

AtexRace: Across Thread and Execution Sampling for In-House Race
Detection

Yu Guo †

Department of Computer Science
Western Michigan University

Kalamazoo, MI, USA
yu.guo@wmich.edu

Yan Cai †, ‡

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of

Sciences, Beijing, China
ycai.mail@gmail.com

Zijiang Yang ‡
Department of Computer Science

Western Michigan University
Kalamazoo, MI, USA

zijiang.yang@wmich.edu

ABSTRACT
Data race is a major source of concurrency bugs. Dynamic

data race detection tools (e.g., FastTrack) monitor the executions
of a program to report data races occurring in runtime. However,
such tools incur significant overhead that slows down and per-
turbs executions. To address the issue, the state-of-the-art dy-
namic data race detection tools (e.g., LiteRace) apply sampling
techniques to selectively monitor memory accesses. Although
they reduce overhead, they also miss many data races as con-
firmed by existing studies. Thus, practitioners face a dilemma on
whether to use FastTrack, which detects more data races but is
much slower, or LiteRace, which is faster but detects less data
races. In this paper, we propose a new sampling approach to
address the major limitations of current sampling techniques,
which ignore the facts that a data race involves two threads and
a program under testing is repeatedly executed. We develop a
tool called AtexRace to sample memory accesses across both
threads and executions. By selectively monitoring the pairs of
memory accesses that have not been frequently observed in cur-
rent and previous executions, AtexRace detects as many data
races as FastTrack at a cost as low as LiteRace. We have com-
pared AtexRace against FastTrack and LiteRace on both Parsec
benchmark suite and a large-scale real-world MySQL Server with
223 test cases. The experiments confirm that AtexRace can be a
replacement of FastTrack and LiteRace.

CCS CONCEPTS

• Software and its engineering ➝ Software testing and de-
bugging • Theory of computation ➝ Program verification.

KEYWORDS
Data race, sampling, concurrency bugs

ACM Reference format:

Yu Guo, Yan Cai, and Zijiang Yang. 2017. AtexRace: Across
Thread and Execution Sampling for In-House Race Detection. In
Proceedings of 11th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Paderborn, Germany, Sep-
tember 4-8 2017 (ESEC/FSE'17), 11 pages.
http://dx.doi.org/10.1145/3106237.3106242

1. INTRODUCTION
A data race (or race for short) occurs when two or more threads
access the same memory location at the same time, and at least
one of them is a write [16]. Race is a major source of concurren-
cy bugs [38] and may result in real-world disasters [23][29][40].

Static race detection techniques are scalable but may report
many false positives [25][37][42][51]. Various filters have been
developed to address this issue. However, false positives remain
and false negatives emerge with these filters in the static race
detection tools [37]. Dynamic techniques report much fewer
false positives. They are mainly based on either the lockset disci-
pline [44] or the happens-before relation [16][27]. The former
requires that all accesses to a shared memory location should be
protected by a common set of locks. The latter [27] is usually
implemented via vector clocks [16] to track the status of threads,
locks and memory locations. Happens-before based race detec-
tors (HB detectors for short) report less false positives but incur
higher overhead than the lockset based ones. FastTrack [16], by
avoiding a large number of O(n) operations on memory accesses,
reduces the overhead to the level as that of the lockset based race
detectors. Even so, by continuously monitoring all memory ac-
cesses of a multithreaded program, FastTrack still incurs from
400% to 800% overhead [10][16][54].

Sampling [7][34][58] is a promising technique to reduce the
overhead of dynamic detectors by selectively monitoring
memory accesses. There are two types of sampling. With the
assumptions that concurrency bugs cannot be eliminated during
testing and daily uses of released software provide a large test
bed, the first type attempts to detect races at user sites, including
Pacer [7], CRSampler [12], and a possible adaption of DataCollid-
er [14]. This type of sampling must be extremely light-weight
(i.e., <5% overhead [3][26][31][59]). And they usually detect a
small number of data races depending on the sampling rate and
the overhead limit.

The second type aims at reducing in-house testing overhead.
Before releasing a software, the developers usually test the pro-
gram against a large number of test cases, and for each test case,
the program may be executed multiple times. Lower overhead

† Co-first author.
‡ Corresponding authors.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ESEC/FSE'17, September 04-08, 2017, Paderborn, Germany
© 2017 Copyright is held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5105-8/17/09…$15.00
http://dx.doi.org/10.1145/3106237.3106242

ESEC/FSE'17, September 4-8 2017, Paderborn, Germany Y. Guo, Y. Cai, and Z. Yang

enables more testing and thus less races in the tested software.
LiteRace [34] is a representative tool in this category. It is based
on the hypothesis that undetected races often exist in cold func-
tions that have not been frequently called. Therefore, LiteRace
reduces overhead by avoiding the sampling of memory accesses
in hot functions that have been frequently executed.

Figure 1 shows a code sketch with two threads t1 and t2.
Functions f1 and f2 are repeatedly executed in t1, and f3 and f4 are
repeatedly executed in t2. Races occur when f1 and f4 execute
simultaneously, and when f2 and f3 execute simultaneously. As-
sume that t1 is executed more frequently than t2 and the then-
branches are executed more frequently than the else-branches.
Initially all functions are cold, but quickly f1 becomes hot while
other three functions are still cold. At this moment LiteRace stops
monitoring f1 and becomes faster than FastTrack because the
latter still continuously monitors f1. After a while f2 and f3 get a
chance to be executed. Since both functions are cold, LiteRace

still monitor their executions and thus can report the race be-
tween f2 and f3 at a cost lower than that of FastTrack. Next f4 is
executed at the same time with f1. In this case LiteRace fails to
detect the race between f1 and f4 because it already stopped
tracking f1. On the other hand, FastTrack can catch the race be-
cause it still monitors f1. This example illustrates the dilemma in
choosing between full scale tools and sampling based tools. A
programmer has to either sacrifices efficiency for accuracy, or
sacrifices accuracy for efficiency.

We argue that programmers do not have to choose between
efficiency and accuracy. This is achievable because there are two
major limitations in current sampling techniques. From the defi-
nition, a race occurrence requires two memory accesses of differ-
ent threads. Therefore, sampling memory accesses in isolation is
ineffective. The aforementioned example shows that a function f
may become hot before any other functions that race with f. In
this case, sampling those functions that race with f is useless. We
call this inefficiency thread-local sampling because it does not
consider other threads when it decides whether to sample the
current thread. The second major limitation is that sampling
algorithms remain the same for all the executions of a program.
This is ineffective because in in-house testing a program is usu-
ally executed repeatedly against a large set of test cases. For a
multithreaded program, a develop may even run it multiple
times under a single test case. The net effect of current sampling
strategy is that those functions that are cold in individual execu-
tion but hot in accumulative executions are repeatedly sampled.
We call this inefficiency execution-local sampling as it does not
consider previous executions when decides whether to sample
the current execution.

In this paper, we propose AtexRace, a new dynamic race de-
tection tool based on across-thread and across-execution sam-
pling. It is designed to sample memory access pairs from differ-
ent threads and is also aware of executions. However, several

challenges must be resolved to make it practical. Firstly, tracking
memory accesses across threads incurs much larger overhead
than tracking thread-local data only (e.g., higher cache miss
rate). Secondly, even if a pair of memory accesses is observed to
be race-free before, it does not mean that the pair will not race
later. This is because while instructions are static, the memory
addresses they access are dynamic. Lastly, AtexRace avoids sam-
pling previously observed memory pairs, which requires addi-
tional recording. With increasing number of executions, the rec-
orded data set may grow rapidly, which further slows down the
sampling processes (e.g., the need of more time to search
memory access pairs).

We have implemented AtexRace, FastTrack, and LiteRace on
top of Pin [32] and evaluated them on five programs on Parsec
benchmark suite [2] and a real-world program MySQL. In the
experiments, we run each Parsec program for 100 times and run
MySQL under 223 different test cases. The experimental results
surprisingly show that AtexRace detects more races in Parsec
benchmarks than FastTrack does! As for MySQL, AtexRace de-
tects almost the same number of dynamic races as that by
FastTrack. LiteRace, as predicted, detects significantly fewer races
than both FastTrack and AtexRace. If we do not consider the
same races that are detected again, AtexRace detects more unique
races than FastTrack and LiteRace. In terms of efficiency, LiteRace
and AtexRace reduce almost the same percentage of overhead on
top of FastTrack. This makes AtexRace a replacement of
FastTrack and LiteRace. The main contributions of this paper are:
 We present a novel sampling technique called AtexRace to-

ward race detection. Unlike existing sampling techniques
that are thread-local and execution-local, AtexRace is across-
thread and across-execution.

 To make AtexRace practical, we have designed optimization
heuristics that include (1) utilizing thread-local storage to
avoid competing accesses to shared sampling data set, (2)
exploiting burst sampling strategy to enhance race cover-
age, and (3) adopting n-frequent (function) pairs to improve
map lookup efficiency.

 We have implemented AtexRace and conducted a set of ex-
periments on benchmarks including a real-world large-scale
program MySQL. Our experiments confirm that AtexRace
detects as many races as FastTrack at a cost as low as LiteR-
ace. The tool is at http://lcs.ios.ac.cn/~yancai/atexrace .

2. BACKGROUND

2.1 Multithreaded Programs
A multithreaded program consists of a set of threads, a set of
locks (or lock/synchronization objects), and a set of memory
locations (or locations for short). Each thread 𝑡 has a unique
thread identifier 𝑡𝑖𝑑, denoted as 𝑡. 𝑡𝑖𝑑. During an execution of a
multithreaded program p, each thread 𝑡 performs a sequence of
events e1, e2, …, ek. An event can be one of the following types:
(1) acq(m) or rel(m): synchronization events: to acquire or re-
lease a lock 𝑚. (Other synchronization events can be similarly
defined [16].) (2) read(x) or write(x): memory access events: to
read from or write to a memory location x, and (3) call(f) or
return(f): control events: to execute events in function f or re-
turn to execute the events from the previous function f.

1.

2.

3.

4.

Thread 𝑡
for (…){

if(…) f1();

else f2();

}

5.

6.

7.

8.

Thread 𝑡
for (…){

if(…) f3();

else f4();

}
Figure 1. A code sketch with two threads and four function
calls.

AtexRace: Across Thread and Execution Sampling for In-House
Race Detection

ESEC/FSE'17, September 4-8 2017, Paderborn, Germany

2.2 Data Races
Data races can be defined according to either the lockset disci-
pline [44] or the happens-before relation [27]. In this paper, we
adopt the later one as it is relatively precise [16]. However, our
sampling strategy is independent from concrete definitions. The
happens-before relation (denoted as ↣, HBR for short) is defined
by the three rules [27]: (1) If two events  and  are performed
by the same thread, and  appears before , then  ↣ , (2) If 
is a lock release event and  is a lock acquire event on the same
lock, and  appears before , then  ↣ , and (3) If  ↣  and 
↣ , then  ↣ . Given two memory access e1 and e2 that access
the same memory location and one of them is a write events, a
race occurs if neither e1 ↣ e2 nor e2 ↣ e1.

3. MOTIVATIONS

3.1 Motivating Example
Figure 2 shows a multithreaded program p that extends the code
sketch given in Figure 1. The program consists of two threads t1
and t2 operating on two shared variables x and y. There are two
locks m and n protecting accesses to shared variables x and/or y.
Given two parameters a, b, thread t1 consecutively calls func-
tion f1 for a times and then calls function f2 for a times within a
loop (lines 1–4); and thread t2 performs similar calls to functions
f3 and f4 each for b times (lines 17–20). The four functions in-
crease the values of x and y based on the passed parameters.

Due to the parallel execution of the two threads in Figure 2,
any pair of functions between threads t1 and t2 can potentially be
executed simultaneously. The four pairs of functions that can be
executed at the same time are f1, f3, f1, f4, f2, f3, and f2, f4.
For the pairs f1, f4 and f2, f3, as the variable y is protected by
different locks (i.e., lock m in function f1 and f3 but lock n in
function f2 and f4), races may occur. For example, if lines 9 and
30, or lines 14 and 25, are executed at the same time, the program
may produce incorrect results due to the race on variable y.

3.2 Heavy Overhead of Dynamic Data Race De-
tection
Dynamic race detectors usually incur large overhead [16][12]
due to heavy instrumentation and race checking per memory

access. This is unavoidable because they have to track whether
the pair of a current access and a previous access violates any
HBR. We use the memory access "x += i" in Figure 2 (line 8) to
illustrate the overhead. For each access to the location x, one
function call like onRead(x) or onWrite(x) is inserted [16], see
Figure 3. Within these calls, there are two types of operations
that cost time [16][17][34].

The first type is from fetching shadow data (or meta data
[16][34]) for each thread and each memory location. For each
memory location, dynamic ones track all accesses to it and store
the information at shadow memory (e.g., shadowMemory(x) in
Figure 3). Similarly, shadow threads (e.g., shadowThread(t) in
Figure 3) are used for each thread. Therefore, a memory access in
the original program is accompanied by several additional
memory accesses to get the shadow data for a memory location
and a thread (e.g., Sx and St for memory location x and thread t,
respectively). For the shadow threads, many instrumentation
frameworks provide fast access interface (e.g., Thread Local
Storage in Pin [32] and Thread Execution Blocks in Windows
[49]). However, to the best of our knowledge, no fast access to
shadow memory is supported. The latter is much difficult in
practice. For Java program, the shadow memory could be allocat-
ed together with the memory allocation in the original program
[17]. However, for C/C++ programs, this becomes difficult.

The second type is from race checking. After fetching shadow
data, the values from two shadow data (i.e., from the memory
location and from the current thread) are checked to detect any
HBR violation. This process also involves additional memory
accesses, especially the write operations to maintain the access
information (i.e., to update Sx in Figure 3). Note that, FastTrack
optimizes the process on race detection but it still requires
maintenance (read and write) on shadow data.

3.3 Limitations of Existing Sampling Ap-
proaches
Although dynamic approaches incur heavy overhead, they are
usually precise for data race detection. Therefore, sampling ap-
proaches have been proposed to reduce the runtime overhead by
tracking a subset of events and to detect races among them.

Existing sampling approaches include deployed sampling
[7][12] and in-house sampling [3][14]. The former approaches
are deployed at the users’ sites after a software is released. Such
approaches are based on the crowd-source testing: if there are
many users, races escaped during in-house testing may be de-
tected by sampling a tiny portion of an execution by each user.
Hence, deployed sampling requires extremely low run time

Instrumentation:

x += i;


tmp = x; onRead(x);
tmp += i;
x = tmp; onWrite(x);



(a)

Dynamic Data Race Detection:
onRead(x){ //or onWrite(x)
 Sx ≔ shadowMemory(x);
 St ≔ shadowThread(t); //t is the current

thread.
 if any previous and the current access to x

violates any HBR (from Sx and St) then
 report the violation as a data race.
 end if
 update Sx (from St).
} (b)

Figure 3. An illustration on the instrumentation and race
detection for each memory access.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

Thread 𝑡
for (i =1 to 2  a){

if(i < a) f1(i);
else f2(i);

}

Function f1(i){
acq(m)
x += i;
y += i;
rel (m)

}
Function f2(i){

acq(n)
y += i;
rel (n)

}

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

Thread 𝑡
for (j =1 to 2  b) {

if(j < b) f3(j);
else f4(j);

}

Function f3(j){
acq(m)
x += j;
y += j;
rel (m)

}
Function f4(j){

acq(n)
y += j;
rel (n)

}

Shared variables: int x = 0, y = 0; Lock m, n;

Input: a, b;

Figure 2. A program with races on variable y between line
9 and line 30, and between line 14 and line 25.

ESEC/FSE'17, September 4-8 2017, Paderborn, Germany Y. Guo, Y. Cai, and Z. Yang

overhead (e.g., 5% [7]). The latter attempts to reduce runtime
overhead during in-house testing phase. The representative tool
is LiteRace [34]. As our approach falls into this category, we dis-
cuss LiteRace in detail in the rest of this subsection.

LiteRace is based on the cold-region hypothesis: races are
likely to occur when a thread is executing a cold region (i.e., the
program portion not frequently executed). LiteRace tries to avoid
tracking those frequently executed functions (i.e., hot functions).
Initially, it sets up a thread-local sampling rate of 100% for each
function. This sampling rate is then gradually reduced whenever
a function is called by the corresponding thread until the rate
reaches a low bound (e.g., 0.1%). For example, in Figure 2, LiteR-
ace initially checks all events from function f1. After the function
is executed once, the thread-local sampling rate of function f1 by
thread t1 is reduced. If thread t2 calls function f3, the sampling
rate of function f3 by thread t2 is also reduced in the same way.

LiteRace reduces runtime overhead at the expense of its race
detection capability. For example, in an evaluation, it only de-
tected about 70% of frequent data races and about 50% of rare
data races of continuously monitoring tools such as FastTrack
[34]. This is also verified by other works [7]. We explain this
limitation of LiteRace via our running example in Figure 2.

Figure 4 gives four execution cases that illustrate how the
functions in the two threads interleave. In each case, a column
shows the execution of a thread in term of function calls. The
difference between the four cases is at how the last call to func-
tion f1 and the first call to function f2 by thread t1 interleaves
with the last call to function f3 and the first call to function f4 by
thread t2.

Recall that locks m and n protect the accesses to y in func-
tions f1 and f3, and in functions f2 and f4, respectively. Because
two different locks are used, a race on variable y occurs when
either functions f1 and f4 execute in parallel or functions f2 and f3
execute in parallel. No data race occurs in either case (a) or case
(b) because neither pair of functions may execute in parallel.
That is, we can infer that accesses in function f1 happen before
accesses in function f4 by following lock acquisition order (i.e.,
the solid arrows) and the program order within each thread (i.e.,
the dashed arrows). The same reasoning also applies on the func-
tions f3 and f2. However, for case (c), there is no strict order be-
tween the accesses in functions f1 and f4; hence, a HB detector
may detect the race on y from the two functions. Due to same
reason, for case (d), the race on y from functions f3 and f4 may
also be detected.

When LiteRace is applied to the four cases in Figure 4, a func-
tion is not tracked after it has been called by the same thread for
certain number of times. Therefore, function f1 executed by
thread t1 and f3 executed by thread t2 are no longer tracked if
they become hot functions. In case (c), even when function f1 and
function f4 execute in parallel, LiteRace may miss the race. This is
because LiteRace only tracks the cold function f4 without track-
ing function f1. Similarly, In case (d), LiteRace may also miss the
race.

We believe the main reason that LiteRace frequently fails to
detect races, as observed previously [7], is that its sampling
across threads is not coordinated. Since a data race requires two
conflict memory accesses from two threads, sampling one
memory access from one thread but not the other is useless. This
is illustrated by cases (c) and (d) above. Consider an extreme case
where all races involve a function. If this particular function is
considered hot after being visited several times, all future sam-
plings are in vein.

Besides the issue of thread-local sampling, LiteRace also suf-
fers from execution-local sampling. When testing a multithread-
ed program by running it repeatedly against a large number of
test cases, the same thread interleaving, with minor variations,
tend to be exercised since thread schedulers generally switch
among threads at the same program locations. In addition, alt-
hough the whole program execution may witness variants from
one run to another, partial execution may exhibit similar behav-
iour. For example, even all the four cases in Figure 4 are executed
in different runs, the initial interleaving of two threads are simi-
lar. That is, functions f1 and f3 interleave until functions f2 or f4 is
called. We highlight these function calls in grey background for
illustration purpose. As LiteRace is unware of execution similari-
ties, it adopts the same sampling strategy across different execu-
tions. The net effect of strategy is that those functions that are
cold in individual execution but hot in accumulative executions
are repeatedly sampled. This defeats the principle of sampling
that the real cold cases should be tracked.

The two main limitations of current sampling techniques mo-
tivate our work in this paper.

4. OUR APPROACH

4.1 Goal and Challenges
In this section, we present our approach to fix the two limita-
tions of current sampling techniques. In order to address thread-
local sampling, our insight is that whether to sample a memory
access event should also depend on the execution of other
threads and those already observed executions. That is, even if a
memory address has been accessed by a thread many times, we
may still need to sample it if a second thread access the memory

Func fyThread ty

Func fzThread tz

Func fxThread tx

Func pairs(fx, fy)

(fy, fz)

sample
Race

detector
Saved sample info

Figure 5. The overview of AtexRace framework.

Case (a) Case (b) Case (c) Case (d)

𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡

f1()

…

f1()

f2()

…

f2()

f3()

…

f3()

f4()

…

f4()

f1()

…

f1()

f2()

…

f2()

f3()

…

f3()

f4()

…

f4()

f1()

…

f1()

f2()

…

f2()

f3()

…

f3()

f4()

…

f4()

f1()

…

f1()

f2()

…

f2()

f3()

…

f3()

f4()

…

f4()

No race. No race. Race: f1, f4

May be missed

by LiteRace.

Race: f2, f3

May be missed

by LiteRace.

S
im

ilar E
x
ecu

tio
n
s

: Lock order : Program orderLegend:

Figure 4. Three executions scenarios of the program in
Figure 2 and the similarity of different executions.

AtexRace: Across Thread and Execution Sampling for In-House
Race Detection

ESEC/FSE'17, September 4-8 2017, Paderborn, Germany

address for the first time. As for execution-local sampling, our
idea is to keep and store sampling information from previous
runs. Except the first execution that starts with a cold run, the
subsequent executions load sampling information of
accumulated prior executions. Although such approach incurs
overhead, we blieve less sampling with optimization heuristics
can lead to net benefit.

The new sampling approach, AtexRace, also works at function
levels like LiteRace. But unlike LiteRace, AtexRace mainly samples
accesses inside a pair of functions whose simultaneous execu-
tions are not observed before, including previous executions.
Unfortunately, a basic implementation of the idea is not very
scalable. Firstly, tracking executions across threads usually incur
larger overhead than thread-local tracking. Secondly, even two
functions are observed to have executed in parallel before, data
races may still occur within them. Thirdly, as AtexRace performs
sampling across different executions instead of within a single
execution, it must effectively record function interleaving infor-
mation to be used in the subsequent executions.

4.2 Basic AtexRace Algorithm
The overview of AtexRace is shown in Figure 5. During execu-
tion. when function fy in thread ty is being executed, AtexRace

collects all the functions (e.g., fx and fz) that are being executed
by other threads. By doing so AtexRace forms pairs of functions
that are being executed simultaneously (e.g., fx, fy). It then
makes a sampling decision according to whether a pair of func-
tions have been executed in parallel before. If so, neither func-
tion is sample; otherwise, both are sampled. If a function is sam-
pled, all its events are passed to a race detector. At the end of an
execution, all function pairs are saved and will be used in the
next execution. Note, in order not to report false positives, all
synchronizations are fully sampled. This is the same as LiteRace.

Algorithm 1 gives the basic AtexRace algorithm that takes a
program p and a set of function pairs FPair that have been ob-
served in the previous executions. The first three lines initialize
two necessary runtime data structures: a map F that maintains
the functions being executed by each thread, and a map S that
indicates whether memory accesses from a thread should be
sampled. Both F and S are empty initially.

The function onCallFunc (lines 5–19) is the core of our sam-
pling. Whenever a function f is to be executed (i.e., at the en-
trance of function f) by a thread t, for every other thread t' in
program p, AtexRace checks whether the pair f, F(t') already
exists in FPairs. If not, S is updated to map both threads t and t' to
true; otherwise, S maps t to false. A true value of S(t) mandates
sampling of the current memory access in thread t and a false
value does the opposite. Next, AtexRace executes events in func-
tion f (line 14) and samples its memory accesses (i.e., function
onMemoryAccesses) if S(t) is true. At the end of the call to func-
tion f, AtexRace merges FPairs and the observed function pairs f,
F(t'), which indicates that the function f and another function
F(t') in thread t' have been executed simultaneously.

In practice, two functions from different threads are usually
called at different time. Therefore, it is the case that, a function f
is initially not sampled but later it should be sampled as a differ-
ent thread t' calls a function f' = F (t') and the pair f, F(t') is nev-
er observed before. This is considered by AtexRace. We can see

from lines 10 and 11 that at the call entrance to function f',
thread t' also performs an iteration over other threads at line 7.
At the iteration on thread t, it cannot find the pair in FPairs.
Then it maps both threads t' and t to be true value in structure S.
So, the function f executed by thread t has to be sampled.

4.3 Limitations of Basic AtexRace
The basic sampling algorithm of AtexRace suffers from the two
limitations: (1) given two function f1 and f2, even if their parallel
execution has been observed and tracked (thus become hot),
races between them may still not detected; and (2) significant
overhead resulted from across thread and execution sampling.

The first limitation is the issue of Race Coverage. A function
usually contains multiple basic blocks (BBLs). An execution of a
function does not mean all its BBLs are executed. For example,
Figure 6 shows two functions f5 and f6 that contain two races on
variables x (lines 6 and 21) and y (lines 18 and 9). There are four
BBLs b11, b12, b21, and b22 (we omit other BBLs in the if statement
for simplicity). Since the two threads in the example execute
f5(10) and f6(100), respectively, only b11 and b22 are executed.
Hence, the race on variable x (lines 6 and 24) is detected while
the race on variable y (lines 19 and 10) is not. If the pair f5, f6 is
considered hot after this execution, the race on y can never be
detected by the basic AtexRace. One approach to address this
issue is to degrade the sampling level from functions to BBLs and
then apply either LiteRace or the Part 1 of our AtexRace. Howev-
er, this bring heavy runtime overhead and may even incur more
overhead than a full detector such as FastTrack. This is because,
compared to a function, a BBL usually contains much fewer in-
structions. As a result, the sampling overhead (in time) per BBL
may already larger than the race detection overhead without
sampling. Because sampling algorithm is not extremely light-
weight, it is not worthy to perform sampling at BBL level.

Algorithm 1: Basic AtexRace

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

Input: p – a multithreaded program.
Input: FPairs – a set containing functions.

let F be an empty map from a thread to a function
let S be a map from a thread to a Boolean value.
for each thread t  p, F(t) ≔ , S(t) ≔ true end for

Function onCallFunc (Thread t, Func f)
│ let F(t) ≔ f and St ≔ false //St is a temporary variable that keeps S(t)
│ for each thread t'  p, t  t' do
│ │ pair ≔ f, F (t')
│ │ if pair  FPairs then
│ │ │ St ≔ true
│ │ │ S(t') ≔ true
│ │ └end if
│ └end for
│ S(t) ≔ St
│ execute f
│ for each thread t'  p, t  t' do
│ │ FPairs ≔ FPairs ∪ {f, F (t')}
│ └end for
└ end Function
Function onMemoryAccess(Thread t, Event e)
│ if S(t) = true then
│ │ call data race detector
│ └end if
└ end Function
save FPairs

ESEC/FSE'17, September 4-8 2017, Paderborn, Germany Y. Guo, Y. Cai, and Z. Yang

On the other hand, for C/C++ programs, even an instruction
contains one or more memory accesses, it is possible that each
execution of the instruction may accesses different memory loca-
tion. For example, considering the following two lines of code:

1. Object obj = &getObj (…);
2. obj ->val ++;

We can observe that, within the same and repeated execu-
tions of the two lines, if the pointer obj points to different ob-
jects, it accesses different memory locations at line 2. Therefore,
for sampled memory accesses, it is still necessary to track them.

The second limitation is the Sampling Overhead of AtexRace
itself. A sampling tool should sample as fewer memory accesses
as possible to reduce the overhead. At the same time, it should
also try to incur less overhead from its sampling strategy. LiteR-
ace adopts thread-local sampling and requires two thread-local
counters per-function. This can be efficiently implemented [34].

For AtexRace, there are expansive map queries (i.e., FPairs) on
each function call (lines 9–10). These operations bring heavy
slowdown for two reasons. Firstly, with the increasing number
of function calls by multiple threads, the size of FPairs also in-
creases, resulting in a large data set. For example, in our experi-
ment, after 223 executions on MySQL, there are nearly 70,000
function pairs. A query over such a large map is time consuming.
Secondly, the map FPairs is accessed by multiple threads. This
requires synchronizations among different threads when they
operate on the map. Such synchronization incurs further slow-
down. Besides, when different threads access the map FPairs, the
cache miss rate will be higher because once a thread updates the
map, all other threads that query the map must wait until their
local caches are updated. This again leads to additional time con-
sumption. All these reasons bring challenges to reduce the over-
head of our sampling algorithm AtexRace itself.

4.4 Optimizations
Algorithm 2 is an enhancement to the basic AtexRace algorithm
that addresses the two kinds of limitations.

To address the issue of race coverage, AtexRace further sam-
ples those sampled function pairs in order to increase their cov-
erage on data race detection. This corresponds to lines 18–24 in
Algorithm 2. For this part, AtexRace accepts a sampling rate (i.e.,
the input r to Algorithm 2) and samples the function pair accord-
ing the rate. Note that, AtexRace does not perform a simple
sampling that generates a random number and compares the

random number with the given sampling rate. Instead, AtexRace
adopts burst sampling strategy [34]. It samples the first n con-
secutive calls out of all m calls to a function such that the rate (n
÷ m)  100% equals to the given sampling rate r. For example, if
the sampling rate is 10%, it samples the first 10 calls and discards
the next 90 calls to the same function, resulting the sampling rate
of 10%. Of course, to implement this functionality, a counter
mapped from each function pair is required. Hence, the original
set of function pairs is changed into a map (see the fourth input
and the lines 18, 19 and 29 in Algorithm 2).

To overcome the second kind of limitations, we firstly pro-
pose to use thread-local maps. In Algorithm 2, we use the symbol
FP to denote the thread-local maps of function pairs. That is, we
allocate one map structure for each thread; and when AtexRace

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

Thread 𝑡

f5(10);

Function f5(i){
if (i < 100){

acq(m)
x ++;
rel (m)

} else{
acq(n)
x += y;
rel(n);

}
}

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

Thread 𝑡

f6(100);

Function f6(j){
if (j < 100){

acq(m)
y ++;
rel (m)

} else{
acq(n);
y += x;
rel(n);

}
}

BBL b11

BBL b12

BBL b21

BBL b22

Figure 6. A program consisting of two threads with two
data races on variables x (lines 6 and 23) and y (lines 19
and 10).

Algorithm 2: Complete AtexRace

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

Input: p – a multithreaded program.
Input: r – a sampling rate.
Input: n – a number determine n-frequent value
Input: FPairs – a map (from functions pairs to counters) of the last
n - 1 executions.

//Initialization
let F be an empty map from a thread to a function
let S be a map from a thread to a Boolean value.
let FP be a map from a thread to a copy of FPairs. //thread-local maps
for each thread t  p do
│ F(t) ≔ 
│ S(t) ≔ true
│ FP(t) ≔ FPairs //deep clone
└end for
//Runtime Sampling
Function onEnterFunc(Thread t, Func f)
│ let F(t) := f and St := false //St is a temp variable that keeps S(t)
│ for each thread t'  p, t  t' do
│ │ pair ≔ f, F (t')
│ │ if pair  FP(t) then
│ │ │ St ≔ true
│ │ │ S(t') ≔ true
│ │ else
│ │ │ FP(t) ≔ FP(t) ∪ {pair, Counter(FP, pair) + 1}
│ │ │ if counter(pair, FP(t)) satisfies r then
│ │ │ │ St ≔ true
│ │ │ │ S(t') ≔ true
│ │ │ else
│ │ │ │ St ≔ false
│ │ │ └end if
│ │ └end if
│ └end for
│ S(t) ≔ St
│ execute f
│ for each thread t'  p, t  t' do
│ │ FP(t) ≔ FP(t) ∪ {pair, 1}
│ └end for
└ end Function
Function onMemoryAccess(Thread t, Event e)
│ if S(t) = true then
│ │ call data race detector
│ └end if
└ end Function
//The End of an Execution
Let FPairs' be an empty map.
for each thread t  p do
│ FPairs' ≔ FPairs' ∪ F(t)
└end for
save FPairs'

AtexRace: Across Thread and Execution Sampling for In-House
Race Detection

ESEC/FSE'17, September 4-8 2017, Paderborn, Germany

starts an execution, it duplicates the given map data (line 7).
During an execution, AtexRace only checks whether the pair
exists in the map FP of the current thread (lines 14 and 19). If a
pair already exists in a thread-local map, its counter is incre-
mented by 1 at line 18. At the end of an execution, AtexRace
merges all thread-local maps and saves the merged map (lines
39–43).

Secondly, we do not record all function pairs observed in pre-
viously executions. Instead, we only keep the recently frequently
observed function pairs. Given an execution e and a number n (n
≥1), we define a function pair fx, fy to be n-frequent with respect
to execution e if fx, fy is observed in current and all the n-1
previous executions. Specially, when the value of n is 1, the 1-
frequent function pairs are those observed in the current execu-
tion. By keeping only, the n-frequent function pairs, the recorded
function pairs are those frequently executed. This is reasonable
not to sample these frequent function pairs to reduce sampling
overhead. Hence, for each execution, the number of function
pairs taken as input is small and does not increase with increas-
ing number of executions. The third and the fourth inputs to
Algorithm 2 reflects this design, where n determines the function
pairs in FPairs.

By adopting thread-local maps and recording only n-frequent
function pairs, the only side effect is that AtexRace may sample
function pairs that have been sampled in the same execution due
to the content difference of different threads within the same
execution. This may incur unnecessary overhead. However, it
produces no bad result on the data race coverage as sampling the
same functions more than one time also increases the probability
to detect those missed data races (see the first kind of limitations
in Section 4.3).

4.5 AtexRace on Example Program
In this section, we use the running example in Figure 2 to illus-
trate how AtexRace sampling its executions in Figure 4. Initially,
both functions f1 and f3 are sampled as the input FPairs are emp-
ty. Such sampling continues until in each thread the recorded
functions pairs contain f1, f3. Probably1, after a certain number
of calls to both functions, AtexRace stops continuous sampling of
f1 and f3 because f1, f3 is hot. Of course, in our algorithm, func-
tions in a hot pair still have chances to be sampled due to our
burst sampling strategy.

Next, suppose thread t1 calls f2 for the first time while t2 is ex-
ecuting f3. Because pair f2, f3 is cold, AtexRace restarts to sample
function f2. Of course, f3 is sampled as well. Similarly, AtexRace
restarts to sample function f1 if functions f1 and f4 are executed at
the same time. On the other hand, if it is f2 and f4 that are exe-
cuted at the same time, neither f1 nor f3 is sampled.

Hence, for cases (c) and (d), AtexRace has a larger probability
to detect the two races that are probably missed by LiteRace.
However, for cases (a) and (b), although there is no race,

1 In this section, we frequently used the word "probably" because the execu-

tion of multiple threads is undetermined. E.g., we say that, if functions f1 and
f3 are called multiple times (as shown in Figure 2), most of their executions
are simultaneous. But in theory, it is possible that all executions of function
f1 are executed before any execution of function f3. Or given two threads that
can be executed in parallel, there are executions where they can be sequen-
tially executed.

AtexRace still samples the first calls to function f3 and f4. In the
subsequent execution, after functions f3 and f4 are called for sev-
eral times, AtexRace stops the continuous sampling of the two
functions.

After one execution of the example program, AtexRace rec-
ords the observed function pairs (probably the four pairs: f1,
f3,f1, f4,f2, f3, and f2, f4). If the program is executed again,
AtexRace may not continuously sample the function pairs al-
ready collected. Hence, the total overhead to detect data race can
be reduced, not only within the same execution but also across
different executions of the same program.

4.6 Discussion on AtexRace
We aim to reduce race detection overhead without sacrificing
race detection capability when there are many test cases.
AtexRace does not target a single execution as one of our innova-
tions is to record the recently observed function pairs and skips
their sampling in subsequent executions. Hence, on a small
number of executions, it may initially incur larger overhead than
that by FastTrack and LiteRace (see Figure 8 (a) and Figure 10 in
our experiment). AtexRace is more suitable for programs (e.g.,
industrial programs) that are tested against a large number of
test cases. Of course, as a dynamic sampling approach, it also
reports false negatives.

Figure 7 shows the ideal scenario of AtexRace. Initially,
AtexRace may incur higher overhead than LiteRace or even
FastTrack. However, with increasing number of executions,
AtexRace gradually incurs lower overhead.

5. EXPERIMENTS
This section presents the evaluation on AtexRace. We compared
it with LiteRace and FastTrack. Because FastTrack is one of the
fastest and most widely used tools in this category. It fully de-
tects data races and can be considered as a sampling tool with a
rate of 100%. And LiteRace is the state-of-the-art in-house sam-
pling tool. Both are representative and well-known.

5.1 Implementation and Benchmarks
Implementation. We have implemented AtexRace, FastTrack
and LiteRace on top of Pintool [11][32], a widely used binary
instrumentation framework. Our implementation targets multi-
threaded programs with Pthread library on Linux 32 system.
Note that, Pintool runs like a virtual machine [32] and incurs
large overhead. A better implementation can be done as the orig-
inal LiteRace implementation [34] (i.e., to integrate sampling
tools into the program under testing at compilation time).

Function encoding. On Linux platform, Pintool modes each
program as Image that contains Sections and each section con-

Cumulative number of executed test cases

Overhead

FastTrack

LiteRace

Figure 7. Ideal overhead changes with increasing executions.

ESEC/FSE'17, September 4-8 2017, Paderborn, Germany Y. Guo, Y. Cai, and Z. Yang

sists of multiple Routines (or functions). We use a 32-bit integer
to encode a routine. The first 6 bits are used as the Image identi-
fier and the remaining 26 bits are used as routines identifier per
image. This encoding allows at most 26 = 64 images and 2 6 ≈
64 × 106 routines per-image, which is enough in practice.

Benchmarks. We choose the Parsec benchmark suite 3.1 [2]
to evaluate the race detectors. The suite consists of 13 bench-
marks. After eliminating the benchmarks that are not multi-
threaded or cannot be compiled under the Pin environment, we
obtain five benchmarks: Blackscholes, Bodytrack, Canneal,
Freqmine, and Streamcluster. In our experiments, we run each
benchmark from Parsec for 100 times to collect their results.

Table 1 gives the source code size (SLOC) of the five bench-
marks. It can be observed that the lines of code range from 1.3K
to 16K. To further evaluate the performance of AtexRace, we
select the MySQL database server (v6.0.4), a widely used real-
world program. The version we use, mysql-6.0.4-alpha, has
1,114,980 lines of code. Among the 399 test cases that comes with
its distribution, 223 of them can be successfully executed in the
Pin environment. We run all the 223 test cases in our
experiment.

5.2 Experimental Setup
Our experiments were performed on a workstation (ThinkPad
W540) with an i7-4710MQ CPU (four cores), 16G memory, and
250G SSD. The workstation was installed with Ubuntu 14.04 x86
system. For AtexRace, we set its sampling rate and the value n
(determining n-frequent function pairs) to be 10/100 and 2, re-
spectively. For LiteRace, we adopt the fixed thread-local sampling
configuration as defined in previous work [34].

5.3 Result Analysis on Parsec Benchmark Suite
5.3.1 Overall Results. For all techniques, Table 1 gives the time of
the executions spent by Pin and the three tools of the bench-
marks, the overhead of the race detectors compared to the time
consumed by Pin framework, and the number of unique races
(i.e., the number of variables in the source code) detected by each
tool.

As expected, both LiteRace and AtexRace are much faster than
FastTrack by reducing about 40% overhead based on Pin. It can
also be observed that LiteRace and AtexRace incurred almost the
same average overhead. On race detection capability, both LiteR-
ace and AtexRace outperform FastTrack. At first glance, the re-
sults are surprising. However, it is known that sampling perturbs
thread scheduling so a race detector with sampling runs different
executions with the one without sampling, even under the same
test case. Such phenomenon is previously observed [15]. Table 1
shows that LiteRace detects 53% more unique races than
FastTrack, all of the additional races are from the single bench-
mark Freqmine. AtexRace detects 12% more unique races than
LiteRace.

The above results indicate that AtexRace detect the most
number of races at a cost almost the same as LiteRace. However,
among the five benchmarks LiteRace is better in only two of
them. On the other hand, the three benchmarks seem to have
very few races (or even no races) so none of the race detectors
can discover more races. When there are more races, the benefit
of AtexRace seems obvious. Since these relatively small bench-
marks do not give a doubtless evaluation of AtexRace, we further
evaluate our approach on a large real-world database server
MySQL. But before we present our empirical study on MySQL,

Table 1. The statistics of Parsec benchmark and its overall results.

Benchmarks Size (SLOC)
Time (seconds) Overhead (%) # of Unique Races

Pin FT LR AR FT LR AR FT LR AR

Blackscholes 1,380 1048.53 1612.63 1652.39 1604.82 53.80% 57.59% 53.05% 0 0 0

Bodytrack 16,479 633.396 884.281 718.466 686.812 39.61% 13.43% 8.43% 14 14 32

Canneal 2,847 3314.22 7237.03 3640.18 4947.22 118.36% 9.84% 49.27% 2 2 2

Freqmine 2,192 2812.04 6451.47 4398.5 3317.82 129.42% 56.42% 17.99% 160 263 280

Streamcluster 1,795 111.626 135.767 131.325 131.915 21.63% 17.65% 18.18% 8 8 8

 Avg.: 72.56% 30.98% 29.38% Sum: 190 291 326

Figure 8. The trend of overhead with increasing number of executions.

0%

20%

40%

60%

80%

100%

120%

140%

1 20 39 58 77 96

FastTrack

LiteRace

AtexRace

0%

20%

40%

60%

80%

100%

120%

140%

1 20 39 58 77 96

FastTrack

LiteRace

AtexRace

0%

5%

10%

15%

20%

25%

30%

1 20 39 58 77 96

FastTrack

LiteRace

AtexRace

40%

45%

50%

55%

60%

65%

70%

1 20 39 58 77 96

FastTrack

LiteRace

AtexRace

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1 20 39 58 77 96

FastTrack

LiteRace

AtexRace

(a) Blackscholes (b) Bodytrack

(c) Canneal (d) Freqmine (e) Streamcluster

AtexRace: Across Thread and Execution Sampling for In-House
Race Detection

ESEC/FSE'17, September 4-8 2017, Paderborn, Germany

we use Parsec to illustrate the advantage of cross-execution
sampling of AtexRace.

5.3.2 Overhead Trend Across Executions. One of key features
of AtexRace is its cross-execution sampling, which may result in
lower overhead with increasing number of executions. In Figure
8, we show how the overhead changes with increasing number
of executions for three techniques on the five benchmarks. In
each subfigure, the x-axis shows the number of executions; and
the y-axis shows the overhead incurred by three techniques on
each execution. The cumulative overhead on the i-th execution is
calculated by the following formula:

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑(𝑖) =
∑(𝑇𝑡𝑜𝑜𝑙(𝑖))−∑(𝑇𝑝𝑟𝑜𝑔(𝑖))

∑(𝑇𝑝𝑟𝑜𝑔(𝑖))
× 100% (Eq. 1)

where 𝑇𝑡𝑜𝑜𝑙(𝑖) represents the execution time under a tool on the
i-th execution, and 𝑇𝑝𝑟𝑜𝑔(𝑖) represents the native program exe-
cution time under Pin.

From Figure 8, we see that, overall, FastTrack and LiteRace
incur almost the same overhead across executions (i.e., nearly a
horizontal line). Except the first benchmark, LiteRace's overhead
is much lower than that by FastTrack, which is expected due to
the sampling of LiteRace. However, on Blackscholes, LiteRace
incurs larger overhead than that by FastTrack. We have per-
formed several additional experiments and confirmed the results.

For AtexRace, overall, its overhead decreases with increasing
number of executions, although the trend is less obvious in
Steamcluster. This is consistent with our theoretical analysis in
Section 4.6. It can also be observed that, with increasing number
of executions, AtexRace's performance becomes the best on three
benchmarks (i.e., the subfigure (a), (b), and (d)). However, the
overhead reduction reaches a plateau after a certain number of
executions. This is not surprising because according to Section
5.3.3 the number of recorded function pairs barely increases.

5.3.3 Number of Function Pairs. As a Parsec benchmark is re-
peatedly executed under the same input, there is no obvious
increase in the number of function pairs with more executions.
After 100 executions, the number of functions pairs of the five
benchmarks are 9, 409, 46, 250, and 23. If we store 2-frequent
pairs only, the number of function pairs after 100 executions are
8, 227, 32, 232 and 16.

5.4 Result Analysis on MySQL
MySQL has one million lines of code. We run it against 223 test
cases in the default order of the test script "mysql-test-run".

5.4.1 Number of Detected Races. Figure 9(a) gives the number
of unique races that are detected by FastTrack, LiteRace and

AtexRace after 223 executions of MySQL. Not surprisingly, com-
pared with LiteRace, AtexRace detects 23% more unique races.
What we have not expected is that AtexRace detects even 15%
more unique races than FastTrack. Of course, as explained in
Section 5.3.1, this is possible because sampling perturbs thread
scheduling. However, we would like to have a clearer picture of
race detecting capability. Thus, we collect data on all the races,
not just unique races, that are detected by the three tools. Alt-
hough in theory unique races are more interesting, in practice
the number of total races is helpful to debugging because they
can illustrate different scenarios how a race occurs. Detecting the
same traces multiple times is also a good indicator of a race de-
tector’s capability.

The results of total races are illustrated in Figure 9(b). The
number of total races is significantly more than the number of
unique races. It can be observed that FastTrack detects the most
races, but AtexRace is a very close second. LiteRace, on the other
hand, detects significantly fewer number of races than the other
two.

5.4.2 Overhead. Figure 10 depicts how the overhead (y-axis)
changes across 223 executions (x-axis). Unlike benchmarks from
Parsec where all repeated executions are conducted against the
same test cases, each of the 223 MySQL executions is conducted
against a different test case. Therefore, on MySQL, FastTrack (as
well and LiteRace and AtexRace) may incur different overhead on
different executions. The formula to calculate the cumulative
overhead of the first i executions is the same as that on Parsec
(i.e., Eq. 1).

The results shown in Figure 10 are as expected, where
FastTrack incurs the largest overhead over native execution on
Pin and LiteRace incurs the smallest. Although AtexRace’s over-
head is larger than LiteRace’s, the gap is gradually shrinking. At
the end of all 223 executions, AtexRace incurs almost the same
overhead as that by LiteRace. Given more test cases, AtexRace
may have a chance to incur less overhead than LiteRace.

Considering both Figure 9 and Figure 10, our experiments
confirm that AtexRace achieves a sweet spot between LiteRace
and FastTrack, by detecting almost the same number of races as
FastTrack at a cost almost the same as LiteRace.

5.4.3 Number of Function Pairs. AtexRace does not record all
observed function pairs but only keeps recently observed ones to
avoid potentially unlimited increase on the number of function
pairs. Figure 11 shows a comparison on the cumulative number
of function pairs (y-axis) with the increasing number of execu-
tions (up to 223). The two lines represent the data by recording
all observed ones ("All Pairs") and recording recently observed

(a) # unique races. (b) # dynamic races

Figure 9. The number of races detected by three.

1212

1136

1399

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

FastTrack LiteRace AtexRace

0

2000

4000

6000

8000

10000

12000

14000

16000

1 21 41 61 81 101 121 141 161 181 201 221

FastTrack

LiteRace

AtexRace

Figure 10. The cumulative overhead of three techniques
with increasing executions.

0%

10%

20%

30%

40%

50%

60%

70%

1 21 41 61 81 101 121 141 161 181 201 221

FastTrack

LiteRace

AtexRace

ESEC/FSE'17, September 4-8 2017, Paderborn, Germany Y. Guo, Y. Cai, and Z. Yang

ones ("2-frequent Pairs"), respectively.
We observe that, with increasing number of executions, the

number of all function pairs also increases. After 223 executions,
the number of observed function pairs is nearly 70,000. If we
keep all these function pairs, a large overhead on querying is
inevitable, which may eventually offset the benefit of sampling.
This is the reason we only rely on the recently observed function
pairs. From Figure 11, we see that this strategy is effective, as
over all the 223 executions, the numbers of the 2-frequent func-
tion pairs are almost always below 10,000 (with only six excep-
tions). And on 198 out of 223 (~89%) executions, there are less
than 5,000 function pairs. On average, there are 3,320 function
pairs on each execution. Our experiments are all performed with
2-frequent function pairs and the data confirm its effectiveness.

6. RELATED WORK
Data races [10][16] are extremely difficult to be found and re-
produced. Both static techniques [25] [37][42][51] and dynamic
techniques [16][41][44][47][54] aim to detect data races. Static
ones [51][42] can analyse the source code of a whole program;
however, due to lack of runtime information, static approaches
can easily report many false positives. Dynamic ones analyse
concrete executions to detect data races according to some rules
(e.g., the lockset discipline [44][46][56] and the happens-before
relation [6][16][41][43][50][52]). Although dynamic techniques
are relatively precise, they incur heavy overhead.

We have heavily discussed sampling approaches on data race
detection. CRSampler [12] also targets on sampling but its main
purpose is at user site. It is based on hardware breakpoints and
clock races to detect data races. DataCollider [14] purely relies on
hardware breakpoints to detect those occurred data race by sus-
pending threads. AtexRace aims at in-house sampling.

To explore all possible executions is one direction to find
concurrency bugs (e.g., Model checking [53][35]). However, it is
usually impossible to explore all the interleaving although they
may achieve certain coverage [28]. Practically, enumerating each
schedule is not practical for large-scale real-world programs,
even with reduction techniques [18].

Therefore, to explore a small portion of interleaving space
that are error prone is also one direction. Chess [35] sets a heu-
ristic bound on the number of pre-emptions to explore the
schedules. Also, although systematic approaches avoid executing
previously explored schedules, they usually incur large over-
heads and fail to scale up to handle long running programs. For
example, Maple [55] is a coverage-driven [8][19] tool to mine
thread interleaving so as to expose unknown concurrency bugs.
PCT [9][36] randomly schedules a program to expose concur-

rency bugs, which also requires large number of executions.
However, it is difficult to apply these techniques to large-scale
programs such as MySQL.

Other works aim to firstly predict a set of potential data races
and then to verify them. RVPredict [22] achieves a strictly higher
coverage than HBR based detectors. It firstly predicts a set of
potential races and then relies on a number of production execu-
tions to check against each predicted race. Racageddon [15] aims
to solve races that could be predicted in one execution but re-
quire different inputs. It still needs a larger number of executions
to check against each predicted race [39][45]. Both RVPredict
and Racageddon have to solve scheduling constraints for each
predicted race, which may fail. RaceMob [26] statically detects
data race warnings and distributes them to a large number of
users to validate real races. In such a run, the schedules are guid-
ed by the set of data race warnings to trigger real data races. This
kind of approach is able to confirm real races but cannot elimi-
nate false positives. Besides, it may miss real races if such races
are not predicted in the (static) prediction phase.

DrFinder [10] tries to predict the happens-before relation to
further expose races hidden by the happens-before relation. It
dynamically predicts and tries to reverse happens-before rela-
tions from observed executions. However, its active scheduling is
also heavy (e.g., about 400% [10] for Java programs).

CCI [24] proposes cross-thread sampling strategies to find
causes of concurrency bugs based on randomized sampling.
Unlike race sampling techniques (e.g., CRSampler, DataCollider,
Pacer, and LiteRace), CCI focuses on failure diagnosis. However,
CCI may cause heavy overhead (e.g., up to 900% [24]) although
it targets on lightweight sampling. Carisma [58] improves Pacer
by further sampling memory locations allocated at the same
program location for Java. Valor [4] infers data races by
detecting region confilt, which has good performance compared
with FastTrack.

Bedides multithreaded programs, data race may also exist in
other kinds of pgorams, such even-driven programs such as
android applications [33][21][20], concurrent library invocations
[13], and modified program codes [57]. AtexRace could also be
adapted to detect these races. We leave it as future work.

7. CONCLUSION
We have proposed a new cross-thread and cross-execution sam-
pling approach to achieve both high race detection rate and high
efficiency. By adopting several novel designs, our prototype
AtexRace shows its potential to replace FastTrack and LiteRace.
This is confirmed by the experiments with benchmarks obtained
from both Parsec benchmark suite and a real-world large-scale
MySQL database.

ACKNOWLEDGEMENT
We thank anonymous reviewers for their invaluable comments
and suggestions on improving this work. This work is supported
in part by National Natural Science Foundation of China (NSFC)
(61502465, 61472318 and 61632015), National 973 program of
China (2014CB340702), the Youth Innovation Promotion Associa-
tion of the Chinese Academy of Sciences (YICAS) (2017151), and
the National Science Foundation (NSF) (DGE-1522883).

Figure 11. The cumulative number of function pairs.

0

10000

20000

30000

40000

50000

60000

70000

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3
1

1
4

1

1
5

1

1
6

1

1
7

1

1
8
1

1
9

1

2
0

1

2
1

1

2
2

1

All Pairs 2-frequent Pairs

AtexRace: Across Thread and Execution Sampling for In-House
Race Detection

ESEC/FSE'17, September 4-8 2017, Paderborn, Germany

REFERENCE
[1] B. Alpern, C.R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo, J.J. Barton,

S.F. Hummel, J.C. Sheperd, and M. Mergen. Implementing jalapeño in Java. In
Proc. OOPSLA, 314–324, 1999.

[2] C. Bienia. Ph.D. Thesis: Benchmarking modern multiprocessors. Princeton
University, January 2011.

[3] S. Biswas, M. Cao, M. Zhang, M.D. Bond, and B.P. Wook. Lightweight data
race detection for production runs. In Proc. CC, 11 – 21, 2017.

[4] S. Biswas, M. Zhang, M. D. Bond, and B. Lucia. Valor: Efficient, Software-
Only Region Conflict Exceptions. In Proc. OOPSLA, 241–259, 2015.

[5] S.M. Blackburn, R. Garner, C. Hoffmann, A.M. Khang, K.S. McKinley, R.
Bentzur, A. Diwan, D. Feinberg, D. Frampton, S.Z. Guyer, M. Hirzel, A. Hosk-
ing, M. Jump, H. Lee, J. Eliot B. Moss, A. Phansalkar, D. Stefanović, T.
VanDrunen, D. von Dincklage, and B. Wiedermann. The Dacapo benchmarks:
Java benchmarking development and analysis. In Proc. OOPSLA, 169–190,
2006.

[6] E. Bodden and K. Havelund. Racer: effective race detection using AspectJ. In
Proc. ISSTA, 155–166, 2008.

[7] M.D. Bond, K. E. Coons and K. S. Mckinley. PACER: Proportional detection of
data races. In Proc. PLDI, 255–268, 2010.

[8] A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applications of synchroniza-
tion coverage. In Proc. PPoPP, 206–212, 2005.

[9] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A randomized
scheduler with probabilistic guarantees of finding bugs. In Proc. ASPLOS,
167–178, 2010.

[10] Y. Cai and L. Cao. Effective and precise dynamic detection of hidden races for
Java programs. In Proc. ESEC/FSE, 450–461, 2015.

[11] Y. Cai and W.K. Chan. LOFT: Redundant synchronization event removal for
data race Detection. in Proc. ISSRE, 160–169, 2011.

[12] Y. Cai, J. Zhang, L. Cao, and J. Liu. A deployable sampling strategy for data
race detection. In Proc. FSE, 810–821, 2016.

[13] D. Dimitro, V. Raychev, M. Vechev, and E. Koskinen. Commutativity race
detection. In Proc. PLDI, 305–315, 2014.

[14] J. Erickson, M. Musuvathi, S. Burckhardt and K. Olynyk. Effective data-race
detection for the kernel. In Proc. OSDI, 1–6, 2010.

[15] M. Eslamimehr and J. Palsberg. Race directed scheduling of concurrent pro-
grams. In Proc. PPoPP, 301–314, 2014.

[16] C. Flanagan and S. N. Freund. FastTrack: efficient and precise dynamic race
detection. In Proc. PLDI, 121–133, 2009.

[17] C. Flanagan and S. N. Freund. The RoadRunner dynamic analysis framework
for concurrent programs. In Proc. PASTE, 1–8, 2010.

[18] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model
checking software. In Proc. POPL, 110–121, 2005.

[19] S. Hong, J. Ahn, S. Park, M. Kim, and M.J. Harrold. Testing concurrent pro-
grams to achieve high synchronization coverage. In Proc. ISSTA, 210–220,
2012.

[20] S. Hong, Y. Park, and M. Kim. Detecting concurrency errors in client-side
java script web applications. In Proc. ICST, 61–70, 2014.

[21] C. Hsiao, Y. Yu, S. Narayanasamy, Z. Kong, C.L. Pereira, G.A. Pokam, P.M.
Chen, and J. Flinn. Race detection for event-driven mobile applications. In
Proc. PLDI, 326–336, 2014.

[22] J. Huang, P.O. Meredith, and G. Rosu. Maximal sound predictive race detec-
tion with control flow abstraction. In Proc. PLDI, 337–348, 2014.

[23] J. Jackson. Nasdaq's Facebook glitch came from 'race conditions', May 21
2012. http://www.computerworld.com/article/2504676/financial-it/nasdaq-s-
facebook-glitch-came-from--race-conditions-.html, last visited on March
2016.

[24] G. Jin, A. Thakur, B. Liblit and S. Lu. Instrumentation and sampling strategies
for cooperative concurrency bug isolation. In Proc. OOPSLA, 241–225, 2010.

[25] V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta. Fast and accurate
static data-race detection for concurrent programs. In Proc. CAV, 226–239,
2007.

[26] B. Kasikci, C. Zamfir, and G. Candea. RaceMob: Crowdsourced data race
detection. In Proc. SOSP, 406–422, 2013.

[27] L. Lamport. Time, clocks, and the ordering of events. Communications of the
ACM 21(7):558–565, 1978.

[28] Z. Letko, T. Vojnar, and B. Kˇrena. Coverage metrics for saturation-based and
search-based testing of concurrent software. In Proc. RV, 177–192, 2011.

[29] N.G. Leveson and C. S. Turner. An investigation of the Therac-25 accidents.
Computer, 26(7), 18–41, 1993.

[30] S. Lu, S. Park, E. Seo, and Y.Y. Zhou, Learning from mistakes: A comprehen-
sive study on real world concurrency bug characteristics. In Proc. ASPLOS,
329–339, 2008.

[31] B. Lucia and L. Ceze. Cooperative empirical failure avoidance for multi-
threaded programs. In Proc. ASPLOS, 39–50. 2013.

[32] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In Proc. PLDI, 191–200, 2005.

[33] P. Maiya, a. Kanade, and R. Majumdar. Race detection for Android applica-
tions. In Proc. PLDI, 316–325, 2014.

[34] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: effective sampling
for lightweight data-race detection. In Proc. PLDI, 134–143, 2009.

[35] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu.
Finding and reproducing heisenbugs in concurrent programs. In Proc. OSDI,
267–280 2008.

[36] S. Nagarakatte, S. Burckhardt, M. M.K. Martin, and M. Musuvathi. Multicore
acceleration of priority-based schedulers for concurrency bug detection. In
Proc. PLDI, 2012, 543–554, 2012.

[37] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for Java. In
Proc. PLDI, 308–319, 2006.

[38] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder. Automati-
cally classifying benign and harmful data races using replay analysis. In Proc.
PLDI, 22–31, 2007.

[39] C.S. Park, K. Sen, P. Hargrove, and C. Iancu. Efficient data race detection for
distributed memory parallel programs. In Proc. SC, 2011.

[40] K. Poulsen. Software bug contributed to blackout.
http://www.securityfocus.com/news/8016, Feb. 2004.

[41] E. Pozniansky and A. Schuster. Efficient on-the-fly data race detection in
multithreaded C++ programs. In Proc. PPoPP, 179–190, 2003.

[42] P. Pratikakis, J.S. Foster, and M. Hicks. LOCKSMITH: context-sensitive corre-
lation analysis for race detection. In Proc. PLDI, 320–331, 2006.

[43] A.K. Rajagopalan and J. Huang. RDIT: race detection from incomplete traces.
In Proc. ESEC/FSE, 914 - 917, 2015.

[44] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro and T. Anderson. Eraser: a
dynamic data race detector for multithreaded programs. ACM TOCS, 15(4),
391–411, 1997.

[45] K. Sen. Race Directed Random Testing of Concurrent Programs. In Proc. PLDI,
11–21, 2008.

[46] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: data race detection in
practice. In Proc. WBIA, 62–71, 2009.

[47] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan. Sound predic-
tive race detection in polynomial time. In Proc. POPL, 387–400, 2012.

[48] F. Sorrentino, A. Farzan, and P. Madhusudan. PENELOPE: weaving threads to
expose atomicity violations. In Proc. FSE, 37–46, 2010.

[49] Microsoft. Thread execution blocks.
http://msdn.microsoft.com/enus/library/ms686708.aspx

[50] K. Vineet and C. Wang. Universal causality graphs: a precise happens-before
model for detecting bugs in concurrent programs. In Proc. CAV, 434–449,
2010.

[51] J.W. Voung, R. Jhala, and S. Lerner. RELAY: static race detection on millions
of lines of code. In Proc. FSE, 205–214, 2007.

[52] C. Wang, K. Hoang. Precisely Deciding Control State Reachability in Concur-
rent Traces with Limited Observability. In Proc. VMCAI, 376–394, 2014.

[53] C. Wang, M. Said, and A. Gupta. Coverage guided systematic concurrency
testing. In Proc. ICSE, 221–230, 2011.

[54] X.W. Xie and J.L. Xue. Acculock: Accurate and Efficient detection of data
races. In Proc. CGO, 201–212, 2011.

[55] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple: a coverage-driven
testing tool for multithreaded programs. In Proc. OOPSLA, 485–502, 2012.

[56] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: efficient detection of data race
conditions via adaptive tracking. In Proc. SOSP, 221–234, 2005.

[57] T. Yu, W. Srisa-an, and G. Rothermel. SimRT: An automated framework to
support regression testing for data races. In Proc. ICSE, 48–59, 2014.

[58] K. Zhai, B.N. Xu, W.K. Chan, and T.H. Tse. CARISMA: a context-sensitive
approach to race-condition sample-instance selection for multithreaded ap-
plications. In Proc. ISSTA, 221–231, 2012.

[59] W. Zhang, M. d. Kruijf, A. Li, S. Lu and K. Sankaralingam. ConAir: feather-
weight concurrency bug recovery via single-threaded idempotent execution.
In Proc. ASPLOS, 113–126. 2013.

	1. Introduction
	2. Background
	2.1 Multithreaded Programs
	2.2 Data Races

	3. Motivations
	3.1 Motivating Example
	3.2 Heavy Overhead of Dynamic Data Race Detection
	3.3 Limitations of Existing Sampling Approaches

	4. Our Approach
	4.1 Goal and Challenges
	4.2 Basic AtexRace Algorithm
	4.3 Limitations of Basic AtexRace
	4.4 Optimizations
	4.5 AtexRace on Example Program
	4.6 Discussion on AtexRace

	5. Experiments
	5.1 Implementation and Benchmarks
	5.2 Experimental Setup
	5.3 Result Analysis on Parsec Benchmark Suite
	5.4 Result Analysis on MySQL

	6. Related Work
	7. Conclusion
	ACKNOWLEDGEMENT
	Reference

