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Abstract. Bounded Model Checking (BMC) based on Boolean Satisfiability 
(SAT) procedures has recently gained popularity for finding bugs in large 
designs. However, due to its incompleteness, there is a need to perform deeper 
searches for counterexamples, or a proof by induction where possible. The 
DiVer verification platform uses abstraction and BDDs to complement BMC in 
the quest for completeness.  We demonstrate the effectiveness of our approach 
in practice on industrial designs. 

1   Introduction 

Bounded Model Checking (BMC) [1] has recently become popular for finding bugs 
in large designs. In this paper, we describe the use of abstraction and BDDs to 
complement SAT-based BMC in our verification platform called DiVer, which 
includes backend engines for BDD-based symbolic model checking techniques [2, 3], 
and for Boolean Satisfiability (SAT) [4]. While BDD-based model checking provides 
a complete proof methodology, it works only on small models. On the other hand, 
SAT-based BMC can handle much larger models, but it is incomplete. Conservative 
abstractions, i.e. abstractions that over-approximate the paths in models, are key in 
providing a link between the two. In particular, we use conservative approximations 
of certain state sets, computed as BDDs, as additional constraints in BMC for various 
applications such as search for counterexamples [1], and proofs by induction [5]. 
Recent related efforts have used BDD-based enlarged targets [6], and BDD-based 
approximate reachability state sets [7], in searching for counterexamples with BMC. 

2   Generation of BDD Constraints for BMC 

Since the BDD constraints for BMC are required to be over-approximations, we 
obtain “existential” abstractions of the design [8], by considering some latches in the 
concrete design as pseudo-primary inputs. Good candidates are – latches farther in the 



dependency closure of the property signals identified by localization techniques [9], 
peripheral/pipelining latches that do not contribute to the sequential core of the design 
[10, 11]. Given a conservative abstract model, and a correctness property, we use 
exact or approximate symbolic model checking techniques [3, 8] to generate the BDD 
constraints. For example, for simple safety properties, we store the union of the state 
sets computed iteratively by the pre-image operation, backwards from the set of bad 
states, as shown in Figure 1 (a). We also store the union of the state sets in the 
forward reachability analysis, starting from the initial state, as shown in Figure 1 (b).  

 
Fig. 1. Generation of BDD Constraints 

 
We convert each BDD to either a gate-level circuit or a CNF formula, where each 

internal BDD node is regarded as a multiplexor controlled by that node’s variable. 
The size of the resulting circuit or CNF formula is linear in the size of the BDD, due 
to introduction of extra CNF variables for each BDD node. We use reordering 
heuristics as well as over-approximation methods to keep down the BDD sizes.  

3 Use of BDD Constraints in BMC Applications 

The ability of BMC to perform a deeper search for a counterexample critically 
depends on the efficiency of its backend SAT solver. Modern SAT solvers [4, 12] 
have shown the effectiveness of adding redundant conflict clauses, which greatly 
improve the performance by pruning the search space, and by affecting the choice of 
decision variables. In a similar way, we use the BDD constraints as additional 
(redundant) constraints on the state variables at each (or some) cycle of the unrolled 
design, as shown by dark boxes in Figure 2 (a).  

For safety properties, we also use the BMC engine to perform a proof by induction 
with increasing depth k, with restriction to loop-free paths for completeness [5]. Here, 
we use the BDDs not as redundant constraints, but as additional constraints in order 
to facilitate the proof. This is shown pictorially by the dark boxes labeled B* and F* 
in Figure 2 (b). For the base step, after unsatisfiability of the negated property at each 
cycle up to k cycles has been checked, we additionally check the satisfiability of the 
B* BDD constraint after k cycles. If it is unsatisfiable, then the property is proved to 
be true. However, if B* is satisfiable, we proceed with the inductive step, where we 
use the F* BDD to constrain the arbitrary state at the start of the k+1 cycles. Note 
that this provides an additional reachability invariant, which can potentially allow the 
inductive step to succeed with BMC. It is interesting to note that the backward set B* 
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complements the forward reasoning of the base step, while the forward set F* 
complements the backward reasoning of the inductive step. 

 

 
Fig. 2. Use of BDD Constraints in BMC Applications 

 
We also use BDD constraints (forward/backward iteration BDDs) for representing 
sets of abstract counterexamples for simple safety properties, for performing 
counterexample guided abstraction refinement [13]. We are currently investigating 
their use for representing witness graphs of more general properties [14], in order to 
guide BMC in its search for a real counterexample, or to aid in refinement. 

4  Experimental Results 

We experimented with DiVer for checking safety properties on some large industrial 
designs, with more than 2k flip-flops, and more than 10k gates in the cone of 
influence of the property. The experiments were conducted on a Dual Intel Xeon 
1700 MHz processor, with 4GB memory, running Linux 7.2, with a time limit of 3 
hours. We were able to search quite deep in each design (more than 100 cycles), but 
could not find a counterexample. Similarly, we attempted deep proofs by induction 
(of depth more than 40), but the induction proofs did not succeed, despite 
enforcement of about 25 constraints provided by the designers.  

Next, we tried BMC with BDD constraints in DiVer. These experiments were 
conducted on a 440 MHz. Sun workstation, with 1GB memory, running Solaris 5.7. 
The results are shown in Table 1, where Columns 2 – 5 report the results for BDD-
based analysis on the abstract model, while Columns 6 – 9 report the results for a 
BMC-based proof by induction on the concrete design, with use of the BDD 
constraints. We obtained the abstract models automatically from the unconstrained 
designs, by abstracting away latches farther in the dependency closure of the property 
variables. For these experiments, we performed only the forward traversal on the 
abstract model, since our BDD-based symbolic model checker did not allow checking 
on universally constrained paths. Columns 2 – 5 report the size of the abstract model 
(number of flip-flops #FF, number of gates #G), the CPU time taken for traversal, the 
number of forward iterations, and the final size of the BDD F*, respectively. 
Columns 6 – 9 report the size of the concrete design, the verification status, and the 
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time and memory used by the BMC engine, respectively. Note that due to the small 
size of the abstract models, we could keep the resource requirements for BDDs fairly 
low. The important point is that despite gross approximations in the abstract model 
analysis, the BDD reachability invariants were strong enough to let the induction 
proof go through successfully with BMC in each case. Though neither the BDD-
based engine, nor the BMC engine, could individually prove these safety properties, 
their combination allowed the proof to be completed very easily (in less than a 
minute). 

Table 1. Experimental Results for Proof by Induction using BDD-based Reachability Invariant  
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#FF /  #G Time(s) Depth Size of F* #FF /     #G Status Time(s) Mem(MB)
D1-p1 41 /  462 1.6 7 131 2198 / 14702 TRUE 0.07 2.72
D2-p2 115 / 1005 15.3 12 677 2265 / 16079 TRUE 0.11 2.84
D3-p3 63 / 1001 18.8 18 766 2204 / 16215 TRUE 0.1 2.85
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