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ABSTRACT  
Data race is a major source of concurrency bugs. Dynamic 

data race detection tools (e.g., FastTrack) monitor the executions 
of a program to report data races occurring in runtime. However, 
such tools incur significant overhead that slows down and per-
turbs executions. To address the issue, the state-of-the-art dy-
namic data race detection tools (e.g., LiteRace) apply sampling 
techniques to selectively monitor memory accesses. Although 
they reduce overhead, they also miss many data races as con-
firmed by existing studies. Thus, practitioners face a dilemma on 
whether to use FastTrack, which detects more data races but is 
much slower, or LiteRace, which is faster but detects less data 
races. In this paper, we propose a new sampling approach to 
address the major limitations of current sampling techniques, 
which ignore the facts that a data race involves two threads and 
a program under testing is repeatedly executed. We develop a 
tool called AtexRace to sample memory accesses across both 
threads and executions. By selectively monitoring the pairs of 
memory accesses that have not been frequently observed in cur-
rent and previous executions, AtexRace detects as many data 
races as FastTrack at a cost as low as LiteRace. We have com-
pared AtexRace against FastTrack and LiteRace on both Parsec 
benchmark suite and a large-scale real-world MySQL Server with 
223 test cases. The experiments confirm that AtexRace can be a 
replacement of FastTrack and LiteRace. 

CCS CONCEPTS  

• Software and its engineering ➝ Software testing and de-
bugging • Theory of computation ➝ Program verification.  
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1. INTRODUCTION 
A data race (or race for short) occurs when two or more threads 
access the same memory location at the same time, and at least 
one of them is a write [16]. Race is a major source of concurren-
cy bugs [38] and may result in real-world disasters [23][29][40]. 

Static race detection techniques are scalable but may report 
many false positives [25][37][42][51]. Various filters have been 
developed to address this issue. However, false positives remain 
and false negatives emerge with these filters in the static race 
detection tools [37]. Dynamic techniques report much fewer 
false positives. They are mainly based on either the lockset disci-
pline [44] or the happens-before relation [16][27]. The former 
requires that all accesses to a shared memory location should be 
protected by a common set of locks. The latter [27] is usually 
implemented via vector clocks [16] to track the status of threads, 
locks and memory locations. Happens-before based race detec-
tors (HB detectors for short) report less false positives but incur 
higher overhead than the lockset based ones. FastTrack [16], by 
avoiding a large number of O(n) operations on memory accesses, 
reduces the overhead to the level as that of the lockset based race 
detectors. Even so, by continuously monitoring all memory ac-
cesses of a multithreaded program, FastTrack still incurs from 
400% to 800% overhead [10][16][54].  

Sampling [7][34][58] is a promising technique to reduce the 
overhead of dynamic detectors by selectively monitoring 
memory accesses. There are two types of sampling. With the 
assumptions that concurrency bugs cannot be eliminated during 
testing and daily uses of released software provide a large test 
bed, the first type attempts to detect races at user sites, including 
Pacer [7], CRSampler [12], and a possible adaption of DataCollid-
er [14]. This type of sampling must be extremely light-weight 
(i.e., <5% overhead [3][26][31][59]). And they usually detect a 
small number of data races depending on the sampling rate and 
the overhead limit.  

The second type aims at reducing in-house testing overhead. 
Before releasing a software, the developers usually test the pro-
gram against a large number of test cases, and for each test case, 
the program may be executed multiple times. Lower overhead 
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enables more testing and thus less races in the tested software. 
LiteRace [34] is a representative tool in this category. It is based 
on the hypothesis that undetected races often exist in cold func-
tions that have not been frequently called. Therefore, LiteRace 
reduces overhead by avoiding the sampling of memory accesses 
in hot functions that have been frequently executed.  

Figure 1 shows a code sketch with two threads t1 and t2. 
Functions f1 and f2 are repeatedly executed in t1, and f3 and f4 are  
repeatedly executed in t2. Races occur when f1 and f4 execute 
simultaneously, and when f2 and f3 execute simultaneously. As-
sume that t1 is executed more frequently than t2 and the then-
branches are executed more frequently than the else-branches. 
Initially all functions are cold, but quickly f1 becomes hot while 
other three functions are still cold. At this moment LiteRace stops 
monitoring f1 and becomes faster than FastTrack because the 
latter still continuously monitors f1. After a while f2 and f3 get a 
chance to be executed. Since both functions are cold, LiteRace 

still monitor their executions and thus can report the race be-
tween f2 and f3 at a cost lower than that of FastTrack. Next f4 is 
executed at the same time with f1. In this case LiteRace fails to 
detect the race between f1 and f4 because it already stopped 
tracking f1. On the other hand, FastTrack can catch the race be-
cause it still monitors f1. This example illustrates the dilemma in 
choosing between full scale tools and sampling based tools. A 
programmer has to either sacrifices efficiency for accuracy, or 
sacrifices accuracy for efficiency.  

We argue that programmers do not have to choose between 
efficiency and accuracy. This is achievable because there are two 
major limitations in current sampling techniques. From the defi-
nition, a race occurrence requires two memory accesses of differ-
ent threads. Therefore, sampling memory accesses in isolation is 
ineffective. The aforementioned example shows that a function f 
may become hot before any other functions that race with f. In 
this case, sampling those functions that race with f is useless. We 
call this inefficiency thread-local sampling because it does not 
consider other threads when it decides whether to sample the 
current thread. The second major limitation is that sampling 
algorithms remain the same for all the executions of a program. 
This is ineffective because in in-house testing a program is usu-
ally executed repeatedly against a large set of test cases. For a 
multithreaded program, a develop may even run it multiple 
times under a single test case. The net effect of current sampling 
strategy is that those functions that are cold in individual execu-
tion but hot in accumulative executions are repeatedly sampled. 
We call this inefficiency execution-local sampling as it does not 
consider previous executions when decides whether to sample 
the current execution. 

In this paper, we propose AtexRace, a new dynamic race de-
tection tool based on across-thread and across-execution sam-
pling. It is designed to sample memory access pairs from differ-
ent threads and is also aware of executions. However, several 

challenges must be resolved to make it practical. Firstly, tracking 
memory accesses across threads incurs much larger overhead 
than tracking thread-local data only (e.g., higher cache miss 
rate). Secondly, even if a pair of memory accesses is observed to 
be race-free before, it does not mean that the pair will not race 
later. This is because while instructions are static, the memory 
addresses they access are dynamic. Lastly, AtexRace avoids sam-
pling previously observed memory pairs, which requires addi-
tional recording. With increasing number of executions, the rec-
orded data set may grow rapidly, which further slows down the 
sampling processes (e.g., the need of more time to search 
memory access pairs).  

We have implemented AtexRace, FastTrack, and LiteRace on 
top of Pin [32] and evaluated them on five programs on Parsec 
benchmark suite [2] and a real-world program MySQL. In the 
experiments, we run each Parsec program for 100 times and run 
MySQL under 223 different test cases. The experimental results 
surprisingly show that AtexRace detects more races in Parsec 
benchmarks than FastTrack does! As for MySQL, AtexRace de-
tects almost the same number of dynamic races as that by 
FastTrack. LiteRace, as predicted, detects significantly fewer races 
than both FastTrack and AtexRace. If we do not consider the 
same races that are detected again, AtexRace detects more unique 
races than FastTrack and LiteRace. In terms of efficiency, LiteRace 
and AtexRace reduce almost the same percentage of overhead on 
top of FastTrack. This makes AtexRace a replacement of 
FastTrack and LiteRace. The main contributions of this paper are:  
 We present a novel sampling technique called AtexRace to-

ward race detection. Unlike existing sampling techniques 
that are thread-local and execution-local, AtexRace is across-
thread and across-execution.  

 To make AtexRace practical, we have designed optimization 
heuristics that include (1) utilizing thread-local storage to 
avoid competing accesses to shared sampling data set, (2) 
exploiting burst sampling strategy to enhance race cover-
age, and (3) adopting n-frequent (function) pairs to improve 
map lookup efficiency.   

 We have implemented AtexRace and conducted a set of ex-
periments on benchmarks including a real-world large-scale 
program MySQL. Our experiments confirm that AtexRace 
detects as many races as FastTrack at a cost as low as LiteR-
ace. The tool is at http://lcs.ios.ac.cn/~yancai/atexrace . 

2. BACKGROUND 

2.1 Multithreaded Programs 
A multithreaded program consists of a set of threads, a set of 
locks (or lock/synchronization objects), and a set of memory 
locations (or locations for short). Each thread 𝑡 has a unique 
thread identifier 𝑡𝑖𝑑, denoted as 𝑡. 𝑡𝑖𝑑. During an execution of a 
multithreaded program p, each thread 𝑡 performs a sequence of 
events e1, e2, …, ek. An event can be one of the following types: 
(1) acq(m) or rel(m): synchronization events: to acquire or re-
lease a lock 𝑚. (Other synchronization events can be similarly 
defined [16].) (2) read(x) or write(x): memory access events: to 
read from or write to a memory location x, and (3) call(f) or 
return(f): control events: to execute events in function f or re-
turn to execute the events from the previous function f.  

1.

2.

3.

4.

Thread 𝑡 
for (…){

if(…)  f1();

else f2();

}

5.

6.

7.

8.

Thread 𝑡 
for (…){

if(…)  f3();

else f4();

}  
Figure 1. A code sketch with two threads and four function 
calls. 
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2.2 Data Races 
Data races can be defined according to either the lockset disci-
pline [44] or the happens-before relation [27]. In this paper, we 
adopt the later one as it is relatively precise [16]. However, our 
sampling strategy is independent from concrete definitions. The 
happens-before relation (denoted as ↣, HBR for short) is defined 
by the three rules [27]: (1) If two events  and  are performed 
by the same thread, and  appears before , then  ↣ , (2) If  
is a lock release event and  is a lock acquire event on the same 
lock, and  appears before , then  ↣ , and (3) If  ↣  and  
↣ , then  ↣ . Given two memory access e1 and e2 that access 
the same memory location and one of them is a write events, a 
race occurs if neither e1 ↣ e2 nor e2 ↣ e1.  

3. MOTIVATIONS 

3.1 Motivating Example  
Figure 2 shows a multithreaded program p that extends the code 
sketch given in Figure 1. The program consists of two threads t1 
and t2 operating on two shared variables x and y. There are two 
locks m and n protecting accesses to shared variables x and/or y. 
Given two parameters a, b, thread t1 consecutively calls func-
tion f1 for a times and then calls function f2 for a times within a 
loop (lines 1–4); and thread t2 performs similar calls to functions 
f3 and f4 each for b times (lines 17–20). The four functions in-
crease the values of x and y based on the passed parameters.  

Due to the parallel execution of the two threads in Figure 2, 
any pair of functions between threads t1 and t2 can potentially be 
executed simultaneously. The four pairs of functions that can be 
executed at the same time are f1, f3, f1, f4, f2, f3, and f2, f4. 
For the pairs f1, f4 and f2, f3, as the variable y is protected by 
different locks (i.e., lock m in function f1 and f3 but lock n in 
function f2 and f4), races may occur. For example, if lines 9 and 
30, or lines 14 and 25, are executed at the same time, the program 
may produce incorrect results due to the race on variable y.  

3.2 Heavy Overhead of Dynamic Data Race De-
tection 
Dynamic race detectors usually incur large overhead [16][12] 
due to heavy instrumentation and race checking per memory 

access. This is unavoidable because they have to track whether 
the pair of a current access and a previous access violates any 
HBR. We use the memory access "x += i" in Figure 2 (line 8) to 
illustrate the overhead. For each access to the location x, one 
function call like onRead(x) or onWrite(x) is inserted [16], see 
Figure 3. Within these calls, there are two types of operations 
that cost time [16][17][34].  

The first type is from fetching shadow data (or meta data 
[16][34]) for each thread and each memory location. For each 
memory location, dynamic ones track all accesses to it and store 
the information at shadow memory (e.g., shadowMemory(x) in 
Figure 3). Similarly, shadow threads (e.g., shadowThread(t) in 
Figure 3) are used for each thread. Therefore, a memory access in 
the original program is accompanied by several additional 
memory accesses to get the shadow data for a memory location 
and a thread (e.g., Sx and St for memory location x and thread t, 
respectively). For the shadow threads, many instrumentation 
frameworks provide fast access interface (e.g., Thread Local 
Storage in Pin [32] and Thread Execution Blocks in Windows 
[49]). However, to the best of our knowledge, no fast access to 
shadow memory is supported. The latter is much difficult in 
practice. For Java program, the shadow memory could be allocat-
ed together with the memory allocation in the original program 
[17]. However, for C/C++ programs, this becomes difficult. 

The second type is from race checking. After fetching shadow 
data, the values from two shadow data (i.e., from the memory 
location and from the current thread) are checked to detect any 
HBR violation. This process also involves additional memory 
accesses, especially the write operations to maintain the access 
information (i.e., to update Sx in Figure 3). Note that, FastTrack 
optimizes the process on race detection but it still requires 
maintenance (read and write) on shadow data.  

3.3 Limitations of Existing Sampling Ap-
proaches  
Although dynamic approaches incur heavy overhead, they are 
usually precise for data race detection. Therefore, sampling ap-
proaches have been proposed to reduce the runtime overhead by 
tracking a subset of events and to detect races among them.  

Existing sampling approaches include deployed sampling 
[7][12] and in-house sampling [3][14]. The former approaches 
are deployed at the users’ sites after a software is released. Such 
approaches are based on the crowd-source testing: if there are 
many users, races escaped during in-house testing may be de-
tected by sampling a tiny portion of an execution by each user. 
Hence, deployed sampling requires extremely low run time 

Instrumentation: 

x += i; 

 
tmp = x; onRead(x); 
tmp += i; 
x = tmp; onWrite(x); 

 

(a) 

Dynamic Data Race Detection: 
onRead(x){ //or onWrite(x) 
   Sx ≔ shadowMemory(x); 
   St ≔ shadowThread(t); //t is the current 

thread. 
   if any previous and the current access to x  

violates any HBR (from Sx and St) then  
       report the violation as a data race. 
   end if 
   update Sx (from St).  
}                            (b) 

 

Figure 3. An illustration on the instrumentation and race 
detection for each memory access. 

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

Thread 𝑡 
for (i =1 to 2  a){

if(i < a)        f1( i );
else f2( i );

}

Function f1(i){
acq(m)
x += i;
y += i;
rel (m)

}
Function f2(i){

acq(n)
y += i;
rel (n)

}

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

Thread 𝑡 
for (j =1 to 2  b) {

if( j < b)        f3( j );
else f4( j );

}

Function f3(j){
acq(m)
x += j;
y += j;
rel (m)

}
Function f4(j){

acq(n)
y += j;
rel (n)

}

Shared variables: int x = 0, y = 0; Lock m, n;

Input: a, b;

 
Figure 2. A program with races on variable y between line 
9 and line 30, and between line 14 and line 25.  



ESEC/FSE'17, September 4-8 2017, Paderborn, Germany Y. Guo, Y. Cai, and Z. Yang  

 

overhead (e.g., 5% [7]). The latter attempts to reduce runtime 
overhead during in-house testing phase. The representative tool 
is LiteRace [34]. As our approach falls into this category, we dis-
cuss LiteRace in detail in the rest of this subsection.  

LiteRace is based on the cold-region hypothesis: races are 
likely to occur when a thread is executing a cold region (i.e., the 
program portion not frequently executed). LiteRace tries to avoid 
tracking those frequently executed functions (i.e., hot functions). 
Initially, it sets up a thread-local sampling rate of 100% for each 
function. This sampling rate is then gradually reduced whenever 
a function is called by the corresponding thread until the rate 
reaches a low bound (e.g., 0.1%). For example, in Figure 2, LiteR-
ace initially checks all events from function f1. After the function 
is executed once, the thread-local sampling rate of function f1 by 
thread t1 is reduced. If thread t2 calls function f3, the sampling 
rate of function f3 by thread t2 is also reduced in the same way.  

LiteRace reduces runtime overhead at the expense of its race 
detection capability. For example, in an evaluation, it only de-
tected about 70% of frequent data races and about 50% of rare 
data races of continuously monitoring tools such as FastTrack 
[34]. This is also verified by other works [7]. We explain this 
limitation of LiteRace via our running example in Figure 2.  

Figure 4 gives four execution cases that illustrate how the 
functions in the two threads interleave. In each case, a column 
shows the execution of a thread in term of function calls. The 
difference between the four cases is at how the last call to func-
tion f1 and the first call to function f2 by thread t1 interleaves 
with the last call to function f3 and the first call to function f4 by 
thread t2.  

Recall that locks m and n protect the accesses to y in func-
tions f1 and f3, and in functions f2 and f4, respectively. Because 
two different locks are used, a race on variable y occurs when 
either functions f1 and f4 execute in parallel or functions f2 and f3 
execute in parallel. No data race occurs in either case (a) or case 
(b) because neither pair of functions may execute in parallel. 
That is, we can infer that accesses in function f1 happen before 
accesses in function f4 by following lock acquisition order (i.e., 
the solid arrows) and the program order within each thread (i.e., 
the dashed arrows). The same reasoning also applies on the func-
tions f3 and f2. However, for case (c), there is no strict order be-
tween the accesses in functions f1 and f4; hence, a HB detector 
may detect the race on y from the two functions. Due to same 
reason, for case (d), the race on y from functions f3 and f4 may 
also be detected.  

When LiteRace is applied to the four cases in Figure 4, a func-
tion is not tracked after it has been called by the same thread for 
certain number of times. Therefore, function f1 executed by 
thread t1 and f3 executed by thread t2 are no longer tracked if 
they become hot functions. In case (c), even when function f1 and 
function f4 execute in parallel, LiteRace may miss the race. This is 
because LiteRace only tracks the cold function f4 without track-
ing function f1. Similarly, In case (d), LiteRace may also miss the 
race.  

We believe the main reason that LiteRace frequently fails to 
detect races, as observed previously [7], is that its sampling 
across threads is not coordinated. Since a data race requires two 
conflict memory accesses from two threads, sampling one 
memory access from one thread but not the other is useless. This 
is illustrated by cases (c) and (d) above. Consider an extreme case 
where all races involve a function. If this particular function is 
considered hot after being visited several times, all future sam-
plings are in vein.  

Besides the issue of thread-local sampling, LiteRace also suf-
fers from execution-local sampling. When testing a multithread-
ed program by running it repeatedly against a large number of 
test cases, the same thread interleaving, with minor variations, 
tend to be exercised since thread schedulers generally switch 
among threads at the same program locations. In addition, alt-
hough the whole program execution may witness variants from 
one run to another, partial execution may exhibit similar behav-
iour. For example, even all the four cases in Figure 4 are executed 
in different runs, the initial interleaving of two threads are simi-
lar. That is, functions f1 and f3 interleave until functions f2 or f4 is 
called. We highlight these function calls in grey background for 
illustration purpose. As LiteRace is unware of execution similari-
ties, it adopts the same sampling strategy across different execu-
tions. The net effect of strategy is that those functions that are 
cold in individual execution but hot in accumulative executions 
are repeatedly sampled. This defeats the principle of sampling 
that the real cold cases should be tracked.   

The two main limitations of current sampling techniques mo-
tivate our work in this paper.  

4. OUR APPROACH 

4.1 Goal and Challenges 
In this section, we present our approach to fix the two limita-
tions of current sampling techniques. In order to address thread-
local sampling, our insight is that whether to sample a memory 
access event should also depend on the execution of other 
threads and those already observed executions. That is, even if a 
memory address has been accessed by a thread many times, we 
may still need to sample it if a second thread access the memory 

Func fyThread ty

Func fzThread tz

Func fxThread tx

Func pairs(fx, fy)

(fy, fz)

sample
Race 

detector
Saved sample info

 
Figure 5. The overview of AtexRace framework. 

Case (a) Case (b) Case (c) Case (d)

𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 
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…
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f3()

f4()
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f4()

f1()

…

f1()
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…

f2()

f3()

…

f3()

f4()

…

f4()

No race. No race. Race: f1, f4

May be missed 

by LiteRace.

Race: f2, f3

May be missed 

by LiteRace.

S
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x
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n
s

: Lock order : Program orderLegend: 

 
Figure 4. Three executions scenarios of the program in 
Figure 2 and the similarity of different executions.  
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address for the first time. As for execution-local sampling, our 
idea is to keep and store sampling information from previous 
runs. Except the first execution that starts with a cold run, the 
subsequent executions load sampling information of 
accumulated prior executions. Although such approach incurs 
overhead, we blieve less sampling with optimization heuristics 
can lead to net benefit.  

The new sampling approach, AtexRace, also works at function 
levels like LiteRace. But unlike LiteRace, AtexRace mainly samples 
accesses inside a pair of functions whose simultaneous execu-
tions are not observed before, including previous executions. 
Unfortunately, a basic implementation of the idea is not very 
scalable. Firstly, tracking executions across threads usually incur 
larger overhead than thread-local tracking. Secondly, even two 
functions are observed to have executed in parallel before, data 
races may still occur within them. Thirdly, as AtexRace performs 
sampling across different executions instead of within a single 
execution, it must effectively record function interleaving infor-
mation to be used in the subsequent executions.  

4.2 Basic AtexRace Algorithm 
The overview of AtexRace is shown in Figure 5. During execu-
tion. when function fy in thread ty is being executed, AtexRace 

collects all the functions (e.g., fx and fz) that are being executed 
by other threads. By doing so AtexRace forms pairs of functions 
that are being executed simultaneously (e.g., fx, fy). It then 
makes a sampling decision according to whether a pair of func-
tions have been executed in parallel before. If so, neither func-
tion is sample; otherwise, both are sampled. If a function is sam-
pled, all its events are passed to a race detector. At the end of an 
execution, all function pairs are saved and will be used in the 
next execution. Note, in order not to report false positives, all 
synchronizations are fully sampled. This is the same as LiteRace.  

Algorithm 1 gives the basic AtexRace algorithm that takes a 
program p and a set of function pairs FPair that have been ob-
served in the previous executions. The first three lines initialize 
two necessary runtime data structures: a map F that maintains 
the functions being executed by each thread, and a map S that 
indicates whether memory accesses from a thread should be 
sampled. Both F and S are empty initially.  

The function onCallFunc (lines 5–19) is the core of our sam-
pling. Whenever a function f is to be executed (i.e., at the en-
trance of function f) by a thread t, for every other thread t' in 
program p, AtexRace checks whether the pair f, F(t') already 
exists in FPairs. If not, S is updated to map both threads t and t' to 
true; otherwise, S maps t to false. A true value of S(t) mandates 
sampling of the current memory access in thread t and a false 
value does the opposite. Next, AtexRace executes events in func-
tion f (line 14) and samples its memory accesses (i.e., function 
onMemoryAccesses) if S(t) is true. At the end of the call to func-
tion f, AtexRace merges FPairs and the observed function pairs f, 
F(t'), which indicates that the function f and another function 
F(t') in thread t' have been executed simultaneously.  

In practice, two functions from different threads are usually 
called at different time. Therefore, it is the case that, a function f 
is initially not sampled but later it should be sampled as a differ-
ent thread t' calls a function f' = F (t') and the pair f, F(t') is nev-
er observed before. This is considered by AtexRace. We can see 

from lines 10 and 11 that at the call entrance to function f', 
thread t' also performs an iteration over other threads at line 7. 
At the iteration on thread t, it cannot find the pair in FPairs. 
Then it maps both threads t' and t to be true value in structure S. 
So, the function f executed by thread t has to be sampled.  

4.3 Limitations of Basic AtexRace 
The basic sampling algorithm of AtexRace suffers from the two 
limitations: (1) given two function f1 and f2, even if their parallel 
execution has been observed and tracked (thus become hot), 
races between them may still not detected; and (2) significant 
overhead resulted from across thread and execution sampling.  

The first limitation is the issue of Race Coverage. A function 
usually contains multiple basic blocks (BBLs). An execution of a 
function does not mean all its BBLs are executed. For example, 
Figure 6 shows two functions f5 and f6 that contain two races on 
variables x (lines 6 and 21) and y (lines 18 and 9). There are four 
BBLs b11, b12, b21, and b22 (we omit other BBLs in the if statement 
for simplicity). Since the two threads in the example execute 
f5(10) and f6(100), respectively, only b11 and b22 are executed. 
Hence, the race on variable x (lines 6 and 24) is detected while 
the race on variable y (lines 19 and 10) is not. If the pair f5, f6 is 
considered hot after this execution, the race on y can never be 
detected by the basic AtexRace. One approach to address this 
issue is to degrade the sampling level from functions to BBLs and 
then apply either LiteRace or the Part 1 of our AtexRace. Howev-
er, this bring heavy runtime overhead and may even incur more 
overhead than a full detector such as FastTrack. This is because, 
compared to a function, a BBL usually contains much fewer in-
structions. As a result, the sampling overhead (in time) per BBL 
may already larger than the race detection overhead without 
sampling. Because sampling algorithm is not extremely light-
weight, it is not worthy to perform sampling at BBL level.  

Algorithm 1: Basic AtexRace 
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Input: p – a multithreaded program. 
Input: FPairs – a set containing functions.  
  

let F be an empty map from a thread to a function  
let S be a map from a thread to a Boolean value. 
for each thread t  p, F(t) ≔ , S(t) ≔ true end for 
 
Function onCallFunc (Thread t, Func f ) 
│  let F(t) ≔ f and St ≔ false //St is a temporary variable that keeps S(t)  
│  for each thread t'  p, t  t' do 
│  │  pair ≔ f, F (t')  
│  │  if pair  FPairs then  
│  │  │  St ≔ true 
│  │  │  S(t') ≔ true 
│  │  └end if 
│  └end for  
│  S(t) ≔ St  
│  execute f 
│  for each thread t'  p, t  t' do  
│  │  FPairs ≔ FPairs ∪ {f, F (t')}  
│  └end for 
└ end Function 
Function onMemoryAccess(Thread t, Event e) 
│  if S(t) =  true then  
│  │  call data race detector 
│  └end if 
└ end Function 
save FPairs 

 



ESEC/FSE'17, September 4-8 2017, Paderborn, Germany Y. Guo, Y. Cai, and Z. Yang  

 

On the other hand, for C/C++ programs, even an instruction 
contains one or more memory accesses, it is possible that each 
execution of the instruction may accesses different memory loca-
tion. For example, considering the following two lines of code: 

1.  Object obj = &getObj (…); 
2.  obj ->val ++; 

We can observe that, within the same and repeated execu-
tions of the two lines, if the pointer obj points to different ob-
jects, it accesses different memory locations at line 2. Therefore, 
for sampled memory accesses, it is still necessary to track them.  

The second limitation is the Sampling Overhead of AtexRace 
itself. A sampling tool should sample as fewer memory accesses 
as possible to reduce the overhead. At the same time, it should 
also try to incur less overhead from its sampling strategy. LiteR-
ace adopts thread-local sampling and requires two thread-local 
counters per-function. This can be efficiently implemented [34].  

For AtexRace, there are expansive map queries (i.e., FPairs) on 
each function call (lines 9–10). These operations bring heavy 
slowdown for two reasons. Firstly, with the increasing number 
of function calls by multiple threads, the size of FPairs also in-
creases, resulting in a large data set. For example, in our experi-
ment, after 223 executions on MySQL, there are nearly 70,000 
function pairs. A query over such a large map is time consuming. 
Secondly, the map FPairs is accessed by multiple threads. This 
requires synchronizations among different threads when they 
operate on the map. Such synchronization incurs further slow-
down. Besides, when different threads access the map FPairs, the 
cache miss rate will be higher because once a thread updates the 
map, all other threads that query the map must wait until their 
local caches are updated. This again leads to additional time con-
sumption. All these reasons bring challenges to reduce the over-
head of our sampling algorithm AtexRace itself.  

4.4 Optimizations 
Algorithm 2 is an enhancement to the basic AtexRace algorithm 
that addresses the two kinds of limitations.  

To address the issue of race coverage, AtexRace further sam-
ples those sampled function pairs in order to increase their cov-
erage on data race detection. This corresponds to lines 18–24 in 
Algorithm 2. For this part, AtexRace accepts a sampling rate (i.e., 
the input r to Algorithm 2) and samples the function pair accord-
ing the rate. Note that, AtexRace does not  perform a simple 
sampling that generates a random number and compares the 

random number with the given sampling rate. Instead, AtexRace 
adopts burst sampling strategy [34]. It samples the first n con-
secutive calls out of all m calls to a function such that the rate (n 
÷ m)  100% equals to the given sampling rate r. For example, if 
the sampling rate is 10%, it samples the first 10 calls and discards 
the next 90 calls to the same function, resulting the sampling rate 
of 10%. Of course, to implement this functionality, a counter 
mapped from each function pair is required. Hence, the original 
set of function pairs is changed into a map (see the fourth input 
and the lines 18, 19 and 29 in Algorithm 2).  

To overcome the second kind of limitations, we firstly pro-
pose to use thread-local maps. In Algorithm 2, we use the symbol 
FP to denote the thread-local maps of function pairs. That is, we 
allocate one map structure for each thread; and when AtexRace 

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

Thread 𝑡 

f5(10);

Function f5(i){
if ( i < 100){

acq(m)
x ++;
rel (m)

} else{
acq(n)
x += y;
rel(n);

}
}

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

Thread 𝑡 

f6(100);

Function f6(j){
if ( j < 100){

acq(m)
y ++;
rel (m)

} else{
acq(n);
y += x;
rel(n);

}
}

BBL b11

BBL b12

BBL b21

BBL b22

 
Figure 6. A program consisting of two threads with two 
data races on variables x (lines 6 and 23) and y (lines 19 
and 10).  

Algorithm 2: Complete AtexRace 
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Input: p – a multithreaded program. 
Input: r – a sampling rate. 
Input: n – a number determine n-frequent value 
Input: FPairs – a map (from functions pairs to counters) of the last 
n - 1 executions.  
 

//Initialization  
let F be an empty map from a thread to a function  
let S be a map from a thread to a Boolean value. 
let FP be a map from a thread to a copy of FPairs. //thread-local maps 
for each thread t  p do 
│  F(t) ≔  
│  S(t) ≔ true 
│  FP(t) ≔ FPairs //deep clone 
└end for 
//Runtime Sampling 
Function onEnterFunc(Thread t, Func f) 
│  let F(t) := f and St := false  //St is a temp variable that keeps S(t)   
│  for each thread t'  p, t  t' do 
│  │  pair ≔ f, F (t')  
│  │  if pair  FP(t) then  
│  │  │  St ≔ true 
│  │  │  S(t') ≔ true 
│  │  else  
│  │  │  FP(t) ≔ FP(t) ∪ {pair, Counter(FP, pair) + 1}  
│  │  │  if counter(pair, FP(t)) satisfies r then  
│  │  │  │  St ≔ true 
│  │  │  │  S(t') ≔ true 
│  │  │  else   
│  │  │  │  St ≔ false 
│  │  │  └end if 
│  │  └end if 
│  └end for   
│  S(t) ≔ St 
│  execute f 
│  for each thread t'  p, t  t' do  
│  │  FP(t) ≔ FP(t) ∪ {pair, 1} 
│  └end for 
└ end Function 
Function onMemoryAccess(Thread t, Event e) 
│  if S(t) =  true then  
│  │  call data race detector 
│  └end if 
└ end Function 
//The End of an Execution 
Let FPairs' be an empty map. 
for each thread t  p do 
│  FPairs' ≔ FPairs' ∪ F(t) 
└end for 
save FPairs' 
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starts an execution, it duplicates the given map data (line 7). 
During an execution, AtexRace only checks whether the pair 
exists in the map FP of the current thread (lines 14 and 19). If a 
pair already exists in a thread-local map, its counter is incre-
mented by 1 at line 18. At the end of an execution, AtexRace 
merges all thread-local maps and saves the merged map (lines 
39–43).  

Secondly, we do not record all function pairs observed in pre-
viously executions. Instead, we only keep the recently frequently 
observed function pairs. Given an execution e and a number n (n 
≥1), we define a function pair fx, fy to be n-frequent with respect 
to execution e if fx, fy is observed in current and all the n-1 
previous executions. Specially, when the value of n is 1, the 1-
frequent function pairs are those observed in the current execu-
tion. By keeping only, the n-frequent function pairs, the recorded 
function pairs are those frequently executed. This is reasonable 
not to sample these frequent function pairs to reduce sampling 
overhead. Hence, for each execution, the number of function 
pairs taken as input is small and does not increase with increas-
ing number of executions. The third and the fourth inputs to 
Algorithm 2 reflects this design, where n determines the function 
pairs in FPairs.  

By adopting thread-local maps and recording only n-frequent 
function pairs, the only side effect is that AtexRace may sample 
function pairs that have been sampled in the same execution due 
to the content difference of different threads within the same 
execution. This may incur unnecessary overhead. However, it 
produces no bad result on the data race coverage as sampling the 
same functions more than one time also increases the probability 
to detect those missed data races (see the first kind of limitations 
in Section 4.3).  

4.5 AtexRace on Example Program 
In this section, we use the running example in Figure 2 to illus-
trate how AtexRace sampling its executions in Figure 4. Initially, 
both functions f1 and f3 are sampled as the input FPairs are emp-
ty. Such sampling continues until in each thread the recorded 
functions pairs contain f1, f3. Probably1, after a certain number 
of calls to both functions, AtexRace stops continuous sampling of 
f1 and f3 because f1, f3 is hot. Of course, in our algorithm, func-
tions in a hot pair still have chances to be sampled due to our 
burst sampling strategy.  

Next, suppose thread t1 calls f2 for the first time while t2 is ex-
ecuting f3. Because pair f2, f3 is cold, AtexRace restarts to sample 
function f2. Of course, f3 is sampled as well. Similarly, AtexRace 
restarts to sample function f1 if functions f1 and f4 are executed at 
the same time. On the other hand, if it is f2 and f4 that are exe-
cuted at the same time, neither f1 nor f3 is sampled.  

Hence, for cases (c) and (d), AtexRace has a larger probability 
to detect the two races that are probably missed by LiteRace. 
However, for cases (a) and (b), although there is no race, 

                                                                 
1 In this section, we frequently used the word "probably" because the execu-

tion of multiple threads is undetermined. E.g., we say that, if functions f1 and 
f3 are called multiple times (as shown in Figure 2), most of their executions 
are simultaneous. But in theory, it is possible that all executions of function 
f1 are executed before any execution of function f3. Or given two threads that 
can be executed in parallel, there are executions where they can be sequen-
tially executed. 

AtexRace still samples the first calls to function f3 and f4. In the 
subsequent execution, after functions f3 and f4 are called for sev-
eral times, AtexRace stops the continuous sampling of the two 
functions.  

After one execution of the example program, AtexRace rec-
ords the observed function pairs (probably the four pairs: f1, 
f3,f1, f4,f2, f3, and f2, f4). If the program is executed again, 
AtexRace may not continuously sample the function pairs al-
ready collected. Hence, the total overhead to detect data race can 
be reduced, not only within the same execution but also across 
different executions of the same program.  

4.6 Discussion on AtexRace 
We aim to reduce race detection overhead without sacrificing 
race detection capability when there are many test cases. 
AtexRace does not target a single execution as one of our innova-
tions is to record the recently observed function pairs and skips 
their sampling in subsequent executions. Hence, on a small 
number of executions, it may initially incur larger overhead than 
that by FastTrack and LiteRace (see Figure 8 (a) and Figure 10 in 
our experiment). AtexRace is more suitable for programs (e.g., 
industrial programs) that are tested against a large number of 
test cases. Of course, as a dynamic sampling approach, it also 
reports false negatives.  

Figure 7 shows the ideal scenario of AtexRace. Initially, 
AtexRace may incur higher overhead than LiteRace or even 
FastTrack. However, with increasing number of executions, 
AtexRace gradually incurs lower overhead. 

5. EXPERIMENTS 
This section presents the evaluation on AtexRace. We compared 
it with LiteRace and FastTrack. Because FastTrack is one of the 
fastest and most widely used tools in this category. It fully de-
tects data races and can be considered as a sampling tool with a 
rate of 100%. And LiteRace is the state-of-the-art in-house sam-
pling tool. Both are representative and well-known.  

5.1 Implementation and Benchmarks 
Implementation. We have implemented AtexRace, FastTrack 
and LiteRace on top of Pintool [11][32], a widely used binary 
instrumentation framework. Our implementation targets multi-
threaded programs with Pthread library on Linux 32 system. 
Note that, Pintool runs like a virtual machine [32] and incurs 
large overhead. A better implementation can be done as the orig-
inal LiteRace implementation [34] (i.e., to integrate sampling 
tools into the program under testing at compilation time).   

Function encoding. On Linux platform, Pintool modes each 
program as Image that contains Sections and each section con-

Cumulative number of executed test cases

Overhead

FastTrack

LiteRace

 
Figure 7. Ideal overhead changes with increasing executions. 



ESEC/FSE'17, September 4-8 2017, Paderborn, Germany Y. Guo, Y. Cai, and Z. Yang  

 

sists of multiple Routines (or functions). We use a 32-bit integer 
to encode a routine. The first 6 bits are used as the Image identi-
fier and the remaining 26 bits are used as routines identifier per 
image. This encoding allows at most 26 =  64 images and 2 6 ≈
64 × 106 routines per-image, which is enough in practice.   

Benchmarks. We choose the Parsec benchmark suite 3.1 [2] 
to evaluate the race detectors. The suite consists of 13 bench-
marks. After eliminating the benchmarks that are not multi-
threaded or cannot be compiled under the Pin environment, we 
obtain five benchmarks: Blackscholes, Bodytrack, Canneal, 
Freqmine, and Streamcluster. In our experiments, we run each 
benchmark from Parsec for 100 times to collect their results. 

Table 1 gives the source code size (SLOC) of the five bench-
marks. It can be observed that the lines of code range from 1.3K 
to 16K. To further evaluate the performance of AtexRace, we 
select the MySQL database server (v6.0.4), a widely used real-
world program. The version we use, mysql-6.0.4-alpha, has 
1,114,980 lines of code. Among the 399 test cases that comes with 
its distribution, 223 of them can be successfully executed in the 
Pin environment. We run all the 223 test cases in our 
experiment.  

5.2 Experimental Setup 
Our experiments were performed on a workstation (ThinkPad 
W540) with an i7-4710MQ CPU (four cores), 16G memory, and 
250G SSD. The workstation was installed with Ubuntu 14.04 x86 
system. For AtexRace, we set its sampling rate and the value n 
(determining n-frequent function pairs) to be 10/100 and 2, re-
spectively. For LiteRace, we adopt the fixed thread-local sampling 
configuration as defined in previous work [34].  

5.3 Result Analysis on Parsec Benchmark Suite 
5.3.1 Overall Results. For all techniques, Table 1 gives the time of 
the executions spent by Pin and the three tools of the bench-
marks, the overhead of the race detectors compared to the time 
consumed by Pin framework, and the number of unique races 
(i.e., the number of variables in the source code) detected by each 
tool.  

As expected, both LiteRace and AtexRace are much faster than 
FastTrack by reducing about 40% overhead based on Pin. It can 
also be observed that LiteRace and AtexRace incurred almost the 
same average overhead. On race detection capability, both LiteR-
ace and AtexRace outperform FastTrack. At first glance, the re-
sults are surprising. However, it is known that sampling perturbs 
thread scheduling so a race detector with sampling runs different 
executions with the one without sampling, even under the same 
test case. Such phenomenon is previously observed [15]. Table 1 
shows that LiteRace detects 53% more unique races than 
FastTrack, all of the additional races are from the single bench-
mark Freqmine. AtexRace detects 12% more unique races than 
LiteRace.  

The above results indicate that AtexRace detect the most 
number of races at a cost almost the same as LiteRace. However, 
among the five benchmarks LiteRace is better in only two of 
them. On the other hand, the three benchmarks seem to have 
very few races (or even no races) so none of the race detectors 
can discover more races. When there are more races, the benefit 
of AtexRace seems obvious. Since these relatively small bench-
marks do not give a doubtless evaluation of AtexRace, we further 
evaluate our approach on a large real-world database server 
MySQL. But before we present our empirical study on MySQL, 

Table 1. The statistics of Parsec benchmark and its overall results. 

Benchmarks Size (SLOC) 
Time (seconds) Overhead (%)  # of Unique Races 

Pin FT LR AR FT LR AR  FT LR AR 

Blackscholes 1,380 1048.53 1612.63 1652.39 1604.82 53.80% 57.59% 53.05%  0 0 0 

Bodytrack 16,479 633.396 884.281 718.466 686.812 39.61% 13.43% 8.43%  14 14 32 

Canneal 2,847 3314.22 7237.03 3640.18 4947.22 118.36% 9.84% 49.27%  2 2 2 

Freqmine 2,192 2812.04 6451.47 4398.5 3317.82 129.42% 56.42% 17.99%  160 263 280 

Streamcluster 1,795 111.626 135.767 131.325 131.915 21.63% 17.65% 18.18%     8 8 8 

     Avg.: 72.56% 30.98% 29.38% Sum: 190 291 326 
  
 

 
Figure 8. The trend of overhead with increasing number of executions. 
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we use Parsec to illustrate the advantage of cross-execution 
sampling of AtexRace.  

5.3.2 Overhead Trend Across Executions. One of key features 
of AtexRace is its cross-execution sampling, which may result in 
lower overhead with increasing number of executions. In Figure 
8, we show how the overhead changes with increasing number 
of executions for three techniques on the five benchmarks. In 
each subfigure, the x-axis shows the number of executions; and 
the y-axis shows the overhead incurred by three techniques on 
each execution. The cumulative overhead on the i-th execution is 
calculated by the following formula:  

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑(𝑖) =
∑(𝑇𝑡𝑜𝑜𝑙(𝑖))−∑(𝑇𝑝𝑟𝑜𝑔(𝑖))

∑(𝑇𝑝𝑟𝑜𝑔(𝑖))
× 100%      (Eq. 1) 

where 𝑇𝑡𝑜𝑜𝑙(𝑖) represents the execution time under a tool on the 
i-th execution, and 𝑇𝑝𝑟𝑜𝑔(𝑖) represents the native program exe-
cution time under Pin.  

From Figure 8, we see that, overall, FastTrack and LiteRace 
incur almost the same overhead across executions (i.e., nearly a 
horizontal line). Except the first benchmark, LiteRace's overhead 
is much lower than that by FastTrack, which is expected due to 
the sampling of LiteRace. However, on Blackscholes, LiteRace 
incurs larger overhead than that by FastTrack. We have per-
formed several additional experiments and confirmed the results.  

For AtexRace, overall, its overhead decreases with increasing 
number of executions, although the trend is less obvious in 
Steamcluster. This is consistent with our theoretical analysis in 
Section 4.6.  It can also be observed that, with increasing number 
of executions, AtexRace's performance becomes the best on three 
benchmarks (i.e., the subfigure (a), (b), and (d)). However, the 
overhead reduction reaches a plateau after a certain number of 
executions. This is not surprising because according to Section 
5.3.3 the number of recorded function pairs barely increases.  

5.3.3 Number of Function Pairs. As a Parsec benchmark is re-
peatedly executed under the same input, there is no obvious 
increase in the number of function pairs with more executions. 
After 100 executions, the number of functions pairs of the five 
benchmarks are 9, 409, 46, 250, and 23. If we store 2-frequent 
pairs only, the number of function pairs after 100 executions are 
8, 227, 32, 232 and 16.  

5.4  Result Analysis on MySQL 
MySQL has one million lines of code. We run it against 223 test 
cases in the default order of the test script "mysql-test-run".  

5.4.1 Number of Detected Races. Figure 9(a) gives the number 
of unique races that are detected by FastTrack, LiteRace and 

AtexRace after 223 executions of MySQL. Not surprisingly, com-
pared with LiteRace, AtexRace detects 23% more unique races. 
What we have not expected is that AtexRace detects even 15% 
more unique races than FastTrack.  Of course, as explained in 
Section 5.3.1, this is possible because sampling perturbs thread 
scheduling. However, we would like to have a clearer picture of 
race detecting capability. Thus, we collect data on all the races, 
not just unique races, that are detected by the three tools. Alt-
hough in theory unique races are more interesting, in practice 
the number of total races is helpful to debugging because they 
can illustrate different scenarios how a race occurs. Detecting the 
same traces multiple times is also a good indicator of a race de-
tector’s capability.  

The results of total races are illustrated in Figure 9(b). The 
number of total races is significantly more than the number of 
unique races. It can be observed that FastTrack detects the most 
races, but AtexRace is a very close second. LiteRace, on the other 
hand, detects significantly fewer number of races than the other 
two.  

5.4.2 Overhead. Figure 10 depicts how the overhead (y-axis) 
changes across 223 executions (x-axis). Unlike benchmarks from 
Parsec where all repeated executions are conducted against the 
same test cases, each of the 223 MySQL executions is conducted 
against a different test case. Therefore, on MySQL, FastTrack (as 
well and LiteRace and AtexRace) may incur different overhead on 
different executions. The formula to calculate the cumulative 
overhead of the first i executions is the same as that on Parsec 
(i.e., Eq. 1).  

The results shown in Figure 10 are as expected, where 
FastTrack incurs the largest overhead over native execution on 
Pin and LiteRace incurs the smallest. Although AtexRace’s over-
head is larger than LiteRace’s, the gap is gradually shrinking. At 
the end of all 223 executions, AtexRace incurs almost the same 
overhead as that by LiteRace. Given more test cases, AtexRace 
may have a chance to incur less overhead than LiteRace.  

Considering both Figure 9 and Figure 10, our experiments 
confirm that AtexRace achieves a sweet spot between LiteRace 
and FastTrack, by detecting almost the same number of races as 
FastTrack at a cost almost the same as LiteRace.  

5.4.3 Number of Function Pairs. AtexRace does not record all 
observed function pairs but only keeps recently observed ones to 
avoid potentially unlimited increase on the number of function 
pairs. Figure 11 shows a comparison on the cumulative number 
of function pairs (y-axis) with the increasing number of execu-
tions (up to 223). The two lines represent the data by recording 
all observed ones ("All Pairs") and recording recently observed 

     
(a) # unique races. (b) # dynamic races   

Figure 9. The number of races detected by three. 
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Figure 10. The cumulative overhead of three techniques 
with increasing executions. 
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ones ("2-frequent Pairs"), respectively.  
We observe that, with increasing number of executions, the 

number of all function pairs also increases. After 223 executions, 
the number of observed function pairs is nearly 70,000. If we 
keep all these function pairs, a large overhead on querying is 
inevitable, which may eventually offset the benefit of sampling. 
This is the reason we only rely on the recently observed function 
pairs. From Figure 11, we see that this strategy is effective, as 
over all the 223 executions, the numbers of the 2-frequent func-
tion pairs are almost always below 10,000 (with only six excep-
tions). And on 198 out of 223 (~89%) executions, there are less 
than 5,000 function pairs. On average, there are 3,320 function 
pairs on each execution. Our experiments are all performed with 
2-frequent function pairs and the data confirm its effectiveness.  

6. RELATED WORK 
Data races [10][16] are extremely difficult to be found and re-
produced. Both static techniques [25] [37][42][51] and dynamic 
techniques [16][41][44][47][54] aim to detect data races. Static 
ones [51][42] can analyse the source code of a whole program; 
however, due to lack of runtime information, static approaches 
can easily report many false positives. Dynamic ones analyse 
concrete executions to detect data races according to some rules 
(e.g., the lockset discipline [44][46][56] and the happens-before 
relation [6][16][41][43][50][52]). Although dynamic techniques 
are relatively precise, they incur heavy overhead.  

We have heavily discussed sampling approaches on data race 
detection. CRSampler [12] also targets on sampling but its main 
purpose is at user site. It is based on hardware breakpoints and 
clock races to detect data races. DataCollider [14] purely relies on 
hardware breakpoints to detect those occurred data race by sus-
pending threads. AtexRace aims at in-house sampling.  

To explore all possible executions is one direction to find 
concurrency bugs (e.g., Model checking [53][35]). However, it is 
usually impossible to explore all the interleaving although they 
may achieve certain coverage [28]. Practically, enumerating each 
schedule is not practical for large-scale real-world programs, 
even with reduction techniques [18].  

Therefore, to explore a small portion of interleaving space 
that are error prone is also one direction. Chess [35] sets a heu-
ristic bound on the number of pre-emptions to explore the 
schedules. Also, although systematic approaches avoid executing 
previously explored schedules, they usually incur large over-
heads and fail to scale up to handle long running programs. For 
example, Maple [55] is a coverage-driven [8][19] tool to mine 
thread interleaving so as to expose unknown concurrency bugs. 
PCT [9][36] randomly schedules a program to expose concur-

rency bugs, which also requires large number of executions. 
However, it is difficult to apply these techniques to large-scale 
programs such as MySQL.  

Other works aim to firstly predict a set of potential data races 
and then to verify them. RVPredict [22] achieves a strictly higher 
coverage than HBR based detectors. It firstly predicts a set of 
potential races and then relies on a number of production execu-
tions to check against each predicted race. Racageddon [15] aims 
to solve races that could be predicted in one execution but re-
quire different inputs. It still needs a larger number of executions 
to check against each predicted race [39][45]. Both RVPredict 
and Racageddon have to solve scheduling constraints for each 
predicted race, which may fail. RaceMob [26] statically detects 
data race warnings and distributes them to a large number of 
users to validate real races. In such a run, the schedules are guid-
ed by the set of data race warnings to trigger real data races. This 
kind of approach is able to confirm real races but cannot elimi-
nate false positives. Besides, it may miss real races if such races 
are not predicted in the (static) prediction phase.  

DrFinder [10] tries to predict the happens-before relation to 
further expose races hidden by the happens-before relation. It 
dynamically predicts and tries to reverse happens-before rela-
tions from observed executions. However, its active scheduling is 
also heavy (e.g., about 400% [10] for Java programs).  

CCI [24] proposes cross-thread sampling strategies to find 
causes of concurrency bugs based on randomized sampling. 
Unlike race sampling techniques (e.g., CRSampler, DataCollider, 
Pacer, and LiteRace), CCI focuses on failure diagnosis. However, 
CCI may cause heavy overhead (e.g., up to 900% [24]) although 
it targets on lightweight sampling. Carisma [58] improves Pacer 
by further sampling memory locations allocated at the same 
program location for Java. Valor [4] infers data races by 
detecting region confilt, which has good performance compared 
with FastTrack.  

Bedides multithreaded programs, data race may also exist in 
other kinds of pgorams, such even-driven programs such as 
android applications [33][21][20], concurrent library invocations 
[13], and modified program codes [57]. AtexRace could also be 
adapted to detect these races. We leave it as future work.  

7. CONCLUSION 
We have proposed a new cross-thread and cross-execution sam-
pling approach to achieve both high race detection rate and high 
efficiency. By adopting several novel designs, our prototype 
AtexRace shows its potential to replace FastTrack and LiteRace. 
This is confirmed by the experiments with benchmarks obtained 
from both Parsec benchmark suite and a real-world large-scale 
MySQL database.  

ACKNOWLEDGEMENT 
We thank anonymous reviewers for their invaluable comments 
and suggestions on improving this work. This work is supported 
in part by National Natural Science Foundation of China (NSFC) 
(61502465, 61472318 and 61632015), National 973 program of 
China (2014CB340702), the Youth Innovation Promotion Associa-
tion of the Chinese Academy of Sciences (YICAS) (2017151), and 
the National Science Foundation (NSF) (DGE-1522883). 

 
Figure 11. The cumulative number of function pairs. 

0

10000

20000

30000

40000

50000

60000

70000

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3
1

1
4

1

1
5

1

1
6

1

1
7

1

1
8
1

1
9

1

2
0

1

2
1

1

2
2

1

All Pairs 2-frequent Pairs



AtexRace: Across Thread and Execution Sampling for In-House 
Race Detection 

ESEC/FSE'17, September 4-8 2017, Paderborn, Germany 
 

 

 

REFERENCE 
[1] B. Alpern, C.R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo, J.J. Barton, 

S.F. Hummel, J.C. Sheperd, and M. Mergen. Implementing jalapeño in Java. In 
Proc. OOPSLA, 314–324, 1999. 

[2] C. Bienia. Ph.D. Thesis: Benchmarking modern multiprocessors. Princeton 
University, January 2011.  

[3] S. Biswas, M. Cao, M. Zhang, M.D. Bond, and B.P. Wook. Lightweight data 
race detection for production runs. In Proc. CC, 11 – 21, 2017.  

[4] S. Biswas, M. Zhang, M. D. Bond, and B. Lucia. Valor: Efficient, Software-
Only Region Conflict Exceptions. In Proc. OOPSLA, 241–259, 2015.  

[5] S.M. Blackburn, R. Garner, C. Hoffmann, A.M. Khang, K.S. McKinley, R. 
Bentzur, A. Diwan, D. Feinberg, D. Frampton, S.Z. Guyer, M. Hirzel, A. Hosk-
ing, M. Jump, H. Lee, J. Eliot B. Moss, A. Phansalkar, D. Stefanović, T. 
VanDrunen, D. von Dincklage, and B. Wiedermann. The Dacapo benchmarks: 
Java benchmarking development and analysis. In Proc. OOPSLA, 169–190, 
2006. 

[6] E. Bodden and K. Havelund. Racer: effective race detection using AspectJ. In 
Proc. ISSTA, 155–166, 2008. 

[7] M.D. Bond, K. E. Coons and K. S. Mckinley. PACER: Proportional detection of 
data races. In Proc. PLDI, 255–268, 2010. 

[8] A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applications of synchroniza-
tion coverage. In Proc. PPoPP, 206–212, 2005. 

[9] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A randomized 
scheduler with probabilistic guarantees of finding bugs. In Proc. ASPLOS, 
167–178, 2010. 

[10] Y. Cai and L. Cao. Effective and precise dynamic detection of hidden races for 
Java programs. In Proc. ESEC/FSE, 450–461, 2015. 

[11] Y. Cai and W.K. Chan. LOFT: Redundant synchronization event removal for 
data race Detection. in Proc. ISSRE, 160–169, 2011. 

[12] Y. Cai, J. Zhang, L. Cao, and J. Liu. A deployable sampling strategy for data 
race detection. In Proc. FSE, 810–821, 2016.  

[13] D. Dimitro, V. Raychev, M. Vechev, and E. Koskinen. Commutativity race 
detection. In Proc. PLDI, 305–315, 2014.  

[14] J. Erickson, M. Musuvathi, S. Burckhardt and K. Olynyk. Effective data-race 
detection for the kernel. In Proc. OSDI, 1–6, 2010. 

[15] M. Eslamimehr and J. Palsberg. Race directed scheduling of concurrent pro-
grams. In Proc. PPoPP, 301–314, 2014. 

[16] C. Flanagan and S. N. Freund. FastTrack: efficient and precise dynamic race 
detection. In Proc. PLDI, 121–133, 2009. 

[17] C. Flanagan and S. N. Freund. The RoadRunner dynamic analysis framework 
for concurrent programs. In Proc. PASTE, 1–8, 2010. 

[18] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model 
checking software. In Proc. POPL, 110–121, 2005. 

[19] S. Hong, J. Ahn, S. Park, M. Kim, and M.J. Harrold. Testing concurrent pro-
grams to achieve high synchronization coverage. In Proc. ISSTA, 210–220, 
2012. 

[20] S. Hong, Y. Park, and M. Kim. Detecting concurrency errors in client-side 
java script web applications. In Proc. ICST, 61–70, 2014. 

[21] C. Hsiao, Y. Yu, S. Narayanasamy, Z. Kong, C.L. Pereira, G.A. Pokam, P.M. 
Chen, and J. Flinn. Race detection for event-driven mobile applications. In 
Proc. PLDI, 326–336, 2014. 

[22] J. Huang, P.O. Meredith, and G. Rosu. Maximal sound predictive race detec-
tion with control flow abstraction. In Proc. PLDI, 337–348, 2014.  

[23] J. Jackson. Nasdaq's Facebook glitch came from 'race conditions', May 21 
2012. http://www.computerworld.com/article/2504676/financial-it/nasdaq-s-
facebook-glitch-came-from--race-conditions-.html, last visited on March 
2016. 

[24] G. Jin, A. Thakur, B. Liblit and S. Lu. Instrumentation and sampling strategies 
for cooperative concurrency bug isolation. In Proc. OOPSLA, 241–225, 2010. 

[25] V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta. Fast and accurate 
static data-race detection for concurrent programs. In Proc. CAV, 226–239, 
2007. 

[26] B. Kasikci, C. Zamfir, and G. Candea. RaceMob: Crowdsourced data race 
detection. In Proc. SOSP, 406–422, 2013. 

[27] L. Lamport. Time, clocks, and the ordering of events. Communications of the 
ACM 21(7):558–565, 1978. 

[28] Z. Letko, T. Vojnar, and B. Kˇrena. Coverage metrics for saturation-based and 
search-based testing of concurrent software. In Proc. RV, 177–192, 2011. 

[29] N.G. Leveson and C. S. Turner. An investigation of the Therac-25 accidents. 
Computer, 26(7), 18–41, 1993. 

[30] S. Lu, S. Park, E. Seo, and Y.Y. Zhou, Learning from mistakes: A comprehen-
sive study on real world concurrency bug characteristics. In Proc. ASPLOS, 
329–339, 2008. 

[31] B. Lucia and L. Ceze. Cooperative empirical failure avoidance for multi-
threaded programs. In Proc. ASPLOS, 39–50. 2013. 

[32] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. 
Reddi, and K. Hazelwood. Pin: Building Customized Program Analysis Tools 
with Dynamic Instrumentation. In Proc. PLDI, 191–200, 2005. 

[33] P. Maiya, a. Kanade, and R. Majumdar. Race detection for Android applica-
tions. In Proc. PLDI, 316–325, 2014. 

[34] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: effective sampling 
for lightweight data-race detection. In Proc. PLDI, 134–143, 2009. 

[35] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu. 
Finding and reproducing heisenbugs in concurrent programs. In Proc. OSDI, 
267–280 2008. 

[36] S. Nagarakatte, S. Burckhardt, M. M.K. Martin, and M. Musuvathi. Multicore 
acceleration of priority-based schedulers for concurrency bug detection. In 
Proc. PLDI, 2012, 543–554, 2012. 

[37] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for Java. In 
Proc. PLDI, 308–319, 2006. 

[38] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder. Automati-
cally classifying benign and harmful data races using replay analysis. In Proc. 
PLDI, 22–31, 2007. 

[39] C.S. Park, K. Sen, P. Hargrove, and C. Iancu. Efficient data race detection for 
distributed memory parallel programs. In Proc. SC, 2011. 

[40] K. Poulsen. Software bug contributed to blackout. 
http://www.securityfocus.com/news/8016, Feb. 2004. 

[41] E. Pozniansky and A. Schuster. Efficient on-the-fly data race detection in 
multithreaded C++ programs. In Proc. PPoPP, 179–190, 2003. 

[42] P. Pratikakis, J.S. Foster, and M. Hicks. LOCKSMITH: context-sensitive corre-
lation analysis for race detection. In Proc. PLDI, 320–331, 2006.  

[43] A.K. Rajagopalan and J. Huang. RDIT: race detection from incomplete traces. 
In Proc. ESEC/FSE, 914 - 917, 2015. 

[44] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro and T. Anderson. Eraser: a 
dynamic data race detector for multithreaded programs. ACM TOCS, 15(4), 
391–411, 1997. 

[45] K. Sen. Race Directed Random Testing of Concurrent Programs. In Proc. PLDI, 
11–21, 2008. 

[46] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: data race detection in 
practice. In Proc. WBIA, 62–71, 2009.  

[47] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan. Sound predic-
tive race detection in polynomial time. In Proc. POPL, 387–400, 2012.  

[48] F. Sorrentino, A. Farzan, and P. Madhusudan. PENELOPE: weaving threads to 
expose atomicity violations. In Proc. FSE, 37–46, 2010. 

[49] Microsoft. Thread execution blocks. 
http://msdn.microsoft.com/enus/library/ms686708.aspx 

[50] K. Vineet and C. Wang. Universal causality graphs: a precise happens-before 
model for detecting bugs in concurrent programs. In Proc. CAV, 434–449, 
2010. 

[51] J.W. Voung, R. Jhala, and S. Lerner. RELAY: static race detection on millions 
of lines of code. In Proc. FSE, 205–214, 2007. 

[52] C. Wang, K. Hoang. Precisely Deciding Control State Reachability in Concur-
rent Traces with Limited Observability. In Proc. VMCAI, 376–394, 2014. 

[53] C. Wang, M. Said, and A. Gupta. Coverage guided systematic concurrency 
testing. In Proc. ICSE, 221–230, 2011. 

[54] X.W. Xie and J.L. Xue. Acculock: Accurate and Efficient detection of data 
races. In Proc. CGO, 201–212, 2011. 

[55] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple: a coverage-driven 
testing tool for multithreaded programs. In Proc. OOPSLA, 485–502, 2012. 

[56] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: efficient detection of data race 
conditions via adaptive tracking. In Proc. SOSP, 221–234, 2005. 

[57] T. Yu, W. Srisa-an, and G. Rothermel. SimRT: An automated framework to 
support regression testing for data races. In Proc. ICSE, 48–59, 2014. 

[58] K. Zhai, B.N. Xu, W.K. Chan, and T.H. Tse. CARISMA: a context-sensitive 
approach to race-condition sample-instance selection for multithreaded ap-
plications. In Proc. ISSTA, 221–231, 2012. 

[59] W. Zhang, M. d. Kruijf, A. Li, S. Lu and K. Sankaralingam. ConAir: feather-
weight concurrency bug recovery via single-threaded idempotent execution. 
In Proc. ASPLOS, 113–126. 2013. 

 
 
 


	1. Introduction
	2. Background
	2.1 Multithreaded Programs
	2.2 Data Races

	3. Motivations
	3.1 Motivating Example
	3.2 Heavy Overhead of Dynamic Data Race Detection
	3.3 Limitations of Existing Sampling Approaches

	4. Our Approach
	4.1 Goal and Challenges
	4.2 Basic AtexRace Algorithm
	4.3 Limitations of Basic AtexRace
	4.4 Optimizations
	4.5 AtexRace on Example Program
	4.6 Discussion on AtexRace

	5. Experiments
	5.1 Implementation and Benchmarks
	5.2 Experimental Setup
	5.3 Result Analysis on Parsec Benchmark Suite
	5.4  Result Analysis on MySQL

	6. Related Work
	7. Conclusion
	ACKNOWLEDGEMENT
	Reference

