentation. In Fig. 4(2), IKAnalyzer detects
several terms in the Chinese part, including, "exception /
happens / continuously / for more than / times".

Term Integration. After transforming the test log into
terms, we merge English and Chinese parts together according
to their original order for unified operations (in Fig. 4(2)).

B. Historical Test Log Selection

Historical test log selection aims to select a subset of
historical test logs for efficient cause prediction, as it is time
consuming and noise overwhelming to search through all the
historical test logs. For example, there are seven historical test
logs in Fig. 4(3A). After selection, only test logs “his1” to
“his5” are used for cause analysis.

CAM selects historical test logs by examining the function
points of test scripts, since we find that test scripts with the
same function point usually target the same functionalities to
check. They are more likely to fail with the same cause as we
investigate in section V(D). For a project under test, test
specifications [47] can be an effective material to extract the
function points of test scripts.

In this study, we extract the function point of each test
script directly from the automatic testing system of our
industry partner. We associate the function points with test
logs by matching the test script ID. For example, in Fig. 4(3A),
the function points of test logs “his1” to “his5” are “AUS”,
while that of “his6” and “his7” are “NPF” ("NETCONF_
PROXY_FUNC"). When analyzing the test log of a new test
alarm, CAM attempts to select historical test logs for the same
function point as the new one. If no such historical test log is
available, CAM utilizes all the historical test logs to conduct
the prediction.

C. Cause Prediction

After historical test log selection, CAM predicts the cause
of a new test alarm by first ranking the selected historical test
logs according to their similarities with the new test log, and
then analyzing the ranking list to achieve the possible cause.
The basic hypothesis is that the possibility of two test logs
implying the same cause increases along with the growth of
the similarity between two test logs.

1) Log similarity calculation
CAM calculates the similarity between test logs by cosine

similarity measurement [7]. The inputs of this measurement

Figure 4. Framework of CAM for test alarm analysis with a running example

Cause Analysis Model

New test log snippet

with function point

“AUTO UPDATE

SCHEMA”

E [exception happens

continuously for

more than 20 times]

[2015-06-28

02:10:52.964] time out

while waiting for more

data

1

Historical test logs

Logs Func.

point

Simlog Cause

his3 AUS 0.586 C2

his4 AUS 0.472 C3

his1 AUS 0.322 C3

his2 AUS 0.320 C3

his5 AUS 0.134 C2

his6 NPF * C1

his7 NPF * C3

3A

historical

test log

real

cause

top-1

Simlog

top-1

cause

H1 C2 0.800 C2

H2 C2 0.768 C2

H3 C2 0.699 C2

H4 C1 0.634 C2

H5 C1 0.601 C2

H6 C3 0.432 C2

 3B

Test Log
Preprocessing

exception /

happens /

continuously /

for more than /

times / time / out

/ while / wait /

for / more / data

 2

t = 0.7, k = 5

his3’ Simlog = 0.586

< threshold = 0.601

C2’s summed Simlog =0.720

C3’s summed Simlog =1.114

The type of cause is C3.

3C

new test log

cd/opt/VNFP/0

-bash: cd

imageVMNPSO-001

assertion fails

historical test log

rm /opt/VNFP/0

imageVMNPSO-001

assertion fails

 4

Ranking list analysis

<A, L, C>shistory

Failure causes

Historical test
logs selection

Test log preprocess

*Language Detection

*English NLP

*Chinese NLP

*Term Integration

<A, L, ?>snew

Integrated
test logs

Selected
historical
test logs Ranking

list

Prediction
result

presentation D

Cause Prediction

*Log similarity

calculation

*Ranking list analysis

C

B

A

are the attribute vectors of test logs. We construct attribute
vectors with the 2-shingling strategy, in which each 2-
shingling is an attribute. More specifically, if we view a
document as a sequence of terms, a contiguous subsequence
in the document is referred to as a shingle. The 2-shinglings
are defined as the set of all unique shingles of size 2 in this
document [6]. The 2-shingling strategy has been successfully
applied in Chinese grammar detection [8], information
retrieval [7], etc. For example, “exception happens” and
“happens continuously” are two 2-shinglings of the snippet in
Fig. 4(2). CAM calculates the weight of attributes with TF-
IDF (Term Frequency-Inverse Document Frequency) [7]. For
an attribute A in the test log T, its TF-IDF value is defined as:

TF-IDF𝐴,𝑇 = 𝑓𝐴,𝑇 ∗ log
𝑁

𝑛𝐴
 (1)

, where 𝑓𝐴,𝑇 denotes the number of times that A occurs in T, 𝑛𝐴
denotes the number of test logs containing A, and N denotes
the number of test logs in a project.

With the attribute vectors of two test logs, the cosine
similarity [7] is measured as:

𝑆𝑖𝑚𝑙𝑜𝑔(�⃗� 1, �⃗� 2) =
V⃗⃗ 1∙V⃗⃗ 2

|V⃗⃗ 1||V⃗⃗ 2|
 (2)

, where V⃗⃗ 1 ∙ V⃗⃗ 2 is the inner product of two vectors and |V⃗⃗ 1||V⃗⃗ 2|
is the product of 2-norm for these vectors.

CAM ranks the selected historical test logs in descending
order by Simlog. In Fig. 4(3A) the test log “his3” has the largest
Simlog = 0.586 and its cause is “C2”.

2) Ranking list analysis
It is reasonable to predict the test alarm cause with the top-

1 cause1 in the ranking list. However, we find that the top-1
Simlog may be very low in some ranking lists, which can be
interpreted as that the top-1 test log has a small possibility to
share the same cause with the new one. Considering such a
situation, CAM analyzes the test alarms as follows. For a new
test log, if its top-1 Simlog is larger than a cause-specific
threshold, CAM adds the new test log to a high-similarity set.
Otherwise, CAM adds it to a low-similarity set. For a test log
in the high-similarity set, CAM predicts the new log’s cause
as the top-1 cause in the ranking list. For a test log in the low-
similarity set, a KNN [50] strategy is conducted.

Algorithm 1: Cause-specific threshold calculation

Input: the set D of all historical test logs with the top-1 cause i;

the target value t

Output: threshold 𝜃𝑖

1 let threshold 𝜃𝑖 = 1.0
2 for x= 0; x<=1; x=x+0.001 do
3 achieve the test logs with the top-1 𝑆𝑖𝑚𝑙𝑜𝑔 > 𝑥 from D

4 if the portion of the above test logs with the real cause i > t.
5 threshold 𝜃𝑖 = 𝑥; break;
6 else
7 continue;
8 end
9 return threshold 𝜃𝑖

Cause-specific threshold. We employ a cause-specific

threshold 𝜃𝑖 for cause i to differentiate the high-similarity set
and the low-similarity set. Since we could achieve a ranking
list for a historical test log by calculating the Simlog for every

1 The top-1 cause refers to the top-1 test log’s cause, while the top-1 Simlog

refers to the top-1 test log’s Simlog in a ranking list.

test log prior to this historical test log, each historical test log
is associated with a top-1 cause and top-1 Simlog. Given a new
test log with top-1 cause i, the value of 𝜃𝑖 is defined as the
minimum value between 0 and 1, such that over t*100% of the
causes of all the historical test logs with the top-1 cause i and
the top-1 Simlog >𝜃𝑖 are correctly predicted as cause i, where t
is a parameter named target value (the impact of t is discussed
in Section V). In algorithm 1, we elaborate the details on how
to determine the threshold 𝜃𝑖 for cause i.

Taking Fig. 4(3B) as an example, there are six historical
test logs with the top-1 cause C2 in the set D. We increase x
from 0 to 1. When x=0.500, only H1-H5 are considered. The
top-1 causes of H1-H3 equal the real cause, therefore the
portion is 0.6. When x=0.601, only H1-H4 are considered,
among which the portion reaches 0.75, larger than the target
value 0.7. At last, the threshold of cause C2 is 0.601.

KNN strategy. For a test log in the low-similarity set, we
sum up the Simlog values of the top-k test logs by their causes.
Then, the cause of the new test log is assigned to the cause
with the largest summed Simlog.

As the Simlog of “his3” is smaller than C2’s threshold 0.601,
CAM obtains top-k test logs in the ranking list (Fig. 4(3C)).
After being summed, cause C3 achieves the largest summed
Simlog =1.114, which are summed by the Simlog of “his4”,
“his1”, and “his2”. Hence, CAM predicts the cause of the new
test log as C3.

D. Prediction result presentation

CAM helps testers understand and verify the prediction
results by presenting the causes as well as the differences
between test logs. For test logs in the high-similarity set, CAM
shows the differences between the new and the top-1 test log
in the ranking list. For test logs in the low-similarity set, CAM
shows the differences between the new test log and the first
historical test log with the predicted cause, e.g., “his4” in Fig.
4(3A). Since historical test logs have been analyzed by testers,
testers may easily know whether two test logs implying the
same failure causes after perusing the differences.

To show the differences, CAM first removes all the
numbers in test logs, since such information usually indicates
time, IP address, and numeric counter, etc., which may be
different in all the test logs. Then, CAM compares the
differences between test logs with “JavaDiffUtils”, an open
source tool to compare differences between texts [40]. The
tool shows all the “Change”, “Delete”, and “Insert” operations
between texts. At last, we highlight the different lines of the
two test logs. For the “Change” operations, the lines in both
two test logs are highlighted. For the “Delete” or “Insert”
operations, only the lines with more information are
highlighted.

For example, in Fig. 4(4), only the first two lines are
different. Instead of comprehending the entire contents of the
test log, testers can focus on the first two lines to verify the
prediction result with the assistance of the historical test log.

IV. EXPERIMENTAL SETUP

In this section, we detail the experiment related issues for
evaluating CAM. The datasets and evaluation metrics are first

presented, followed by a discussion of the baseline algorithms
and the Research Questions (RQs).

A. Datasets

We collect test logs from two industrial testing projects at
Huawei-Tech Inc. to build two datasets, denoted as DS1 and
DS2. In the datasets, each test log, corresponding to a test
alarm, is associated with a failure cause manually labeled by
the testers. Table 2 exhibits the statistical information of the
datasets. Rows 1 to 7 show that there are more than 14,000
test logs, including 7663 for DS1 and 6977 for DS2. These
test logs are generated during 40 and 22 valid testing days, due
to vacations and other testing activities. On average, testers
are requested to analyze 192 and 317 test alarms per day in the
two projects. As shown in rows 6 and 7, each test log contains
more than 900 lines of texts, including about 247 and 344 test
steps. The total size of the datasets exceeds 10GB. Hence, test
logs are a relatively large software artifact, which may
consume considerable time for analysis [52]. Rows 8 to 14
present the number of test logs with respect to each type of
cause. There are 7 and 6 types of causes detected in DS1 and
DS2, respectively. Obsolete test (C1) never occurs in DS2
during the time frame.

Based on the statistic information, we have the following
observations.

(1) Besides Product code defect (C2) and Test script defect
(C4), other causes still cover 30% of test alarms. As shown in
row 15, nearly four types of causes occur per day on average.
These factors make testers have to decide the exact type of
cause for each test alarm before fixing these alarms.

(2) Another finding is that, no test alarm is caused by more
than one type of cause in the datasets. One possible reason is
that the causes defined in this study are for classifying the
candidate part with defects, e.g., devices, environment, etc. A
single buggy part can directly lead the test script to fail. In
addition, after studying the daily work of testers in the projects,
we find that if testers confirm the part causing the test alarm,
they seldom diagnose the remaining parts, unless the test
script fails again. Thus, automatically identifying the most
possible cause for test alarms is beneficial for testers.

B. Evaluation Method

We utilize the incremental framework [42] to run
algorithms in all the experiments, which can better simulate
the daily work of a tester. More specifically, we partition the
datasets by the testing day. When analyzing the test logs in

dayT (T ≥ 1), we regard test logs in day0 to dayT-1 as historical
test logs. Since the framework conducts prediction from the
second day, there are 39 and 21 testing days with 7356 and
6557 test logs in the datasets to be predicted respectively.

 Under the incremental framework, we evaluate the overall
performance of algorithms with Accuracy and AUC (Area
Under roc Curve).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑢𝑚𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑑
 (4)

Accuracy can be interpreted as the portion of correctly
predicted test logs among all the predicted ones.

𝐴𝑈𝐶𝑖 = ∫ 𝑇𝑃𝑅𝑖(𝑇)𝐹𝑃𝑅𝑖
′(𝑇)𝑑𝑇

−∞

∞

,

𝑤ℎ𝑒𝑟𝑒 𝑇𝑃𝑅𝑖 =
#𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

#𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖
,

𝐹𝑃𝑅𝑖 =
#𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑖 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

#𝑡𝑜𝑡𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑖
 (5)

AUC is the area of the two-dimensional graph in which
TPRi is plotted on the Y axis and FPRi is plotted on the X axis
over distinct threshold T of possibility values [28]. A
possibility value of CAM’s prediction is the Simlog of the first
historical test log with the predicted cause in a ranking list.
We calculate AUC in a one against all class strategy. When
calculating AUC of cause i, all the test alarms predicted as
causes i are considered as positivesi, while the other types of
causes are considered as negativesi. AUC can avoid inflated
performance evaluation on imbalanced data. For example, a
classifier that always predicts “Product code defect (C2)”
achieves 58.19% accuracy on DS1, but results in an AUC of
50%, which is the same AUC as a random guess classifier.

In addition, we also evaluate the resource consumption of
these algorithms. Resource consumption is critical in industry
projects. On the one hand, computation resources, e.g. CPU,
memory, are limited in real scenarios. On the other hand,
testers may conduct software testing several rounds per day.
Low resource consumption makes algorithms timely update
models with the information in the latest round. Thus, we
evaluate the time and minimal memory for completing the
prediction of each algorithm.

C. Baseline Algorithms

To the best of our knowledge, no studies directly utilize
test logs to predict the causes of test alarms in SIT. We
implement three baseline algorithms to study the
characteristics of CAM.

Lazy Associative Classifier (LAC). A similar work by
Herzig et al. detects false test alarms with association rules
mined from test steps [4]. Since the mining algorithm in [4] is
not suitable for multiclass classification, we employ lazy
associative classifier to predict the causes, which uses
association rules to execute multiclass prediction [43].
Following the strategies in [4], we extract test steps from test
logs. In our datasets, test steps can be identified since they are
marked with timestamps. We build attribute vectors for LAC

Table 2. Statistic of test logs and causes in the datasets

 Dataset

Info
DS1 DS2

1 # Test logs 7663 6977

2 Size 4.72GB 6.06GB

3 Time Frame June 1st – July 30th, 2015
Oct. 26th – Nov. 16th,

2015

4 # Testing day 40 day 22 day

5 # Test logs per day 192 317

6 # Avg. lines 942 lines 1375 lines

7 # Avg. test steps 247 test steps 344 test steps

8 # Obsolete test (C1) 1185 15.46% * *

9 # Product code defect (C2) 4459 58.19% 1963 28.14%

10 # Configuration error (C3) 761 9.93% 345 4.94%

11 # Test script defect (C4) 892 11.64% 3259 46.71%

12 # Device anomaly (C5) 335 4.37% 298 4.27%

13 # Environment issue (C6) 19 0.28% 168 2.41%

14 # Software problem (C7) 12 0.17% 944 13.53%

15 # Avg. type of causes per day 3.85 per day 3.86 per day

based on the test steps. Each entry in the vector represents
whether a test step exists in a test log. The parameters of
association rules, namely minimum confidence and support
values, are set to 0.8 and 0.03 respectively [4]. We implement
LAC with an open source tool shared by Federal University
of Minas Gerais [44].

Best First Tree (BFT). Hao et al. [34] classify test alarms
into product code defect and obsolete test script at the unit
testing stage with BFT classifier. Since the attributes related
to test complexity and program execution measurements are
expensive to collect in large software systems [4], we examine
whether the BFT classifier is suitable for cause analysis. BFT
is implemented with the widely used machine learning tool
WEKA [37]. We alternatively use the TF-IDF values of terms
in a test log as attributes for BFT’s input.

Topic Model (TM). As a popular way to analyze a large
scale of documents, TM can be used to predict the test alarms
causes. TM first extracts several topics from test logs by
mining co-occurrence terms. Next, each test log is expressed
by a series of topics with different probabilities. Thirdly, we
construct attribute vectors with these topics and utilize the
cosine similarity measurement to rank historical test logs. At
last, the top-1 cause in the ranking list is used for the
prediction. We implement one type of TM, namely Latent
Dirichlet Allocation, with an open source tool Mallet [30]. We
set the parameter of topic number to 200, alpha to 0.01, and
beta to 0.01 according to the suggestion by Mallet.

In the experiments, we set the test logs in day0 as the initial
training set, and incrementally train models after each testing
day, such that these algorithms can fully learn all the
information from history.

D. Research Questions

RQ1: Are the test logs with the same causes more similar than
those with different causes?
RQ2: How do the parameters influence CAM’s performance?
RQ3: How does CAM perform against baseline algorithms?
RQ4: How does historical test log selection influence the
performance of CAM?
RQ5: How does CAM perform in a real development scenario?

V. EXPERIMENTAL RESULTS

All the algorithms are implemented in Java JDK1.8.0_31,
and run on a PC with Intel Core(TM) i7-4790 CPU 3.6GHz
and 24G memory.

A. Answer to RQ1

CAM predicts test alarm causes by the similarity between

test logs. In this RQ, we verify CAM’s hypothesis, namely,
test logs with the same causes are more similar than those with
different causes.

We calculate the pairwise Simlog of test logs on the two
datasets and collect all the test log pairs with Simlog between x
to x+0.01, where x ranges from 0 to 0.99 with a step size of
0.01. In Fig. 5, the dark blue part of a bar in the bar chart
presents the ratio of test log pairs with the same causes in
distinct similarity range. As shown in Fig. 5, the ratio of test
logs with the same causes gradually increases along with the
increment of the Simlog. More than 50% of test log pairs are
with the same causes when Simlog > 0.79 on DS1 and Simlog >
0.55 on DS2. Test logs with the same causes tend to have a
higher Simlog than those with different causes.

Answer to RQ1. The possibility of two test logs implying
the same causes increases along with the growth of the
similarity between two test logs. Test logs with the same
causes are more similar than those with different causes.

B. Answer to RQ2

1) Influence of Parameters

CAM requires a target value t to determine the cause-
specific threshold for each type of cause. Meanwhile, for the
new test logs in low-similarity set, CAM employs KNN to
analyze their causes. The influences of these parameters are
investigated in this subsection.

Target value t. We evaluate the relationship between
CAM’s accuracy with respect to different target value t. To
tune the parameter t, we set the number of neighbors k to a
fixed value (k = 15 in this experiment), and vary t from 0 to 1
with a step size of 0.1. When t = 1, the high-similarity set is
empty. In contrast, the low-similarity set is empty when t = 0.
Two curves in Fig. 6 show that as t is small (t < 0.4), the
accuracy is low. When t increases, the accuracy increases as
well. The stable ranges are slightly different: CAM’s accuracy
is stable when t ranges from 0.6 to 0.9 on DS1, while the
accuracy is more stable on DS2 when t varies. We set t = 0.7
in the following experiments.

Figure 5. Causes vs. cosine similarity of test logs.

0%

50%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
at

io
 o

f
sa

m
e

an
d

d
if

fe
re

n
t

ca
u
se

s

Cosine similarity

DS1

same different

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cosine similarity

DS2

different same

Figure 6. Accuracy with varied target value t.

0.5

0.55

0.6

0.65

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

u
ra

cy
Target value t DS1 DS2

Figure 7. Accuracy with varied number of neighbors k.

0.55

0.6

0.65

0.7

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

A
cc

u
ra

cy

Number of neighour k DS1 DS2

Figure 8. Accuracy changes before/after KNN strategy.

low-similairty

set

high-similairty

set

low-similairty

set

high-similairty

set

DS1 DS2

of test logs 3309 4047 1702 4855

Accuracy before 0.354 0.721 0.530 0.691

Accuracy after 0.416 0.707 0.563 0.684

0.20
0.40
0.60
0.80

A
cc

u
ra

cy

Number of neighbors k. To investigate CAM’s accuracy
with respect to varied k, we set t = 0.7 and k varies from 1 to
30 with a step size of 1. When k = 1, it means CAM conducts
the prediction only with the top-1 cause. The tendencies of the
curves in Fig. 7 are similar to that in Fig. 6. As k is small (k <
3), the accuracy is low, and then the accuracy gradually rises
to be stable along with the growth of k. The accuracy turns to
be stable when k > 14 on DS1 and k > 2 on DS2. We set k =
15 in the following experiments. We do not set an extremely
large k to avoid introducing noisy neighbors.

2) Deep Analysis of Parameter Setting
We investigate why such parameters (t=0.7, k=15) work

for cause prediction. The target value t splits the new test logs
into the high-similarity and low-similarity sets. The value of k
controls the prediction strategy. Fig. 8 shows the total size of
both high-similarity and low-similarity sets on the two
datasets. The light and dark blue bars show the accuracy
before and after applying the KNN strategy, respectively.

In Fig. 8, CAM successfully splits the new test logs into
two sets. The high-similarity set of DS1 and DS2 both cover
more than 50% of the new test logs, in which CAM achieves
an accuracy of 72.1% and 69.1% respectively. While the
accuracies of the low-similarity sets are only 35.4% and 53.0%
for the two datasets. After deciding the low-similarity sets,
KNN strategy improves the accuracy of these sets by up to
6.2%, namely, from 35.4% to 41.6% on DS1 and from 53.0%
to 56.3% on DS2. However, if we also apply KNN to the high-
similarity set, the accuracy drops on both datasets. The reason
is that according to the hypothesis of CAM, when the top-1
Simlog is greater than the threshold, the top-1 cause is likely to
be the ground-truth cause of the new test alarm.

Answer to RQ2. We set t = 0.7 and k = 15 in this study.
CAM achieves an accuracy around 70% for the high-
similarity set. KNN improves the accuracy in the low-
similarity set by up to 6.2%.

C. Answer to RQ3

1) Accuracy and AUC Evaluation
We summarize the experimental results in terms of

Accuracy in Fig. 9. CAM achieves an accuracy of 58.3% and
65.8% on the two datasets. It outperforms the baseline
algorithms by up to 7.3% on DS1 and 13.3% on DS2.

Out of the three baseline algorithms, no one is superior to
the others, since LAC performs well on DS1, while loses its
dominance to BFT on DS2. Comparing with LAC, which
mines local patterns from test steps, CAM shows its
robustness over different datasets as it compares test logs
from an overall perspective. Since a random prediction for
more than 6 classes can only achieve an accuracy below 16%,
the accuracy of CAM shows its ability in cause analysis.

We also present the accuracy with respect to the testing
days in Fig. 10 and Fig. 11. Out of the 39 and 21 predicted
testing days, CAM performs best on 23 and 17 of them
respectively. CAM achieves an accuracy over 80% for more
than one-third testing days, namely 14 out of 39 on DS1 and
11 out of 22 on DS2.

We introduce the paired Wilcoxon signed rank test to
explore the statistical significance between the performance
of CAM and baseline algorithms. The p-values are 0.002,
0.013, 0 on DS1 and 0.003, 0.002, 0.001 on DS2, when

comparing the accuracy of CAM against LAC, BFT, and TM,
respectively. Therefore, CAM is superior to the baseline
algorithms in terms of accuracy with p < 0.05.

AUC values of the algorithms are presented in Table 3. A
value in bold denotes a result, which is better than the other
algorithms on the same failure cause. Table 3 shows that some
failure causes are difficult to be discovered, e.g., Environment
issue (C6), since no algorithm is superior to a random
classifier on DS1. CAM and BFT have similar performance,
which outperforms the other algorithms on 3 out of 7 types of
causes on DS1. On DS2, CAM performs better on the majority
of causes than the baseline algorithms. For some causes, CAM
has an AUC value beyond 0.80, showing that it could provide
excellent discrimination on these causes.

2) Computation Resources Evaluation

Table 4. Comparison on computation resources consumption

Algorithm

Time (in minutes)
 Memory

DS1 (7356 test logs) DS2 (6557 test logs)
DS1 DS2

Training Test Total Training Test Total

LAC 11.4 1 12.4 3.6 1.4 5 3 GB 3 GB

BFT 208.6 0.3 208.9 46.8 0.2 47 22 GB 20 GB

TM 75.1 2.8 77.9 142 4.3 146.3 8 GB 5 GB

CAM 0 6.9 6.9 0 14.4 14.4 4 GB 4 GB

Table 3. Comparison on AUC

 Cause

Algorithm
C1 C2 C3 C4 C5 C6 C7

DS1

LAC 0.61 0.57 0.48 0.52 0.50 0.33 0.51

BFT 0.73 0.65 0.66 0.60 0.77 0.40 0.70

TM 0.68 0.67 0.56 0.58 0.62 0.50 0.54

CAM 0.77 0.71 0.59 0.61 0.62 0.50 0.62

DS2

LAC - 0.60 0.53 0.64 0.63 0.83 0.73

BFT - 0.67 0.65 0.70 0.60 0.77 0.86

TM - 0.62 0.51 0.68 0.52 0.77 0.78

CAM - 0.68 0.66 0.81 0.51 0.74 0.87

Figure 9. Accuracy for algorithms on two datasets.

DS1 DS2

LAC 0.574 0.525

BFT 0.548 0.598

TM 0.510 0.544

CAM 0.583 0.658

0.25
0.35
0.45
0.55
0.65

A
cc

u
ra

cy

Datasets

Figure 10. Accuracy per testing day on DS1.

0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

A
cc

u
ra

cy

Testing day
LAC BFT
TM CAM

Figure 11. Accuracy per testing day on DS2.

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A
cc

ru
ac

y

Testing day
LAC BFT
TM CAM

We compare the computation time and memory consumption
in this subsection. To compare the computation time, we
directly allocate 22GB memory for the algorithms (2GB is
reserved for the operating system). Under the incremental
framework, the computation time is calculated as the sum of
the time for training or testing models after each incremented
testing day. To compare the memory consumption, we
allocate the memory increasingly from 2GB to 22GB with a
step size of 1GB and observe the minimal memory for
algorithms to accomplish the prediction.

In Table 4, the columns refer to the algorithm name, the
computation time, and the memory consumption on the two
datasets. For each dataset, we present the training time, testing
time, and total time in the sub-columns of Time. CAM
conducts testing without spending time on training models. As
shown in Table 4, LAC runs extremely fast as it only mines
local patterns of test steps. BFT takes the longest time on DS1,
since it frequently conducts garbage collection even with
22GB memory. When comparing CAM against BFT and TM
in terms of total time, CAM runs nearly 3 to 30 times faster
than BFT, and 10 times faster than TM. CAM takes 6.9 and
14.4 minutes in analyzing 7356 and 6557 test logs over the
two datasets respectively, which means that it takes only 0.06s
to 0.13s on average in helping testers analyze one test log.

The training time is the main overhead for most algorithms.
For example, it takes 208.6 minutes for BFT to incrementally
train models on 7356 test logs. As a result, when the test logs
continue increasing, it may take days to update models. In
contrast, a new test log can be immediately updated to CAM,
once the tester verifies the cause of that log.

For memory consumption, most algorithms consume no
more than 8GB for prediction, except BFT. BFT cannot
complete predictions until we allocate 22GB memory. In
contrast, CAM only takes less than 4GB memory. The
underlying reason is that CAM conducts prediction without
the need of allocating huge memory to train models.

In addition, along with the growth of historical test logs,
we can set a time frame of historical test logs to limit the
computation time and memory consumption of CAM.

Answer to RQ3. CAM outperforms the baseline
algorithms over distinct evaluation metrics. Meanwhile, CAM
is resources saving as it takes about 0.1s and less than 4GB
memory to process a test log.

D. Answer to RQ4

CAM utilizes function points to conduct historical test log

selection. In a well-planned testing process, the function
points are predefined when testers develop test scripts [45].

However, function points may be unavailable, if testers do not
organize test scripts with them in some projects. We propose
an algorithm named CAM-FP to simulate such a situation.
CAM-FP searches among all the historical test logs to conduct
prediction without historical test log selection.

We show the AUC, accuracy, total time, and memory for
CAM-FP and CAM over the two datasets in Table 5 and Table
6. We find that historical test log selection could remove
considerable noisy test logs, since CAM outperforms CAM-
FP by 2.4%-2.8% in terms of accuracy. CAM also
outperforms CAM-FP on the majority of causes in terms of
AUC. Besides, historical test log selection can significantly
shorten the running time of CAM. After selection, CAM
shortens the running time from 39.2 to 6.9 on DS1 and from
46.4 to 14.4 on DS2 in minutes.

We find that although the function points of test scripts are
removed, CAM-FP still achieves competitive performance
against the baseline algorithms. For several types of causes,
the AUC value of CAM-FP is equal to or slightly better than
CAM. It shows the robustness of CAM on different situations.

Answer to RQ4. Historical test log selection reduces the
noisy test logs and shortens the running time for CAM.
Without the function points of test scripts, CAM still achieves
competitive performance.

E. Answer to RQ5

 We integrate CAM into the automatic testing system of
our industry partner. CAM achieves an average accuracy of
72% after two months of running. “This version (CAM) is
better than the intelligent analysis tool of last version
(manually building regular expressions).” An interesting
finding is that CAM performs better in a real development
scenario than in the experiments. The reason is that testers
tend to conduct software testing several rounds per day. The
causes between each round may be similar. After testers verify
the causes in a round, CAM immediately utilizes the
information of the test logs to predict the causes in the next
round. However, it is hard to decide the round for each test log
in the experiment. When we split the test logs according to the
testing days, it may limit the information available to CAM.

In addition, instead of simply presenting the causes for test
alarms, CAM also presents the differences between test logs.
“I think CAM is accurate. Actually, I will not believe in an
automatic tool. However, after presenting the historical test
logs, I can quickly decide whether the prediction is correct.
CAM accelerates my work.” The presentation of results is
important since good presentations may make the prediction
easy to comprehend [27]. Such human factor, namely, the
influence of different presentations, is not the focus of this
study. We leave it as a future work.

Some testers also suggest new features for CAM,
including “labeling the defect-related snippets from the
lengthy test logs”, “provide suggestions on how to fix different
types of defects”, etc. These features drive us to continue
improving CAM.

Answer to RQ5. CAM achieves an average accuracy of
72% after two months of running in a real development
scenario. CAM accelerates testers’ work with accurate result
and comprehensible presentation.

Table 5. AUC values for CAM and CAM-FP

 Cause

Algorithm
C1 C2 C3 C4 C5 C6 C7

DS1
CAM-FP 0.73 0.70 0.59 0.57 0.59 0.50 0.62

CAM 0.77 0.71 0.59 0.61 0.62 0.50 0.62

DS2
CAM-FP - 0.67 0.76 0.76 0.52 0.67 0.84

CAM - 0.68 0.66 0.81 0.51 0.74 0.87

Table 6. Accuracy, total time, and memory for CAM and CAM-FP

Algorithm
DS1 DS2

Accuracy Total time Memory Accuracy Total time Memory

CAM-FP 0.555 39.2 min 4GB 0.634 46.4 min 4GB

CAM 0.583 6.9 min 4GB 0.658 14.4 min 4GB

VI. THREATS TO VALIDITY

A. Experiment Construction

The generality of the cause prediction algorithm in CAM
should be further studied, since the algorithms may be
sensitive to the datasets. To alleviate this threat, we evaluate
CAM over two industry datasets with more than 14,000 test
logs and deploy it in a real development scenario.

As the ground-truth causes of the test alarms are manually
labeled by testers, there may induce some errors. However,
industries have a strict process to control the quality of
software testing. The error rate is usually under control.

B. Method Construction

In this study, the quality of test logs may influence the
results of CAM. Currently, researchers study how to
automatically decide where to log and what to log for
developers [29]. These techniques may improve the quality of
test logs for CAM to conduct the prediction.

In addition, we mainly focus on analyzing test alarms with
test logs. In order to detect the exact causes of test alarms,
testers may go through various software artifacts, e.g., test
logs, test script codes, etc. The accuracy of CAM may be
further improved by leveraging more software artifacts.
However, test logs are still an effective debugging tool [20].

VII. RELATED WORK

A. Test Alarm Classification

Rogstad et al. [48] distinguish test code obsoleteness from
regression faults for database applications with a set of
attributes, e.g., table names, SQL statements, etc. Hao et al.
[34] classify test alarms into product code defect and obsolete
test at the unit testing stage with complex attributes related to
test complexity and program execution measurements.
However, these techniques are either unique to database
products or expensive to collect complexity information [4] in
large software systems.

Herzig and Nagappan classify test alarms in SIT [4]. They
detect all false test alarms in Microsoft products with
association rules, since the number of false test alarms is a
measurement to measure test quality [13]. Different from
detecting false test alarms, CAM analyzes the test alarms
causes, which is more complex than the binary classification.

Recently, several patents are filed to construct systems to
analyze test results [14], bucket failure messages [5], and
analyze error logs with regular expression [9]. However,
technical details and evaluations are not presented in these
patents. As to a survey with testers in our industry partner,
they manually build regular expressions to classify test alarms
and achieve an accuracy of 20%-30% over distinct projects.

B. Log Analysis

Previous work mainly analyzes two types of logs, namely,
the logs generated by the released software product (system
log) and the logs generated in the testing activity (test log).

For the system log analysis, Oliner et al. discuss the
advances and challenges in system log analysis [20]. Shang et
al. [19] conduct program verification for big data analytic
applications with test logs. Fu et al. [15] and Xu et al. [16]
conduct anomaly detection through log analysis. Besides,

system logs are also used to diagnose the underlying causes of
system anomaly [17] [18]. However, such logs may lack
information to analyze the defects in testing activities.

For the test log analysis, previous work mainly utilize test
logs to solve the oracle problem. Oracle problem is to check
whether a test result reveals a failure or not. Andrews et al.
[10] and Tu et al. [11] analyze test logs for oracle problem
with state-machine-based models. Yantzi et al. [12] conduct
an industrial evaluation of methodologies for oracle problem.
Recent work by Anderson et al. [49] constructs attributes from
test logs to predict the oracle.

In conclusion, system logs analysis is a post-process of
software testing. Our work falls into test log analysis. Instead
of solving the oracle problem, we predict the underlying
causes for test alarms.

C. Failure Clustering

Most studies in failure clustering detect failures in product
code with execution profiles. Execution profiles capture the
execution of basic blocks and conditional branches of
software. Liu et al. [21] cluster failures with fault location
techniques. Dickson et al. [22] cluster program executions and
identify failures among the clusters with unusual-profile
hypothesis. DiGiuseppe et al. [24] utilize latent-semantic-
analysis techniques for more precise failure clustering.

Besides, Podgurski et al. [23] train pattern classifiers to
group similar failures in product code. Francis et al. [25] refine
the failure cluster results with two tree-based techniques. Lo
et al. [26] capture program execution profiles to train machine
learning models for identifying failures in software product.

Clustering failures in product codes is a subsequent
process of test alarm analysis. Approaches in analyzing
product codes may fail to identify the failure causes in
software testing. Meanwhile, execution profiles are hard to
collect for testers in SIT. Different from clustering failures in
product code, we classify the causes of test alarms in SIT.

VIII. CONCLUSION AND FUTURE WORK

In this study, we present our attempt towards predicting
the multiple causes for test alarms in SIT. Our model
leverages the test logs of historical test alarm to analyze the
new test alarm. We evaluate our model over two industrial
projects with more than 14,000 test alarms. Our model shows
an accuracy of 58.3% and 65.8%, respectively. We deploy
CAM for our industry partner and achieve an accuracy of 72%
after two months of running, nearly three times better than
their previous strategy with regular expressions. Our
technique provides a direction for industry to analyze test
alarms. In the future, we plan to employ more software
artifacts to improve CAM and verify CAM over more
software projects.

ACKNOWLEDGMENT

We greatly thank our industrial companion for sharing
their datasets for research. This work is supported in part by
the New Century Excellent Talents in University under Grant
NCET-13-0073, in part by the Fundamental Research Funds
for the Central Universities under Grant DUT14YQ203, and
in part by the National Natural Science Foundation of China
under Grants 61370144, 61403057 and 61502345.

REFERENCES

[1] Q. Fu, J. Zhu, W. Hu, J. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie.
Where do developers log? an empirical study on logging practices in
industry. In Companion Proceedings of the 36th International
Conference on Software Engineering, pages 24-33, ACM, 2014.

[2] D. Yuan, S. Park, and Y. Zhou. Characterizing logging practices in
open-source software. In Proceedings of the 34th International
Conference on Software Engineering, pages 102-112, IEEE Press,
2012.

[3] G. Lucca, A. Fasolino, F. Faralli, and U. De Carlini. Testing web
applications. In Software Maintenance, 2002. Proceedings.
International Conference, page 310-319, IEEE, 2002.

[4] K. Herzig and N. Nagappan. Empirically detecting false test alarms
using association rules. In Proceedings of the 37th International
Conference on Software Engineering, Volume 2, page 39-48, IEEE
Press, 2015.

[5] M. Robinson (2014). Test failure bucketing. US, US8782609.

[6] A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic
clustering of the web. Computer Networks and ISDN Systems,
29(8):1157-1166, 1997.

[7] C. Manning, P. Raghavan, and H. Schütze. Introduction to information
retrieval, 1(1):496, Cambridge: Cambridge university press, 2008.

[8] S. Cheng, C. Yu, and H. Chen. Chinese Word Ordering Errors
Detection and Correction for Non-Native Chinese Language Learners.
In the 24th International Conference on Computational Linguistics,
pages 279-289, 2014.

[9] Y. Jiang, and Y. Jiang. Analysis engine for automatically analyzing and
linking error logs. U.S. Patent Application No. 13/922,066, 2013.

[10] J. Andrews and Y. Zhang. General test result checking with log file
analysis. IEEE Transactions on Software Engineering, 29(7):634-648,
2003.

[11] D. Tu, R. Chen, Z. Du, and Y. Liu. A method of log file analysis for
test oracle. In Scalable Computing and Communications; Eighth
International Conference on Embedded Computing, pages 351-354,
IEEE, 2009.

[12] D. Yantzi and J. Andrews. Industrial evaluation of a log file analysis
methodology. In Proceedings of the 5th International Workshop on
Dynamic Analysis, page 4, IEEE Computer Society, 2007.

[13] K. Herzig and N. Nagappan. The impact of test ownership and team
structure on the reliability and effectiveness of quality test runs. In
Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, page 2, ACM,
2014.

[14] E. Triou Jr, A. Milbradt, O. Agbonile, and A. Dar. Systems and
methods for automated classification and analysis of large volumes of
test result data. U.S. Patent 7,509,538, 2009.

[15] Q. Fu, J. Lou, Y. Wang, and J. Li. Execution anomaly detection in
distributed systems through unstructured log analysis. In Ninth IEEE
International Conference on Data Mining, pages 149-158, IEEE, 2009.

[16] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan. Detecting
large-scale system problems by mining console logs. In Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles,
pages 117-132, ACM, 2009.

[17] K. Nagaraj, C. Killian, and J. Neville. Structured comparative analysis
of systems logs to diagnose performance problems. In Presented as
Part of the 9th USENIX Symposium on Networked Systems Design and
Implementation, pages 353-366, 2012.

[18] D. Yuan, S. Park, P. Huang, Y. Liu, M. Lee, X. Tang, Y. Zhou, and S.
Savage. Be conservative: enhancing failure diagnosis with proactive
logging. In Presented as Part of the 10th USENIX Symposium on
Operating Systems Design and Implementation, pages 293-306, 2012.

[19] W. Shang, Z. Jiang, H. Hemmati, B. Adams, A. Hassan, and P. Martin.
Assisting developers of big data analytics applications when deploying
on hadoop clouds. In Proceedings of the 2013 International
Conference on Software Engineering, pages 402-411, IEEE Press,
2013.

[20] A. Oliner, A. Ganapathi, and W. Xu. Advances and challenges in log
analysis. Communications of the ACM, 55(2):55-61, 2012.

[21] C. Liu and J. Han. Failure proximity: a fault localization-based
approach. In Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 46-56,
ACM, 2006.

[22] W. Dickinson, D. Leon, and A. Podgurski. Pursuing failure: the
distribution of program failures in a profile space. In ACM SIGSOFT
Software Engineering Notes, 26(5):246-255, ACM, 2001.

[23] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and B.
Wang. Automated support for classifying software failure reports. In
Proceedings 25th International Conference on Software Engineering,
pages 465-475, IEEE, 2003.

[24] N. DiGiuseppe and J. Jones. Concept-based failure clustering. In
Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, page 29, ACM, 2012.

[25] P. Francis, D. Leon, M. Minch, and A. Podgurski. Tree-based methods
for classifying software failures. In 15th International Symposium on
Software Reliability Engineering, pages 451-462, IEEE, 2004.

[26] D. Lo, H. Cheng, J. Han, S. Khoo, and C. Sun. Classification of
software behaviors for failure detection: a discriminative pattern
mining approach. In Proceedings of the 15th International Conference
on Knowledge Discovery and Data Mining, pages 557-566, ACM,
2009.

[27] X. Xie, Z. Liu, S. Song, Z. Chen, J. Xuan, and B. Xu. Revisit of
automatic debugging via human focus-tracking analysis. In
Proceedings of the 38th International Conference of Software
Engineering, pages 808-819, 2016.

[28] T. Fawcett. An introduction to roc analysis. Pattern Recognition
Letters, 27(8):861-874, 2006.

[29] J. Zhu, P. He, Q. Fu, H. Zhang, M. Lyu, and D. Zhang. Learning to log:
Helping developers make informed logging decisions. In Proceedings
of the 37th International Conference of Software Engineering, pages
415-425, IEEE, 2015.

[30] A. McCallum. MALLET: A Machine Learning for Language Toolkit.
http://mallet.cs.umass.edu/topics.php, 2002.

[31] M. Httermann. DevOps for developers. Apress, 2012.

[32] J. Holck and N. Jørgensen. Continuous integration and quality
assurance: A case study of two open source projects. Australasian
Journal of Information Systems, 11(1), 2003.

[33] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek, and A.
Stavrou. A whitebox approach for automated security testing of
Android applications on the cloud. In 7th International Workshop on
Automation of Software Test, pages 22-28, IEEE, 2012.

[34] D. Hao, T. Lan, H. Zhang, C. Guo, and L. Zhang. Is this a bug or an
obsolete test? In ECOOP Object-Oriented Programming, pages 602-
628, Springer Berlin Heidelberg, 2013.

[35] A. Vahabzadeh, A. Fard, and A. Mesbah. An empirical study of bugs
in test code. In IEEE International Conference on Software
Maintenance and Evolution, pages 101-110, IEEE, 2015.

[36] J. Hartmann, C. Imoberdorf, and M. Meisinger. UML-based
integration testing. In ACM SIGSOFT Software Engineering Notes,
25(5):60-70, ACM, 2000.

[37] H. Mark, F. Eibe, H. Geoffrey, P. Bernhard, R. Peter, and H. Ian.
Witten, The WEKA Data Mining Software: An Update; SIGKDD
Explorations, Volume 11, Issue 1, 2009.

[38] R. Lotufo, Z. Malik, and K. Czarnecki. Modelling the ‘hurried’bug
report reading process to summarize bug reports. Empirical Software
Engineering, 20(2):516-548, 2015.

[39] M. Porter. An algorithm for suffix stripping. Program, 14(3):130-137,
1980.

[40] M. Rodríguez. JavaDiffUtils. https://code.google.com/archive/p/java-
diff-utils/. Last check Aug. 7, 2016.

[41] L. Lin. Issuance of IK Analyzer 3.2.3 for Stable Edition for lucene 3.0.
https://code.google.com/archive/p/ik-analyzer/, Dec, 2010.

http://mallet.cs.umass.edu/topics.php

[42] J. Xuan, H. Jiang, Z. Ren, and W. Zou. Developer prioritization in bug
repositories. In the 34th International Conference on Software
Engineering, pages 25-35, IEEE. 2012.

[43] A. Veloso, W. Meira, and M. J. Zaki. Lazy associative classification.
In Sixth International Conference on Data Mining, pages 645-654,
IEEE. 2006.

[44] Federal University of Minas Gerais (UFMG). Lazy Associative
Classifier. https://code.google.com/archive/p/machine-learning-dcc-
ufmg/. Aug. 22, 2012.

[45] Microsoft. Manual System Tests https://msdn.microsoft.com/en-
us/library/jj159334.aspx. Aug 6, 2012

[46] C. Symons. Function point analysis: difficulties and improvements.
IEEE Transactions on Software Engineering, 14(1):2-11, 1988.

[47] M. Balcer, W. Hasling, and T. Ostrand. Automatic generation of test
scripts from formal test specifications. ACM SIGSOFT Software
Engineering Notes, 14(8):210-218, 1989.

[48] E. Rogstad, and L. Briand. Clustering deviations for black box
regression testing of database applications. IEEE Transactions on
Reliability, 65(1):4-18, 2015.

[49] J. Anderson, S. Salem, and H. Do. Striving for Failure: An Industrial
Case Study about Test Failure Prediction. IEEE International
Conference on Software Engineering, Vol.2:49-58, IEEE, 2015.

[50] H. Jiang, J. Xuan, Z. Ren, Y. Wu, and X. Wu. Misleading classification.
Science China Information Sciences, 57(5):1-17, 2014.

[51] H. Hu, H. Zhang, J. Xuan, and W. Sun. Effective bug triage based on
historical bug-fix information. In IEEE 25th International Symposium
on Software Reliability Engineering, pages 122-132, IEEE, 2014

[52] A relatively large software artifact. http://oscar-lab.org/cam/

