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ABSTRACT 
Bounded Model Checking (BMC) based on Boolean Satisfiability 
(SAT) procedures has recently gained popularity as an alternative 
to BDD-based model checking techniques for finding bugs in 
large designs. In this paper, we explore the use of learning from 
BDDs, where learned clauses generated by BDD-based analysis 
are added to the SAT solver, to supplement its other learning 
mechanisms. We propose several heuristics for guiding this 
process, aimed at increasing the usefulness of the learned clauses, 
while reducing the overheads.  We demonstrate the effectiveness 
of our approach on several industrial designs, where BMC 
performance is improved and the design can be searched up to a 
greater depth by use of BDD-based learning.  

Categories and Subject Descriptors 
B.6.3 [Design Aids]: Verification. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Boolean Satisfiability, SAT, SAT solvers, BDDs, learning, BDD 
learning, bounded model checking, property checking. 

1. INTRODUCTION 
As hardware design complexity continues to rise, there is a 
greater need for effective verification in order to avoid costly 
errors. Formal verification techniques like symbolic model 
checking [1, 2], based on the use of Binary Decision Diagrams 
(BDDs) [3], offer the potential of exhaustive coverage and the 
ability to detect subtle bugs. However, these techniques do not 
scale well in practice due to the state explosion problem.  

In contrast, Bounded Model Checking (BMC) [4] focuses on 
finding bugs of bounded length, and successively increases the 
bound to search for longer traces. Given a design and a 
correctness property, it generates a Boolean formula, which is 
satisfiable if and only if there exists a witness/counterexample of 
length k. The satisfiability check is typically performed by a 
backend SAT solver. Due to the many recent advances in SAT 
solvers [5-8], SAT-based BMC can handle much larger designs in 
practice. As demonstrated by these SAT solvers, learned clauses 

play a crucial role in determining their performance, both by 
pruning the search space, and by dynamically affecting the choice 
of decision variables.  At the same time, there is an overhead 
associated with the addition of each learned clause. Therefore, 
learning techniques must ensure a good tradeoff between the 
usefulness and the overheads of adding learned clauses. 

1.1 BDD Learning 
Our approach focuses on the use of learned clauses generated by a 
BDD-based analysis of the SAT problem – we call this BDD 
Learning. Essentially, a BDD is used to capture the relationship 
between Boolean variables of (a part of) the SAT problem, in the 
form of a characteristic function. In such a BDD, each path to a 
“0” (false) node denotes a conflict. A learned clause 
corresponding to this conflict is easily obtained by negating the 
literals that define the path. Since a BDD captures all paths to 0, 
i.e. all possible conflicts among its variables, the potential 
advantage is that multiple learned clauses can be generated and 
added to the SAT solver at the same time. In contrast, conflict-
driven learning [5] typically analyzes a single conflict at a time. 
An example with multiple learned clauses generated from a BDD 
is shown in Figure 1. (The figure shows multiple terminal nodes, 
and no inverted edges for exposition only; standard ROBDDs can 
be used otherwise.) 

Figure 1: Example for BDD Learning 
In BMC, or any circuit-based SAT application involving time 
frame expansion, the bulk of the Boolean constraints arise from 
the k-times unrolled transition relation of the design. Therefore, 
the circuit structure graph of the transition relation is a natural 
candidate for creating useful BDDs. The main goal for our BDD 
Learning technique is to be effective but lightweight, i.e. it should 
improve the performance of the SAT solver, but without 
overwhelming the SAT solver heuristics. This rules out the 
possibility of learning on a global scale, i.e. creating a BDD and 
learned clauses for every node in the circuit graph. In our 
experiments also, we found this to be too expensive. Therefore we 
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perform learning selectively, i.e. by selecting “seed” nodes in the 
circuit graph around which to perform learning. We distinguish 
between the following kinds of learning: 
• Static learning: seed nodes are selected using static 

information, and learned clauses are added statically, before 
the SAT solver starts the search. 

• Dynamic learning: seed nodes are selected using dynamic 
information, and learned clauses are added on-the-fly, during 
the SAT search. 

Note that in static learning, the seed selections reflect only the 
static circuit structure, while for dynamic learning they also 
reflect the dynamic state of the SAT solver.  
The distinguishing criteria between static and dynamic learning 
are – how the seeds are selected, and when the clauses are added. 
Note that we do not distinguish based on when the learned clauses 
are generated. For example, it is possible to generate BDDs and 
learned clauses either in advance for all seed nodes, or on-the-fly 
for selected seed nodes. Furthermore, BDDs can be created for 
seed nodes in the unrolled transition relation (starting from the 
initial state), or a single copy of the transition relation (without 
the initial state) called the template. In the former case, learned 
clauses are generated directly in terms of the different SAT 
variables in the expanded time frames. In the latter case, learned 
clauses are generated in terms of template variables. With each 
successive unrolling of the transition relation, a learned clause can 
be generated for the new time frame by substituting 
corresponding SAT variables for the template variables. (This is 
similar to clause replication [9], also discussed later.) In this 
paper, we describe details for selecting seed nodes on the unrolled 
transition relation, with on-the-fly generation of BDDs and 
learned clauses. These ideas can be extended easily to other 
variations described above.  
We use a BDD Learning engine to encapsulate the essential tasks 
of seed selection, creation of BDDs, and generation of learned 
clauses. This engine is integrated with a standard SAT solver. In 
particular, BDD Learning is performed in conjunction with other 
learning mechanisms in the SAT solver, e.g. conflict-driven 
learning [5]. Furthermore, a learned clause generated by the BDD 
Learning engine is treated similar to other learned clauses by the 
SAT solver. For example, scores of variables related to these 
learned clause are incremented [7, 8], which can significantly 
impact the future decisions made by the SAT solver.  

1.2 Our Contributions 
Though the idea of generating learned clauses from a BDD is 
relatively straight forward, and has also been mentioned by other 
researchers [10], we believe our work to be the first to explore the 
associated tradeoff issues in integrating such learning within a 
SAT solver. We describe heuristics and parameters in our BDD 
Learning engine which are targeted at increasing the usefulness of 
the learned clauses, while reducing the overheads.  In particular, 
our heuristics for dynamic seed selection can be potentially 
combined with other kinds of external learning, in order to 
achieve a balance in this tradeoff. 
To the best of our knowledge, our work is also the first to 
demonstrate the practical effectiveness of BDD Learning in the 
context of an application such as BMC. We report experimental 
results on industrial designs for our prototype implementation of 
BMC, enhanced with a BDD Learning Engine. Our results show 
runtime reduction of up to 73% for searching the same number of 

time frames as basic BMC, and deeper searches (with additional 
time frames) within the allotted time.  
Finally, though this paper focuses on the BMC application, our 
BDD Learning technique can be used to potentially improve 
performance in other circuit-based SAT applications as well, such 
as equivalence checking [10], automatic test pattern generation 
(ATPG) [11] etc. 

1.3 Related Work 
The idea of combining BDDs and SAT for verification is not new. 
Given that both techniques perform an implicit search on the 
underlying Boolean space, it is no surprise that many different 
ways of combining them have been explored over the years, 
frequently suited to the target application. Their relative benefits 
have been combined in many verification applications such as 
equivalence checking [10, 12-16], BMC [10], image computation 
[17], and model checking [18, 19]. 
The distinguishing feature of our BDD Learning method is that it 
directly adds learned clauses to the SAT solver. Its use is 
orthogonal to other BDD-based simplifications for SAT problems, 
such as for simplifying the goals [10], or for simplifying the 
problem using BDD sweeping [20]. It is also possible to combine 
BDD Learning techniques with clause replication techniques [9]. 
Clause replication enables reuse of learning in SAT applications 
involving time frame expansion, such as BMC. Essentially, a 
learned clause, consisting of literals from specific time frames, is 
replicated by substituting corresponding literals from other 
allowable time frames. This was originally applied to clauses 
learned by conflict analysis [9], but it applies also to clauses 
learned by other techniques, including BDD Learning. 
Furthermore, our ideas of dynamic seed selection can be used for 
selective replication, to increase its effectiveness in practice. 

2. BDD Learning Engine 
 
  Bdd_Learning_engine() { 
         update_engine_info(); 
         if (ready_for_learning) { 
       node = select_a_seed(); 
       bdd = create_a_bdd(node); 
       cl_list= generate_learned_clauses(bdd);} 
         return(cl_list); 
    } 
    SAT_Solve() { 
    while(1) { 
      cl_list = bdd_learning_engine();  // new 
              if (add_clauses(cl_list)== UNSAT) // new 
                   return UNSAT;                   // new 
             if (decide_next_branch()) { 
        while(deduce() == conflict) { 
          blevel = analyze_conflict(); 
          if (blevel == 0) return UNSAT; 
          else backtrack(blevel); } 
            } else return SAT; 
        } 
    } 

Figure 2: Overall Flow of BDD Learning Technique 
The overall flow of our technique is shown in Figure 2. The BDD 
Learning engine performs the essential tasks of seed selection, 
creation of a BDD, and generation of learned clauses from the 
BDD. Its integration with a typical DPLL-style SAT solver [21] is 
shown also, where the additional steps are marked “new” in the 
figure. The remainder of this section describes details of the BDD 
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Learning engine, and the next section focuses on its integration 
with the SAT solver. 

2.1 Seed Selection 
We explored many different heuristics for selecting seeds around 
which BDD Learning is performed. Since the goal is to improve 
the SAT solver performance, the seed selection heuristics are 
based on the decision ordering heuristics of the SAT solver itself.  
We assign a rank to each candidate seed node (not a primary 
input) based on criteria described below. We also keep track of 
which variables have already been chosen as seeds, to avoid 
adding duplicate learned clauses. The seed selection heuristics, 
listed SSH1-SSH5, are: 

• SSH1: Next decision rank: The idea is to preempt the 
learning that would be performed by the SAT solver for a 
future decision. Rather than learn a single conflict clause, we 
learn all related conflict clauses simultaneously. 

• SSH2: Past decisions ranked back from the current one: In 
this case, the idea is to learn some more clauses about 
variables that have been important in the past. 

• SSH3: Most frequent decisions: The idea is that a variable 
chosen frequently as a decision variable, along different 
paths in the SAT search, is a good candidate for preempting 
future learning. 

� SSH4: Decisions at back-leap levels: The back-leap 
technique identifies a good decision level to backtrack to, in 
the presence of many conflicts localized within a range of 
decision levels [22]. Like restarts, it allows jumping out of 
locally bad regions, but without having to backtrack all the 
way up to the starting decision level. The intuition here is 
that additional learning about decision variables at the back-
leap levels is likely to be useful. The seeds are ranked from 
the backleap level down to the current decision level. 

• SSH5: Decisions at levels most often backtracked to: Since 
difficult SAT problems are characterized by more number of 
backtracks, we keep track of decision variables at those 
levels to which maximum number of backtracks have taken 
place. The intuition is that these variables are likely to be 
causing more conflicts, and additional learning might help. 

We experimented with choosing a single seed at a time, versus 
choosing multiple seeds. In most cases, the latter incurred 
additional overhead, without helping improve the performance. 
Therefore, for all experiments described in this paper, we chose a 
single seed whenever BDD learning was invoked. 

2.2 Creation of BDDs 
Once seed selection is done, we need to create BDDs that capture 
relationships among variables in the circuit region around the 
seed. We explored two different region heuristics – the fanin cone 
of the seed, and the circuit region around the seed including its 
fanins and fanouts. Since the latter results in BDDs that may not 
include the seed variable at all, our experimental results were 
uniformly better with the fanin cone heuristic. 
In both cases, we created BDDs across very few logic levels, 
typically 5-10, in order to avoid BDD size blowup. Keeping the 
number of logic levels any lower would likely result in local 
learning, which is relatively easy to infer from the circuit 
constraints. The potential benefit of BDD Learning is in its ability 

to perform non-local learning around the seed.  Apart from 
avoiding memory blowup, keeping the BDD sizes small has the 
added benefit of creating shorter paths in the BDD, thereby 
resulting in shorter clause lengths. In general, shorter learned 
clauses are likely to be more beneficial than longer learned 
clauses, since they require less number of assignments before 
resulting in an implication. 

2.3 Generation of Learned Clauses 
After a BDD has been created, we need to generate learned 
clauses. In order to directly use standard BDD packages [23], we 
can complement the given BDD, and simply enumerate its cubes, 
i.e. paths to the “1” (true) node. In order to favor shorter clauses, 
only those cubes that are shorter than a given maximum clause 
length, typically 5 - 10, are used for generating learned clauses. 
To avoid exploring all paths (potentially exponential) in the BDD, 
we enumerate only a fixed number of cubes. 
An alternate method, which actually performed better in our 
experiments, is to implement our own fixed-depth traversal for the 
complemented BDD. All paths leading to “1” that are shorter than 
the maximum clause length are enumerated. At the same time, all 
paths that are greater than the maximum clause length are 
changed to lead to “0”, thereby resulting in an under-
approximated BDD. Since the maximum clause length varies 
from 5 to 10, this traversal is very fast. An additional strategy is 
to perform a universal quantification on heuristically chosen 
variables in the under-approximated BDD. This corresponds to 
performing a resolution on the learned clauses, and results in less 
number of learned clauses. However, in our experimental results, 
this typically performed worse than the fixed-depth traversal 
without quantification. 

3.  Integrating BDD Learning in SAT Solver 
This section describes details of integrating a BDD Learning 
engine with a typical DPLL-style SAT solver [21], and highlights 
the issues for static and dynamic learning.  

3.1 Invoking the BDD Learning Engine 
We invoke the BDD Learning engine at every decision level, 
including the starting level 0, just before the next decision 
variable is chosen by the SAT solver. For static learning, we 
perform learning at decision level 0 only, and disable learning at 
all other levels (by using the condition ready_for_learning 
shown in Figure 2). For dynamic learning, invoking the BDD 
Learning engine at every decision level allows information 
regarding seed selection heuristics to be updated easily (shown in 
Figure 2 as update_engine_info). However, we do not 
necessarily perform BDD learning at each decision level. Since 
difficult SAT problems are characterized by an increased number 
of backtracks, we perform BDD learning after every interval 
during which a certain number of backtracks has taken place. We 
also experimented with increasing the backtrack interval 
parameter dynamically (as a kind of backoff), so as to not over-
burden the SAT solver. For more difficult problems, this worked 
better than a fixed parameter. 

3.2 Adding Learned Clauses to SAT Solver 
For static learning, the learned clauses generated by the BDD 
Learning engine are added to the SAT solver before any decisions 
are made. This is relatively straight forward, since all implications 
due to the learned clauses occur at the starting level. However, the 
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situation is somewhat more complicated for dynamic learning, i.e. 
when learned clauses are added dynamically to the SAT solver.  
Note that a conflict clause, i.e. a clause learned from conflict 
analysis by the SAT solver, is also added dynamically. However, 
a conflict clause is guaranteed to be either conflicting (or unit, 
depending upon the implementation) when it is added. This 
results in an immediate backtrack (or an implication at the current 
decision level). When multiple clauses are added after BDD 
Learning, or any other kind of learning performed externally with 
respect to the SAT solver, extra work may be required to maintain 
its decision level invariants. 
Consider the effect of a newly added clause on the existing state 
of the SAT solver. The effect depends on the status of the clause, 
as computed with respect to the current variable assignment stack 
in the SAT solver, as follows: 

• If a learned clause is conflicting, i.e. all its literals are false, 
then the clause can be added immediately. As soon as it is 
added, conflict analysis will take place, resulting in 
appropriate action in the SAT solver. 

• If a learned clause is unsatisfied, but has at least two 
unassigned literals, then it can be added immediately without 
changing the decision level of the SAT solver. 

• If a learned clause is unit, i.e. all but one of its literals are 
false, and the remaining one is unassigned, then adding it 
would cause an implication. This might require backtracking 
up to the level where the implication should be made. 
Therefore, a choice exists between adding the clause 
immediately, followed by potential backtracking, or delaying 
its addition until the SAT solver goes back to the level where 
the implication should be made.  Note that this case also 
applies to non-conflicting 1-literal clauses, for which 
backtracking up to the starting decision level (a restart) 
would be required. 

• Finally, if a learned clause is satisfied, i.e. at least one of its 
literals is true, we can add it immediately to the SAT solver 
without changing the decision level in most cases. The 
exception is the case when all literals but one are assigned 
false, and the true literal is the only literal assigned at the 
highest decision level, i.e. the learned clause would have 
caused an implication on the true literal at a lower decision 
level. We call this a pseudo-satisfied learned clause. It is 
similar to the case of a unit clause, and is handled in the 
same way. 

To summarize, learned clauses that are conflicting, or are 
unsatisfied with at least two unassigned literals, can be added 
immediately to the SAT solver. Satisfied clauses, but not pseudo-
satisfied clauses, can also be added immediately. Finally, unit 
clauses and pseudo-satisfied clauses require implications to be 
made. For these, we have a choice between adding them 
immediately followed potentially by backtracking, or waiting to 
add them later at the correct implication level. 

3.3 Heuristics for Adding Learned Clauses 
We use some additional filters to determine whether or not to add 
a clause generated by the BDD Learning engine to the SAT 
solver. First, we prefer those learned clauses that capture non-
local learning, in order to avoid duplication of circuit constraints. 
A heuristic that we use is to check if assignments to its literals 

took place at different decision levels. Though it does not capture 
non-locality precisely, it is a good indicator. We use the term non-
local to describe such clauses. 
We also use a relevance number to determine the potential 
usefulness of a learned clause, defined as the sum of its true and 
unassigned literals. If this number is large, the learned clause is 
unlikely to be useful, since it will not cause an implication. 
Therefore, we prefer clauses with a relevance number less than a 
certain threshold – we call these the relevant clauses. (Typically, 
SAT solvers use a similar figure of merit to delete their own 
learned clauses when needed.) We found a relevance threshold of 
5 to give good performance. 
Finally, for unit and pseudo-satisfied learned clauses, we 
heuristically choose when to add them to the SAT solver. We add 
them immediately if the difference between the current decision 
level and the implication level is less than a threshold parameter, 
but delay adding them otherwise. We typically used a level 
difference of 5 as the threshold in our experiments. 
Based on these additional filters and the status of a learned clause, 
we have organized the following levels of learning: 

• Level 1 learning: adds only the conflict clauses and 1-literal 
unit clauses 

• Level 2 learning: adds all level 1 clauses, and all unit and 
pseudo-satisfied clauses 

• Level 3 learning: adds all level 2 clauses, and all non-local, 
relevant clauses (satisfied, as well as unsatisfied). 

Note that these levels are organized intuitively, according to the 
projected usefulness of a learned clause. Furthermore, since each 
level includes clauses added by previous levels, we can easily 
investigate the effect of adding more clauses. 

4. Experimental Results 
We have implemented a prototype BMC framework within our 
in-house verification platform called DiVer. It uses an efficient 
hybrid SAT solver [24] at the backend, which performs better 
than Chaff [7] on many problems. We have also implemented a 
prototype BDD Learning engine, based on CUDD [23] and VIS 
[25], which has been integrated with our backend SAT solver.  
For our experiments, we used six industrial designs, ranging in 
size up to 416k gates and 12.7k flip-flops in the cone of influence 
of the correctness property. We used BMC to check safety 
properties, i.e. the search was for simple counterexamples without 
loops. So far, we have found a counterexample for only one of 
them (design D6). Experiments for all designs except D1, were 
performed on a 2.2 GHz Dual Xeon processor machine, with 4 
GB memory, running Linux 7.2. Experiments for D1 were 
performed on a 900 MHz Dual Sun 220R machine, with 4 GB 
memory, running Solaris 5.8. 

4.1 Static BDD Learning 
We first experimented with static BDD Learning. For our 
experiments, we used a maximum clause length of 6, and the 
seeds were the top 20 variables ranked by the SAT scoring 
mechanism for ordering decision variables, before any decisions 
are made. The results are shown in Table 1. The last design in the 
table, D6, has a counterexample at time frame 56. For D5, we are 
actually able to go much deeper than 12 time frames, but it is 
useful to stop earlier in the experiments because time frame 10 
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presents the most difficult SAT problem for this design.  For the 
remaining four designs, we used a time limit of 3 hours for all 
experiments. Also, in all our result tables, the time reported is for 
checking all depths up to the specified one, i.e. it is the 
cumulative time up to that depth. 
In Table 1, Column 2 lists the number of flip-flops (#FF) and 
gates (#G) in the cone of influence of the property. The next two 
columns report results for BMC implemented in VIS [25], which 
uses Chaff [7] as the backend SAT solver – Column 3 reports the 
maximum depth searched (k), and Column 4 the total time taken 
(Time, in seconds). Columns 5 and 6 report the same for basic 
BMC in our platform DiVer, i.e. without the use of any BDD 
Learning. The next three sets of columns report the results for 
DiVer BMC with static BDD learning. For each of the three 
different levels of learning (Section 3.3), we report the maximum 
depth searched (k), the total time taken (Time, in seconds), the 
time spent in learming (L, in seconds), and the number of learned 
clauses added (#LCl), respectively.  The last column indicates 
whether DiVer BMC with static BDD Learning performed better 
than, worse than, or the same as basic DiVer BMC. 
Note first that the basic BMC performance in DiVer is better than 
the BMC performance in VIS for all designs, by orders of 
magnitude for many of them. This indicates that basic DiVer 
BMC is a good baseline for comparison. Next, note that for four 
of six designs, static BDD Learning is better or the same as basic 
BMC, i.e. it improves the runtime, and in some cases allows a 
deeper search. The learning time itself is quite low in all cases. 
Comparing the different levels of learning, for five of six designs, 
the impact of adding more clauses is negative. This can be seen 
clearly for design D2, where the maximum depth varied from 101 
for Level 1, 87 for Level 2, down to 42 for Level 3. This shows 
the importance of learning “useful” clauses, while keeping their 
overheads low. On the other hand, for design D4, it was indeed 
more useful to add more clauses. 

4.2 Dynamic BDD Learning 
Next, we experimented with dynamic BDD Learning. In general, 
our results were worse for the combination of static and dynamic 
learning. Therefore, we report results for dynamic learning alone. 

For our experiments, we performed learning after every 100 
backtracks, and used a maximum clause length of 6. 
We first experimented with different levels of learning. Unlike 
static learning, we found that results for Level 3 learning were 

uniformly better for all designs. This indicates that when the seeds 
have been selected well, hopefully due to dynamic seed selection, 
it is better to learn more than to learn less. For seed selection, we 
tried heuristics SSH1—SSH5 (Section 2.1). 
Table 2 reports the results for Level 3 learning, with the best seed 
selection heuristic for each design. Columns 1 – 4 are as before; 
the remaining columns report the results for DiVer BMC with 
dynamic BDD Learning. Columns 5 and 6 report the depth and 
time taken for the same depth as basic DiVer BMC, and Column 
7 reports the percentage reduction in time. Columns 8 and 9 show 
the maximum depth, and the total time taken. Columns 10—13 
report the learning statistics – the time spent in learning (L, in 
seconds), the number of learned clauses added (#LCl), the number 
of seeds used (#Seeds), and the seed selection heuristic that gave 
the best result (SSH), respectively. The last column indicates 
whether DiVer BMC with dynamic BDD Learning performed 
better than, worse than, or the same as basic DiVer BMC. 
Note that dynamic BDD Learning is quite effective in all designs. 
In comparison to basic BMC, it reduced the runtime by up to 
73%, and allowed deeper searches to be completed within the 
allotted time. The learning time is again quite low. More 
interestingly, note that even a small number of added clauses can 
impact the overall performance significantly. For example, in 
design D1, the addition of just 15 learned clauses for 3 seeds, 
achieved a 25% reduction in run time for completing depth 96, 
and allowed an additional 13 time frames to be searched. This 
demonstrates the effectiveness of our heuristics for choosing 
seeds and learned clauses to be added. Our extended results 
indicate that the past decision heuristic (SSH2) gives good 
performance in general, though it may not consistently give the 
best performance. 
In comparison to static BDD Learning, we obtained significantly 
better results (either less time, or increased depth, or both) with 
dynamic BDD Learning for four of six designs, and it was not 
much worse for the remaining two. While the time for learning 
itself is insignificant, the difference is due to the quality of the 
clauses added, and their impact on future decisions. In particular, 
for the same level of learning (Level 3), less number of clauses 

are added by dynamic learning than by static learning. In a sense, 
this indicates that dynamic seed selection offers a better control 
than static seed selection over the tradeoff in adding learned 
clauses. 

k Time (s) k Time (s) Reduction Max k Time (s) L (s) #LCl #Seeds Best SSH
D1 12.7k/416.1k 96 10230 96 7646 25% 109 10644 1 15 3 SSH2 better
D2 4.2k/37.8k 64 7519 64 2031 73% 103 10459 11 2361 655 SSH4 better
D3 5.2k/46.4k 32 8667 32 7195 17% 32 7195 3 1494 276 SSH2 better
D4 910/18k 89 9760 89 7379 24% 92 10791 20 1464 784 SSH2 better
D5 377/19.4k 12 109 12 39 64% 1 89 32 SSH5 better
D6 952/18.1k 56 29 56 29 0% 0 0 0 SSH4 same

DiVer BMC

Table 2: Experimental Results for Dynamic BDD Learning show Significant Improvements

DiVer BMC With Dynamic BDD Learning#FF/#GDesign Status

k Time (s) k Time (s) k Time (s) L (s)  #LCl k Time (s) L (s) #LCl k Time (s) L (s) #LCl
D1 12.7k/416.1k 8 1906 96 10230 95 9965 33 4 95 9898 32 5 90 9207 21 1096 worse
D2 4.2k/37.8k 30 802 64 7519 101 10684 15 159 87 10344 11 136 42 6867 15 1720 better
D3 5.2k/46.4k 29 8092 32 8667 32 7720 5 44 32 6168 5 68 32 8704 4 988 better
D4 910/18k 57 10462 89 9760 86 10204 24 105 86 10192 23 105 93 10252 28 1716 better
D5 377/19.4k 12 5868 12 109 12 109 1 0 12 109 1 0 12 155 1 44 same
D6 952/18.1k 56 9134 56 29 56 120 4 34 56 120 3 34 56 237 3 496 worse

StatusLevel 1 Learning

Table 1: Experiments for Static BDD Learning show Mixed Results

DiVer BMC with Static BDD Learning
Level 2 Learning Level 3 Learning#FF/#GDesign DiVer BMCVIS BMC
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We also explored the effect of varying the maximum clause 
length. These results are shown in Table 3. The performance 
variation is shown in the maximum depth searched, or in the total 
time (where the maximum depth did not vary). A maximum 
clause length of 6 or 7 gave the best empirical results on all 
designs. This may be related to the BDD creation parameters we 
have used, and remains to be investigated further. 

 

5. Conclusions 
SAT-based BMC is an effective technique for finding bugs in 
large designs. Its performance is critically determined by the 
practical efficiency of the backend SAT solver. In this paper, we 
have described details of a lightweight and effective BDD 
Learning technique, which adds learned clauses generated from 
BDDs to supplement other learning mechanisms in a SAT solver. 
We explored both static and dynamic learning using BDDs. The 
various heuristics and parameters in our BDD Learning engine are 
targeted at increasing the usefulness of learned clauses, while 
reducing the inherent overheads. We have demonstrated the 
effectiveness of our techniques on several industrial designs, 
where we have obtained up to 73% reduction in runtime, allowing 
us to perform deeper searches within the allotted time.  We 
believe that the BMC verification framework provides many 
opportunities for combining the relative benefits of SAT and 
BDDs, and our work is a step in that direction. 
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5 6 7 8 9
D1-depth 94 109 98 92 95
D2-depth 49 103 41 72 41
D4-depth 88 92 91 89 89
D3-time 8970 7195 6941 7384 7328
D5-time 197 39 36 36 84

Table 3: Performance Variation across Maximum Clause Length

Maximum Clause LengthDesign-feature
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