
Disjunctive Image Computation for Software
Verification

CHAO WANG

NEC Laboratories America

ZIJIANG YANG

Western Michigan University

and

FRANJO IVANČIĆ and AARTI GUPTA
NEC Laboratories America

Existing BDD-based symbolic algorithms designed for hardware designs do not perform well on
software programs. We propose novel techniques based on unique characteristics of software pro-
grams. Our algorithm divides an image computation step into a disjunctive set of easier ones that
can be performed in isolation. We use hypergraph partitioning to minimize the number of live
variables in each disjunctive component, and variable scopes to simplify transition relations and
reachable state subsets. Our experiments on nontrivial C programs show that BDD-based symbolic
algorithms can directly handle software models with a much larger number of state variables than
for hardware designs.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design Aids—Verification

General Terms: Verification, Algorithms

Additional Key Words and Phrases: Model checking, reachability analysis, image computation, bi-
nary decision diagram, formal verification

ACM Reference Format:
Wang, C., Yang, Z., Ivančić, F., and Gupta, A. 2007. Disjunctive image computation for software
verification. ACM Trans. Des. Autom. Electron. Syst. 12, 2, Article 10 (April 2007), 26 pages.
DOI = 10.1145/1230800.1230802 http://10.1145/1230800.1230802

A preliminary version of this article was presented at the DATE 2006 Conference [Wang et al. 2006].
Authors’ addresses: C. Wang, F. Ivančić, and A. Gupta, NEC Laboratories America, 4 Indepen-
dence Way, Suite 200, Princeton, NJ 08540; Z. Yang (contact author), Department of Computer
Science, Western Michigan University, 1903 W. Michigan Ave., Kalamazoo, MI 49008-5200; email:
zijiang.yang@wmich.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1084-4309/2007/04-ART10 $5.00 DOI 10.1145/1230800.1230802 http://doi.acm.org/
10.1145/1230800.1230802

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

2 • C. Wang et al.

1. INTRODUCTION

Model checking [Clarke and Emerson 1981; Quielle and Sifakis 1981] is a formal
method for proving that a finite-state model satisfies a user-specified temporal
logic property. With the development of symbolic-state space traversal algo-
rithms based on binary decision diagrams (BDDs [Bryant et al. 1986]), sym-
bolic model checking [Burch et al. 1990; McMillan 1994] has become a widely
accepted technique in hardware verification, and has shown promise for veri-
fying embedded software programs, as well [Ball and Rajamani 2000]. In this
article, we consider verifying C programs that include integer arithmetic, point-
ers, arrays, function calls, and bounded memory allocation. Although program
verification in general is undecidable, the problem becomes decidable under
certain conditions. Here we consider the case where the number of recursive
function calls and the data size are bounded. With these assumptions, we can
always build a finite state model from the software program and apply model
checking.

In practice, both recursive functions and dynamic memory allocation are
strongly discouraged in embedded software programs due to limited memory
capacity. Even for software systems that have unbounded recursions and data
(therefore an unbounded number of states), we can build finite-state verification
models by abstraction of the original systems. In this case, model checking is
still applicable, although the result is often conservative. For instance, false
negatives may be introduced during an overapproximate abstraction.

In symbolic model checking, the transition relation of the model and sets of
reachable states are represented symbolically as Boolean functions, which in
turn can be represented by BDDs. The complexity of symbolic traversal algo-
rithms depends more directly on the BDD sizes, rather than the actual number
of states they represent. Therefore, the search for heuristics to reduce the BDD
sizes has been one of the major research topics in symbolic model checking.
Image computation is the core computation in symbolic model checking. Given
a state transition system, image computation is used to find all the successors
of a given set of states according to a set of transitions. The performance of this
computation depends heavily on the size of the BDDs that represents the set
of states, transition relations, and intermediate products created during the
computation. Although BDD-based symbolic image computation has been ex-
tensively studied in past decades [Coudert et al. 1989; Burch et al. 1991; Ranjan
et al. 1995; Moon et al. 2000; Chauhan et al. 2001; Jin et al. 2002; Wang et al.
2003], most of these existing algorithms were developed mainly for hardware
systems.

Software models have some characteristics that are significantly different
from hardware models. For instance, software models often have larger se-
quential depths and significantly more state variables. Their state variables
also have a higher degree of locality, since most program variables are effective
only in parts of the program. At any program location, only a limited number of
program variables can change their values. Note that this argument remains
valid even for analysis of concurrent software, since in the interleaving exe-
cution model [Holzmann and Peled 1994], only one thread is assumed to be

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

Disjunctive Image Computation for Software Verification • 3

active at each point of time. In contrast, state variables (or latches) in hard-
ware are updated simultaneously at every clock cycle and therefore cannot be
easily localized. Due to these differences, even the most fine-tuned symbolic
image computation algorithms in the area of hardware verification do not work
well on software models. To efficiently handle software models, the symbolic
model checking engine and image computation algorithm in particular need to
be reengineered with these characteristics in mind.

In this article, we propose a new symbolic image computation algorithm that
exploits the unique characteristics of software models. It disjunctively decom-
poses the computation into a set of steps that can be performed in isolation on
submodules. Breaking the expensive computation into a set of less expensive
ones can significantly reduce the peak memory size during image computation.
In addition, we derive the variable live scope information of the software model
using a static analysis. Variable live scope information can be used to minimize
the transition relation and to improve the performance of symbolic fixpoint com-
putation. Our algorithm for creating the submodules is also geared towards ex-
ploitation of variable locality. Using a hypergraph partitioning heuristic, we are
able to produce a small set of submodules, and at the same time minimize the
number of live variables. We further improve the performance by preventing
irrelevant variables from appearing in the transition relations, and by existen-
tially quantifying dead variables from the reachable state subsets.

We have implemented and evaluated our new algorithm using the public do-
main symbolic model checker VIS [Brayton et al. 1996] as well as our program
verification tool F-Soft [Ivančić et al. 2005, 2004]. However, for the purpose of
conducting controlled experiments, we have used VIS as the performance com-
parison platform for evaluating our new algorithm. Our benchmarks are typical
embedded C programs from the public domain as well as industry, including
Linux device drivers, network application software, and programs embedded in
portable devices. We will demonstrate on this set of benchmark programs that
our new algorithm outperforms the best known conjunctive image computation
algorithms in terms of both CPU time and memory usage. The improvement
is both consistent and significant, namely, typically orders of magnitude. Al-
though previous experience with hardware verification shows that BDD-based
methods often lose robustness when the number of state variables of the model
exceeds 100–200, our work demonstrates that with enough domain-specific op-
timizations, BDD-based symbolic model checking can directly handle software
models with thousands of state variables.

The rest of this article is organized as follows. After reviewing the related
work, we start by providing a brief background on symbolic model checking
in Section 3. In Section 4 we describe our approach on modeling and verify-
ing C programs. We present our disjunctive image computation algorithm in
Section 5, followed by the application of relevant and live variables to simplify
transition relations and reachable state subsets in Section 6. In Section 7, we
present the use of the hypergraph-based partitioning algorithm to decompose
the model in order to minimize the number of live variables shared by different
submodules. We give our experimental results in Section 8 and then conclude
in Section 9.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

4 • C. Wang et al.

2. RELATED WORK

Partitioned transition relations for symbolic image computation were proposed
in Burch et al. [1991] and Cabodi et al. [1997] in both disjunctive and con-
junctive forms. In Narayan et al. [1997], multiple variable orders were used
together with partitioned BDDs [Bryant et al. 1986] to reduce the peak mem-
ory usage in reachability analysis. However, these works were not targeted
for handling software models. In general, image computation based on a dis-
junctively partitioned transition relation is effective only if a good partition
can be efficiently computed. For hardware verification, previous applications
of disjunctively partitioned transition relation were not successful, since creat-
ing a good disjunctive partition itself is a nontrivial task. Our work demon-
strates that disjunctive partitioning is naturally suited for software mod-
els due to their sequential nature. Our new method differs from prior work
in terms of the criteria we use for decomposition and our software-specific
simplifications.

Edwards, Ma, and Damiano [Edwards et al. 2001] applied a commercial
model checker to software by synthesizing C programs into circuits. However,
only very small programs can be directly verified. Although they pointed out
that model checking algorithms must be reengineered, they did not provide
any solution. Ball and Rajamani [2000] presented a tool for verifying Boolean
programs abstracted from C code. Since predicate abstraction [Graf and Saı̈di
1997; Das et al. 1999; Ball et al. 2001] has been applied, all the variables in
their Boolean program are binary-state variables. Their underlying algorithm
was a generalization of an interprocedural data flow analysis algorithm [Reps
et al. 1996]. Their core idea is to efficiently compute summaries that record
the input/output behavior of a procedure. Once a summary is computed, it is
reused whenever the same input context arises at another call to the same
procedure. Our work is different, since it builds upon symbolic model checking
and therefore takes full advantage of the decade-long research in BDD-based
algorithms and matured implementations (e.g., SMV [McMillan 1994] and VIS
[Brayton et al. 1996]).

The algorithm by Barner and Rabinovitz [2003] was also based on symbolic
model checking and used disjunctively partitioned transition relations. They
start with a conjunctively partitioned transition relation and then disjunctively
partition it so that each cluster corresponds to a subset of program variables.
However, their partitioning method is significantly different from ours, since
it requires a conjunctive transition relation and expensive and-quantify oper-
ations in order to build disjunctive transition relations. In contrast, we do not
need the entire transition relation or quantification operations in order to build
disjunctive transition relations. Furthermore, they did not exploit the variable
locality, which we use for both transition relation decomposition and subsequent
optimizations of symbolic fixpoint computation.

To summarize, the main contributions of our article are a new method for
deriving and using disjunctively partitioned transition relations for software
model checking, and further optimizations using variable locality information
derived from static analysis of the given program.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

Disjunctive Image Computation for Software Verification • 5

3. BACKGROUND: MODEL CHECKING

This section provides a brief overview and terminology for model check-
ing [Clarke et al. 2000], which is an algorithmic procedure for checking the
correctness of a property in a model. In model checking, the design to be verified
is represented as a finite state transition system, and the property is specified
as a temporal logic formula. Temporal logics are useful for specifying dynamic
behavior over time. In this article, we focus on a class of temporal logic proper-
ties called safety properties. Informally, a safety property states that something
bad should never happen. According to Kupferman and Vardi [2001], a safety
property can always be reduced to an invariant in the form of AGp by a compi-
lation process. Here AGp means that on all (A) paths of a system, the property
p holds globally (G) in each state. Such properties can be verified by an ex-
haustive traversal of the state space to check that p holds in every reachable
state. When a safety property fails, the model checker can also produce a coun-
terexample trace which shows the reachability of an error state (where p is
false).

Model checking can be applied directly for verification of finite-state sys-
tems, such as sequential circuits and protocol controllers [Clarke et al. 1999].
In addition, by use of suitable abstractions, finite state models can also be
extracted from infinite state systems for subsequent verification using model
checking. This can be used in, for instance, real-time and hybrid system ver-
ification [Alur et al. 1993], parameterized system verification [Browne et al.
1999], and software program verification [Visser et al. 2000; Corbett et al.
2000]. Furthermore, model checking techniques have also been extended to
a pushdown system [Boujjani et al. 1997; Ball and Rajamani 2000] which has a
finite control but an unbounded stack, and therefore allows a direct modeling of
recursion.

Most model checkers can be classified into two categories based on their un-
derlying state space traversal algorithms. Explicit state model checkers such as
SPIN [Holzmann 1997] use an explicit representation of states and transitions
in the system, and enumerate the reachable states explicitly. They also utilize
additional techniques such as state hashing [Wolper and Leroy 1993] and par-
tial order reduction [Holzmann and Peled 1994]. The scalability issue in explicit
state enumeration makes these checkers unsuitable for models with extremely
large state space, although they have found practical success in verification of
controllers.

In contrast, symbolic model checkers such as SMV [McMillan 1994] and
VIS [Brayton et al. 1996] avoid an explicit enumeration of the state space by
using symbolic representations of sets of states and transitions. They typically
use BDDs to provide a canonical symbolic representation of Boolean formu-
las and efficient graph-based algorithms for symbolic manipulation. For many
finite-state systems, especially digital circuits, symbolic representations can
effectively capture the regularity in the state space, and therefore can signifi-
cantly extend the ability of model checker to handle large systems. Several more
recent works have applied SAT-based methods to software verification [Clarke
et al. 2004; Ivančić et al. 2004; Cook et al. 2005].

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

6 • C. Wang et al.

4. SOFTWARE MODEL CHECKING

We first explain how our verification model is constructed from a source-
code-level C program, and then review symbolic model checking in this
context.

4.1 Software Model

We begin with a program in full-fledged C and apply a series of source-to-
source transformations into smaller subsets of C, until the program state is
represented as a collection of simple scalar variables and each program step is
represented as a set of parallel assignments to these variables. To follow are
details relevant to the construction of a symbolic model (for a comprehensive
description of the transformations, please refer to Ivančić et al. [2004]).

—Pointer and memory modeling. One difficulty in modeling C programs lies
in modeling indirect memory accesses via pointers such as x=*(p+i) and q[j]=y.
We replace all indirect accesses with equivalent expressions involving only di-
rect variable accesses, by introducing appropriate conditional expressions as
described next.

—To facilitate the modeling of pointer arithmetic, we build an internal memory
representation of the program by assigning to each variable a unique natural
number representing its memory address. Adjacent variables in C program
memory (e.g., elements of an array) are given consecutive memory addresses.

—We perform a points-to analysis [Hind and Pioli 2001] to determine, for each
indirect memory access, the set of variables that may be accessed (called the
points-to set). If a pointer can point to a set of variables at a given program
location, we rewrite a pointer read as a conditional expression using the
numeric memory addresses assigned to the variables.

—For reads via pointers (pointer-deref), we adopt an approach from hardware
synthesis [Séméria and Micheli 1998] and for each pointer variable p, create
a new variable STAR p representing the current value of *p. Each read of *p is
then rewritten as simply a read of STAR p (reads of the form *(p+i) continue
to be handled as described earlier). To keep STAR p up-to-date, after each
assignment p=qwe add an inferred assignment STAR p = STAR q. Furthermore,
we need to add aliasing assignments to the model that keep STAR p up-to-date
when the value may have been changed by an assignment through *q or some
other variable in p’s points-to set.

—Unbounded data, recursion and function. The C language specification
does not bound heap or stack size, but our focus is on generating a bounded
model only. Therefore, we model the heap as a finite array, adding a simple
implementation of malloc() that returns pointers into this array. We also add
a bounded depth stack as another global array in order to handle bounded
recursion, along with code to save and restore local state for recursive functions
only. Our bounded modeling approach works well on control-intensive programs
such as device drivers and embedded software in portable devices, although it
may not be suitable for programs in some application domains such as scientific
computing and memory management.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

Disjunctive Image Computation for Software Verification • 7

Fig. 1. Sample, code and its graph representation.

As a running example, Figure 1 shows a simplified control flow graph struc-
ture obtained from the C program on the left-hand-side. The example pictorially
shows how nonrecursive function calls are included in the control flow of the
calling function. A preprocessing analysis determines that function foo is not
called in any recursive manner. The two return points are recorded by an en-
coding that passes a unique return location as a special parameter using the
variable rtr.

Each rectangle of the right-hand-side graph is a basic block consisting of a set
of parallel assignments. The edges are labeled by conditional expressions, for
example, the transition from block 1 to block 2 is guarded by x ≤ 4. In case an
edge is not labeled by any condition, the default condition is true. Finally, block 0
is the entry block and block 8 is the one that leaves the analysis scope. Formally,
the transformations produce a simplified program that can be represented as
a labeled transition graph.

Definition 4.1. A labeled transition graph G is a 5-tuple 〈B, E, X , δ, θ〉
wherein

— B = {b1, . . . , bn} is a finite nonempty set of basic blocks.
— E ⊆ B × B is a set of edges representing transitions between basic blocks.
— X is a finite set of variables that consists of actual source-code variables and

auxiliary variables added for modeling and property monitoring.
—δ : B → 2A is a labeling function that labels each basic block with a set of par-

allel assignments, where A represents the set of all possible C assignments.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

8 • C. Wang et al.

Fig. 2. Control and data logic subgraphs.

—θ : E → C is a labeling function that labels each edge with a conditional
expression, where C represents the set of all possible C conditional expres-
sions. These conditionals are based on conditions in the C code as part of
if-then-else or while expressions.

We denote a valuation of all variables in X by �x, and the set of all valuations
by X . The state space of the entire program is Q = B×X . We define a state to be
a tuple q = (�b, �x) ∈ Q . The initial states of the program are in the initial basic
block bs ∈ B, with an arbitrary data valuation denoted by Q0 = {(bs, �x)|�x ∈
X } ⊆ Q . The set of parallel assignments in each bi ∈ B, denoted by δ(bi), can
be written as x1, . . . , xn ← e1, . . . , en, where {x1, . . . , xn} ⊆ X and e1, . . . , en are
valid C expressions.

For checking reachability properties, we define a subset BErr ⊆ B of blocks
to be unsafe; model checking is then used to prove or disprove that these basic
blocks can be reached. Let q1 → q2 denote a valid transition between the two
states q1, q2 ∈ Q . We define a path in the state space Q to be a sequence of
states (�b0, �x0), . . . , (�bk , �xk) such that (�b0, �x0) ∈ Q0 and for all 0 ≤ i < k − 1,
(�bi, �xi) → (�bi+1, �xi+1). A counterexample is a path that ends in an unsafe basic
block �bk ∈ BErr .

In order to represent the transition relation of C programs symbolically, we
consider two subgraphs of G. The control logic subgraph GC = 〈B, E, X , θ〉
discards the labeling function δ, since it is used to define the transition relation
in terms of basic block changes in a control flow graph. On the other hand,
the data logic subgraph GD = 〈B, X , δ〉 concentrates on how variables are
updated in individual basic blocks, and is used to define the transition relation
for variables in X . Figure 2 shows the control and data logic subgraphs of the
example in Figure 1.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

Disjunctive Image Computation for Software Verification • 9

Table I. A Partial State Transition Table

p4 p3 p2 p1 guard q4 q3 q2 q1
0 0 0 0 true 0 0 0 1
0 0 0 1 x ≤ 4 0 0 1 0
0 0 0 1 x > 4 0 0 1 1
. .

4.2 Next-State Function

To build the next-state functions, we encode each simple variable by a set of
binary-state variables. The number of bits needed to encode a certain program
variable depends on the variable range. Note that for many program variables,
although they are declared as integers, the actual ranges used in the program
are usually very small. Typical variables falling into this category include func-
tion pointer ids, process ids, offsets in pointer arithmetic, array indices, etc.
Variables created during the removal of pointers and flattening of structure
variables also have very limited ranges. In Zaks et al. [2006], we formulate
each range analysis problem [Rugina and Rinard 2000] as a system of inequal-
ity constraints between symbolic bound polynomials, then reduce the constraint
system to a linear program (LP) that can be analyzed by available LP solvers.
The solution to the LP problem provides symbolic lower and upper bounds for
the values of all integer variables.

Arithmetic expressions over program variables are modeled by instantiating
predefined Boolean logic components (e.g., adders and multipliers).

We assign a program location for each basic block. This approach is very
effective in reducing the sequential depth during symbolic search. A set of bi-
nary variables, called program counter (PC) variables, are created to encode the
program locations. The set of all program variables and PC variables, together
with their next-state functions, define the finite-state verification model.

We represent the control flow graph as a state transition table. Table I shows
a partial table for the example given in Figure 1, where P = {p1, p2, p3, p4}
represents the current value of the program counter (PC) variable, while
Q = {q1, q2, q3, q4} represents the next-state value. The column “guard” con-
sists of conditions under which transitions among basic blocks are made. Based
on this table, the next-state functions of PC variables, denoted by δqi , can be
constructed. Next δq2 and δq1 are given as follows.

δq2 = (P ≡ 1 ∧ x ≤ 4) ∨ (P ≡ 1 ∧ x > 4) ∨ . . . ,

δq1 = (P ≡ 0) ∨ (P ≡ 1 ∧ x > 4) ∨ . . . ,

where (P ≡ 1) means that P evaluates to 1, whose equivalent Boolean formula
is ¬p3 ∧ ¬p2 ∧ ¬p2 ∧ p1.

Formally, for each row j in a given state transition table, let k j be the condi-
tion, vi, j be the valuation for pi, and v′

i, j be the valuation for qi. The next-state
function for PC variable qi is given as follows.

δqi = ∨
j :v′

i, j =1

(
k j ∧ ∧

vi, j =1 pi ∧ ∧
vi, j =0 ¬pi

)

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

10 • C. Wang et al.

Fig. 3. Next-state logic of a binary state variable.

The next-state functions of program variables are constructed in a similar way.
For example, the variable t in Figure 1 is assigned inside blocks 6, 7, and 10 by
t − 3, l + 2, and t − 1, respectively. The next-state of t, denoted by δt ′ where t ′

is the corresponding next-state variable, is given as follows.

(P ≡ 6 ? t − 3 : (P ≡ 7 ? l + 2 : (P ≡ 10 ? t − 1 : t)))

In other words, the value of t should remain unchanged in blocks where it is not
explicitly assigned. Note that the integer arithmetic operations will be trans-
lated into Boolean operations by instantiating predefined logic blocks, such as
adders and multipliers.

If we use X = {x1, x2, . . . , xN } to denote the entire set of program variables—
whose next-state variables are { y1, y2, . . . , yN }—the construction of next-state
function for xi is illustrated by Figure 3. Here δ yi denotes the next-state function
of xi; MUX is a multiplexer; when the control signal (P ≡ j), the output is equal
to ei, j (X).

To formalize this, let the model be represented in terms of: (1) a set of present-
state program variables X = {x1, . . . , xN } and PC variables P = {p1, . . . , pM },
and (2) a set of next-state program variables Y = { y1, . . . , yN } and PC variables
Q = {q1, . . . , qM }. Let δ yi and δqi denote the next-state functions of yi and qi,
respectively. We have

δ yi (X , P) =
∨

j

(P ≡ j) ∧ ei, j (X),

where j ∈ {0, 1, . . . , K − 1} is a PC location and ei, j (X) is the right-hand side of
an assignment to yi at location j . Note that ei, j = xi if there is no assignment
to yi at location j .

ei, j (X) =
{

expr(X), if xi = expr(X) is in block j
xi, otherwise

4.3 Symbolic Reachability Computation

In symbolic model checking, the state transition graph of the model is repre-
sented symbolically by 〈T, I〉, where T (X , P, Y , Q) is the characteristic function

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

Disjunctive Image Computation for Software Verification • 11

of the transition relation, and I (X , P) is the initial state predicate. Let X̃ , P̃ ,
Ỹ , and Q̃ be the valuations of X , P , Y , and Q , respectively. If the valuation of
present-state variables makes I (X̃ , P̃) true, the corresponding state (X̃ , P̃) is
an initial state. Similarly, T (X̃ , P̃ , Ỹ , Q̃) is true if and only if there is a tran-
sition from State (X̃ , P̃) to State (Ỹ , Q̃). Note that both the transition relation
and sets of states are represented by Boolean functions, which are in turn rep-
resented by BDDs.

T (X , P, Y , Q) is the conjunction of all the transition bit-relations

T =
∧

1≤i≤N

Tyi (X , P, yi) ∧
∧

1≤l≤M

Tql (X , P, ql),

where Tyi is the bit-relation for a program variable, and Tql is the bit-relation
for a PC variable. Bit-relations are defined as follows.

Tyi (X , P, yi) = yi ↔ δ yi (X , P)
Tql (X , P, ql) = ql ↔ δql (X , P)

The image of a set of states D, consisting of all the successors of D in the graph
〈T, I〉, is denoted by EYT D. The image of D is computed as follows.

EYT D = ∃X , P . T (X , P, Q , Y) ∧ D(X , P)

After image computation, we also need to simultaneously substitute all next-
state variables {Y , Q} with corresponding present-state variables {X , P}. Since
T is the conjunction of many bit-relations, image computation consists of a se-
ries of conjoin-quantify operations. Different orders of these operations may
lead to quite different peak BDD sizes for the intermediate products. Order-
ing these operations in order to keep the peak memory usage low, also called
the quantification scheduling problem, has been the focus of several research
projects. A large number of heuristics, as well as matured implementations are
publicly available [Ranjan et al. 1995; Moon et al. 2000; Jin et al. 2002].

Our discussion in this article will be focused on checking reachability prop-
erties, but the same framework supports full symbolic model checking. In par-
ticular, reachability properties can be checked by a least fixpoint computation
that starts from the initial states and repeatedly adds the postcondition (or
image) of already-reached states. Reachability analysis is then formulated into
a fixpoint computation

R = μZ . I (X , P) ∪ EYT Z ,

where μZ represents the least fixpoint. In other words, we repeatedly add the
successors of already-reached state until the set of reachable states stops grow-
ing.

5. DISJUNCTIVE IMAGE COMPUTATION

The best known symbolic algorithms [Ranjan et al. 1995; Moon et al. 2000] do
not work well when applied directly to the software models. Figure 4 shows
the data of reachability analysis on a C program from a Linux implementation
of point-to-point protocol (PPP), whose verification model has 1,435 binary-
state variables. We have encoded the model in BLIF-MV format and then ran

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

12 • C. Wang et al.

Fig. 4. PPP: BDD sizes at different reachability steps.

reachability analysis with VIS [Brayton et al. 1996]. We have applied the best
classic symbolic image computation algorithm [Moon et al. 2000] and with dy-
namic variable reordering. The three curves represent at each BFS (breadth-
first search) step the peak number of live BDD nodes, the BDD size for reachable
states, and the maximum BDD size for intermediate products. Among them,
the first curve represents total memory usage.

Figure 4 is typical for applying conventional symbolic model checking tech-
niques to software models. All three curves grow exponentially with the BFS
step, indicating that as the reachability analysis goes on, the BDDs grow rapidly
in size. Due to the large number of program variables in software models, such
an exponential growth can quickly deplete the memory. CPU time also grows in
a similar fashion, since the complexity of BDD operations depends on the size
of the BDDs. To mitigate the memory blowup, the size of BDDs representing
the transition relation and reachable states must be reduced.

It is known that disjunctive partitioned representation of the transition re-
lation can reduce the BDD size. Applying disjunctive partition-based image
computation to hardware models has not been very successful, for computing
the disjunctive partition itself is a nontrivial task. For sequential programs,
however, a natural decomposition of next-state functions does exist. In partic-
ular, the transition function δ yi as shown in Figure 3 is the union of a set of
expressions, only one term of which is active at any program location. This can
be used to decompose the transition relation T into the union of disjunctive
components.

5.1 Decomposition of Transition Relation

The transition relation T of a software model can be decomposed naturally
into a union of disjunctive components, one for each program location. Since

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

Disjunctive Image Computation for Software Verification • 13

existential quantification ∃ distributes over disjunction ∨, we can compute in-
dividual images with smaller transition relation components. This can signifi-
cantly reduce the peak memory usage at each reachability step.

Let (j/P) represent the substitution of P with the integer value j ; similarly,
let f (X /Y) represent the substitution of Y variables with X variables inside
Function f . By definition, we have

δ yi (X , j/P) = ei, j (X),

where ei, j (X) is actually the cofactor of δ yi (X , P) with respect to (P ≡ j). The
cofactors of transition bit-relations with respect to (P ≡ j) are given as follows.

(Tyi)(P≡ j) = (yi ↔ δ yi)(P≡ j)
= (yi ∧ δ yi ∨ ¬ yi ∧ ¬δ yi)(P≡ j)
= yi ∧ (δ yi)(P≡ j) ∨ ¬ yi ∧ ¬(δ yi)(P≡ j)
= yi ∧ ei, j ∨ ¬ yi ∧ ¬ei, j

= yi ↔ ei, j

and

(Tql)(P≡ j) = (ql ↔ δql)(P≡ j)
= (ql ∧ δql ∨ ¬ql ∧ ¬δql)(P≡ j)
= ql ∧ (δql)(P≡ j) ∨ ¬ql ∧ ¬(δql)(P≡ j)
= ql ↔ (δql)(P≡ j)

By definition, T = ∨
j (P ≡ j) ∧ (T)(P≡ j), where

(T)(P≡ j) = (Tyi)(P≡ j) ∧ (Tql)(P≡ j)
= ∧

1≤i≤N (yi ↔ ei, j) ∧ ∧
1≤l≤M

(
ql ↔ (δql)(P≡ j)

)
.

(1)

Since existential quantification distributes over ∨, we have

∃X , P . D(X , P) ∧ T = ∃X , P . D(X , P) ∧ ∨
j (P ≡ j) ∧ (T)(P≡ j)

= ∨
j ∃X , P . D(X , P) ∧ (P ≡ j) ∧ (T)(P≡ j)

= ∨
j ∃X . D(X , j/P) ∧ (T)(P≡ j).

Therefore, we can use following formula to compute the successors of D.

EYT D(X , P) =
∨

j

EYT(P≡ j) D(X) =
∨

j

∃X . D(X , j/P) ∧ (T)(P≡ j) (2)

There can be one disjunctive component for every PC location j . However, for
efficiency purposes, we often merge multiple locations and then build a dis-
junctive component for each cluster. At the same time, the merit of disjunctive
decomposition must be preserved as much as possible. In Section 7 we will
give a heuristic algorithm for the merging, which simultaneously minimizes
the number of live variables in each cluster.

Note that the decomposition into (T)(P≡ j) is based on the PC locations, not on
individual program variables, as in Barner and Rabinovitz [2003]. The method
in Barner and Rabinovitz [2003] builds one transition relation disjunct for each
variable, which often defeats the purpose of exploiting variable locality. When
each disjunct contains multiple assignment statements scattered at different
program locations, the number of live variables with respect to the disjunct will

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

14 • C. Wang et al.

Fig. 5. Disjunctive reachability computation.

increase. Another significant difference is that we create (T)(P≡ j) directly from
the software program, while they rely on the existing conjunctive transition re-
lation and expensive existential quantification operations. In practice, building
the conjunctive transition relation itself may be computationally expensive, or
even infeasible. We will show later that without variable locality, the BDD rep-
resentation of reachable states will be significantly larger, and the sequential
depth of the finite state model may be longer.

5.2 Decomposition of Reachable States

Reachable states can also be represented disjunctively as the union of many
reachable state subsets, one for each submodule

R(X , P) =
∨

j

(P ≡ j) ∧ R(X , j/P).

Under the partitioned representation of reachable states, image computation
results need to be redistributed at every reachability step. Conceptually, this
redistribution step is shown by the pseudocode in Figure 5. In the figure, Ri

represents the reachable state subset associated with block i, while Ti repre-
sents its transition relation. Function call img computes the standard image
computation procedure using conjunctively partitioned transition relation. In
some sense, our new image computation algorithm is implemented on top of the
standard image algorithm. Given K disjunctive submodules and K reachable
subsets, the number of standard image computations at each reachability step
is, at most, K . In addition, the result must be redistributed among all submod-
ules. Note that the pseudocode in Figure 5 is for illustration purposes, and a
simple optimization based on control flow structure can make the complexity
of redistribution become O(E), where E is the number of edges in the control
flow graph.

In practice, we do not perform reachability computation at basic block level.
Instead, multiple basic blocks are merged to form clusters, which will be dis-
cussed in Section 7. When basic blocks are merged, the reachable state subsets
should also be merged. Nevertheless, the resulting cluster remains a disjunc-
tive partition. Compared to a monolithic BDD, this partitioned representation
may reduce the overall BDD size significantly.

The procedure in Figure 5 computes reachable states frame-by-frame (FBF).
Alternatively, we can compute reachable states machine-by-machine (MBM);
that is, the analysis is performed on one individual cluster until it converges,
after which the result is propagated to other clusters. MBM minimizes the
traffic (data transfer) among different clusters and is therefore appealing when

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

Disjunctive Image Computation for Software Verification • 15

a distributed implementation is used. This is analogous to the approximate
FSM traversal algorithm of Cho et al. [1996], with the difference that we build
the transition relations without approximation and our reachable states are
always exact.

There are two different approaches in implementing our disjunctive image
computation algorithm. In the first approach, all transition relations and reach-
able subsets follow the same BDD variable order. In this case, a single BDD
manager is allocated to hold all the BDDs. Alternatively, different BDD variable
orders can be used for different submodules to build their individual transition
relations and reachable state subsets. In the latter case, a separate BDD man-
ager is allocated for every disjunctive submodule.

With multiple BDD managers, BDD size can be kept much smaller by having
different variable orders for different BDDs. This makes it possible for image
computation to consume much less memory, and potentially speed-up the com-
putation. However, BDDs need to be transferred among different managers
while propagating new reachable states. This may introduce problems, since
a variable order that is good for one BDD may be extremely bad for another.
Therefore, dynamic variable reordering has to be triggered during the transfer
process. Frequent reordering may consume a lot of CPU time, as well. In this
sense, the multiple-manager-based approach is actually trading CPU time for
memory. We have implemented both single and multiple BDD manager-based
approaches. The experimental comparison can be found in Section 8.

6. SIMPLIFICATION USING VARIABLE LOCALITY

In this section, we describe simplifications using variable locality specific to
software models. Specifically, we describe the removal of irrelevant variables
and using variable live scope to simplify reachable state subsets.

6.1 Relevant Variables

Definition 6.1. The set of relevant variables with respect to location j , de-
noted by X R

j , contains those appearing in either the assignments or conditional
expressions of block j . The set X I

j = X \X R
j consists of irrelevant variables.

The contribution of an irrelevant variable to the transition relation is of the
form (yi ↔ xi); hence (T)(P≡ j) in Eq. (1) can be replaced by∧

xi∈X I
j

(yi ↔ x j) ∧
∧

xi∈X R
j

(Tyi)(P≡ j) ∧
∧

(Tql)(P≡ j).

Although (yi ↔ xi) can be represented by a BDD with three nodes, conjoining
many of them is known to produce BDDs with exponential numbers of nodes in
the worst case. On the other hand, a good BDD order for the constraints may
be bad for other Boolean formulas encountered in reachability analysis.

Inside image computation, the equality constraints facilitate the substitution
of xi with yi for all irrelevant variables. Unfortunately, existing quantification
scheduling algorithms [Ranjan et al. 1995; Moon et al. 2000] often fail to iden-
tify these variables. We choose not to include the constraints

∧
xi∈X I

j
(yi ↔ x j)

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

16 • C. Wang et al.

Fig. 6. Left: locally defined variables a and b; right: globally defined variable x.

in (T)(P≡ j) in the first place, to avoid the potential BDD blowup during quan-
tification. Therefore, we can improve Eq. (2) by

EYT(P≡ j) D(X) = ∃X R
j . D

(
Y I

j

/
X I

j , j
/

P
) ∧

∧
xi∈X R

j

(Tyi)(P≡ j) ∧
∧

(Tql)(P≡ j). (3)

Letting R(Y , Q) be the result of Eq. (3), we still need to substitute all the Y and
Q with the corresponding present-state variables to get R(X , P). Therefore for
irrelevant variables, the substitutions need to be done twice. In our actual im-
plementation, we remove the equality constraints from the transition relation
and avoid substitutions in both directions. Our experimental studies show that
this significantly reduces the peak BDD sizes of the intermediate products in
image computation.

6.2 Live Variables

Disjunctive decomposition and early quantification of irrelevant variables are
aimed at simplifying the transition relation and intermediate products in im-
age computation. However, the BDDs of reachable state subsets can still be
very large. Note that even a reachable state subset may have all the program
variables in its support, making it hard to find a compact BDD with dynamic
reordering (a major reason for the blowup in Figure 4). However, many vari-
ables are local to certain program locations and their values are meaningless
at others. This is completely different from state variables in hardware mod-
els, whose values are updated concurrently in every clock cycle. Locally defined
variables, for instance, should be considered as state-holding only inside the
blocks where they are defined, since elsewhere their values neither affect the
control flow nor the data path. However, by default, their values are carried
on as Boolean functions in the reachable state subsets, which makes the BDD
representation of reachable states unnecessarily large.

Local variables can be easily identified and removed from state subsets. This
is illustrated by the example in the program on the left in Figure 6, in which
a and b are defined as local variables, while x, y , and z are global variables.
After the program exits this block, values of a and b do not need to be carried
on.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

Disjunctive Image Computation for Software Verification • 17

The live scope of a certain variable, defined as the set of basic blocks in which
its value should be retained, can be obtained directly from the software model.
Note that the live scope is often more accurate than the syntactic scope of a
variable—even global variables are often used only within a limited number
of blocks. In the program on the right in Figure 6, for instance, if the global
variable x appears only in the two blocks, it should be considered dead in all
other blocks. In this sense, the only truly global variables are the PC variables,
since their values are required in every block.

Definition 6.2. Block j is within the live scope of Variable xi if and only if
there exists a path from block j to the block k where the value of xi is used,
and xi is not assigned along the path.

The live scope of a variable xi can be computed using a variant of the standard
technique in control flow analysis [Aho et al. 1986]. Letting K be the number of
program locations, E the number of transitions in the control flow, and N the
number of state variables, the complexity of this process is O((K + E) × N).
Compared to model checking, the overhead is negligible. Although the algo-
rithm is not new, our contribution is the novel way of using it to reduce the
complexity of symbolic image/fixpoint computation.

Live scope has also been used in Ball and Rajamani [2000], but only on vari-
ables at function boundaries during the computation of function summaries.
We use the live variable analysis for the following optimization. During the re-
distribution of image results, all variables that are not alive in that destination
location can be existentially quantified out. Letting D j be the dead variables
at cluster j , R j = R j ∨ (new ∧ P == j) in Figure 5 is replaced by

R j = R j ∨ ((∃D j .new) ∧ P == j).

Note that live variable analysis can achieve significantly more size reduction of
the transition relation than simple program slicing. In Figure 6, for instance,
we can remove the impact of implicit assignments like x ′ = x from lines 4–6,
where x is not live. However, a property-dependent program slicing alone can-
not achieve this. Also, our experimental study has shown that in practice, the
number of live variables with respect to any individual basic block is relatively
small; live variables typically comprise less than 30% of the entire set of state
variables in X .

6.3 Early Convergence of Reachability Fixpoint

Removing variables that are not in their live scopes from reachable subsets
is important because this not only reduces the BDD sizes, but also leads to a
potentially faster convergence of the reachability fixpoint computation.

Take the piece of C code in Figure 7 as an example. Here we assume that
each statement is a basic block, and x, y are global variables initialized at
L1. For any existing model checker, the values of x and y are carried on until
the next assignment. However, the analysis outlined in previous subsections
indicates that x is live only in L2, while y is live only in L4 if variables x and
y are not used anywhere else in the program. In other words, their values

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

18 • C. Wang et al.

Table II. New Reachable States Discovered After Each BFS Step

Line With all program variables With live variables only

1 P ≡ 2 ∧ x ≡ 0 ∧ y ≡ 0 P ≡ 2
2 P ≡ 3 ∧ x ≡ 7 ∧ y ≡ 0 P ≡ 3 ∧ x ≡ 7
3 P ≡ 4 ∧ x ≡ 7 ∧ y ≡ 0 ∧ s ≡ 7 P ≡ 4 ∧ s ≡ 7
4 P ≡ 5 ∧ x ≡ 7 ∧ y ≡ 8 ∧ s ≡ 7 P ≡ 5 ∧ s ≡ 7 ∧ y ≡ 8
5 P ≡ 6 ∧ x ≡ 7 ∧ y ≡ 8 ∧ s ≡ 8 P ≡ 6 ∧ s ≡ 8
6 P ≡ 2 ∧ x ≡ 7 ∧ y ≡ 8 ∧ s ≡ 8 ∅
2’ P ≡ 3 ∧ x ≡ 7 ∧ y ≡ 8 ∧ s ≡ 8 ∅
3’ ∅ ∅

Fig. 7. Earlier convergence of reachability analysis.

should be preserved after the execution of L2 and L4, but nowhere else. Taking
this information into account, we can declare the termination of reachability
analysis after going from L1 through L6 only once. This is because the state
discovered after L6, namely (P ≡ 2 ∧ s ≡ 8), is already covered by (P ≡ 2)
(in which s can take any value). However, if x and y are assumed to be live
globally, reachability analysis cannot converge after the first pass. After L6,
State (P ≡ 2∧x ≡ 7∧ y ≡ 8∧s ≡ 8) is not covered by an already-reached state,
since earlier the state was (P ≡ 2 ∧ x ≡ 0 ∧ y ≡ 0). Therefore, reachability
analysis needs two more steps to converge.

By identifying for each disjunctive submodule the dead variables and remov-
ing them from the reachable state subset, we can significantly reduce the BDD
variables that are actually involved in image computations. This translates
into more compact BDDs, faster image computation, and the potential early
termination of reachability analysis.

7. OPTIMIZING THE DISJUNCTIVE PARTITION

We now explain how to merge basic blocks into disjunctive clusters. Although
considering each block as a separate cluster maximizes the number of dead
and irrelevant variables, the often large number of basic blocks encountered in
practice prevents us from doing so. Instead, we merge basic blocks into larger
groups, for each of which a transition relation is built.

Ideally, we want to make as few groups as possible and at the same time,
retain the benefit of variable locality. We approach for merging the basic blocks
is to use the actual BDD size of the transition relation disjunct as an indicator.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

Disjunctive Image Computation for Software Verification • 19

We can keep merging BDDs of the transition relations until the size of the re-
sulting BDD is above the threshold. However, it would be too expensive to build
transition relations for all individual basic blocks and then start merging them.
Instead, we choose to precompute a good partition before any BDD is created,
and then build transition relation clusters directly for individual groups.

In our approach we achieve this goal by formulating a multiway hypergraph
partitioning problem. Initially, all basic blocks are treated as a single group,
starting from which recursive bipartitioning is performed. An inexpensive cost
function needs to be defined so that bipartitioning stops whenever the cost of a
subset drops below a predetermined threshold. We choose the total number of
relevant variables as such an indicator. Our motivation is that the number of
support variables of a BDD is often a good indicator of its size.

We define the partitioning optimization criteria as one of the following num-
bers:

— liveVar: the number of shared live variables,
—asgnVar: the number of shared assigned variables, or
—cfgEdge: the number of edges in the CFG across the partitions.

Shared live variables are those that are alive in both partitions, while shared
assigned variables are those whose values are changed in both partitions. Note
that a smaller number of shared live variables means a higher degree of vari-
able locality, since more dead variables can be quantified out from the reach-
able state subsets. A smaller number of shared assigned variables means that
bit-relations with similar supports are grouped together. Merging BDDs with
similar support variables is less likely to cause blowups. Less shared CFG edges
means less traffic among different submodules. When two partitions are con-
nected by a CFG edge, new reachable states may need to be transferred from
one to the other.

All three optimization criteria can be represented uniformly as a generic
multiway hypergraph partitioning problem. A hypergraph is a generalization
of a graph in which a hyperedge can connect more than two hypernodes. Hyper-
graphs arise naturally in many important practical problems, including circuit
layout, Boolean satisfiability, numerical linear algebra, etc. Given a hypergraph
H, a k-way partitioning of H assigns hypernodes of H to k disjoint nonempty
partitions. The k-way partitioning problem seeks to minimize a given cost func-
tion of such an assignment. The standard cost function is net cut, which is the
number of hyperedges that span more than one partition, or more generally,
the sum of weights of such edges. Constraints are typically imposed on the solu-
tion: For example, the total hypernode weight in each partition may be limited
to a predetermined threshold. Although the problem of optimally partitioning a
hypergraph is known to be NP-hard, heuristic algorithms have been developed
with near-linear runtime in practice [Karypis and Kumar 1998].

Our three optimization criteria differ only in the way hyperedges are defined.
As illustrated in Figure 8:

(1) Hypernodes correspond to individual basic blocks, with one node for each
block; and

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

20 • C. Wang et al.

Fig. 8. The hypergraph.

(2) hyperedges correspond either to program variables or edges in the CFG:
— liveVar: one edge is added for each variable so as to connect blocks in

which it is alive;
—asgnVar: one edge is added for each variable so as to connect blocks in

which it is assigned; and
—cfgEdge: one edge is added for each CFG edge so as to connect the head

and tail blocks.

We want to compute a multiway partition of this hypergraph such that the
cost of each group is below a predetermined threshold, while the number of
hyperedges across different groups is minimized. In our experiments, we use
the number of relevant variables in a group as the cost function (with the
threshold empirically set to 200).

Note that although our live-variable-based partitioning method is similar
to the MLP (minimum lifetime permutation) algorithm of Moon et al. [2000],
they are designed for different applications. MLP is applied to a set of con-
junctively partitioned transition relations to compute a good schedule for the
conjoin-quantify operations. Our algorithm, on the other hand, is applied to
a set of disjunctively partitioned transition relations so as to group individual
disjunctive transition relations into larger clusters. It is worth mentioning that,
similar to the impact of quantification scheduling on classic image computation,
a good disjunctive partition is also important for the performance of disjunctive
image computation.

8. EXPERIMENTS

We have implemented our new algorithm in the publicly available symbolic
model checker VIS 2.0 [Brayton et al. 1996], which by default uses the CUDD
package for BDD operations. The partitioning heuristics were implemented
upon the hMeTis hypergraph partitioning package [Karypis and Kumar 1998].
We conducted experimental comparison of our new algorithm with the best
known conventional method in VIS 2.0. For the purpose of controlled experi-
ments, all image-computation-related parameters in VIS were kept unchanged,
which includes the BDD partition method (set to frontier), the BDD partition
threshold (set to 2,000), and the image cluster size (set to 5,000). The underlying

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

Disjunctive Image Computation for Software Verification • 21

Fig. 9. PPP: peak live BDD nodes in reachability analysis.

conjunction scheduling algorithm was MLP [Moon et al. 2000]. Dynamic vari-
able ordering was enabled throughout all the experiments, with the default
reordering method “sift”. All the experiments were performed on a workstation
with 2.8 GHz Xeon processors and 4GB of RAM running Red Hat Linux 7.2.

The set of benchmarks is composed of typical embedded software, including
PPP (point-to-point protocol), Core (embedded software for hand-held devices),
and Serial (Linux serial device driver). The properties we are checking are all
reachability properties. Range analysis has been applied to reduce the num-
ber of bits needed for encoding simple integer/char variables. In order to test
the sheer capacity of BDD-based algorithms, verification models are generated
without predicate abstraction. In this sense, our software models are signifi-
cantly more complex than the Boolean programs of Ball and Rajamani [2000]
(where only Boolean variables are allowed). These software models are also sig-
nificantly larger than most of the hardware models that can be directly handled
by symbolic model checkers.

First, we give experimental comparison of our new algorithm and the con-
ventional method on the PPP example. Figure 9 shows the peak memory us-
age at each reachability step for both methods. Among the three curves, Old
represents the conventional method, New represents our new method with
a single BDD manager (and a single BDD order), and New2 represents the
one with multiple managers (and correspondingly multiple BDD orders). The
x-axis represents the different BFS steps, while the y-axis represents the peak
number of live BDD nodes. All experiments were run with a time limit set to
four hours, during which the conventional method completed 238 steps, while
New and New2 completed 328 and 247 steps, respectively. The plateaus in the
curves are caused by dynamic variable reordering.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

22 • C. Wang et al.

Table III. Comparison in Reachability Analysis

Test Cases Completed CPU Time (s) Peak BDD (k)
name vars dep. Old New Old New Old New

ssdf 37 11 Y Y 0.01 0.02 0.8 0.8
sfi 105 47 Y Y 0.5 0.6 4 4
sirpp 169 52 Y Y 8 6 10 10
srb 343 43 Y Y 2766 146 925 106
core1 416 211 Y Y 1115 89 155 51
core2 445 192 70 Y >2h 80 490 70
srr 856 316 Y Y 5426 151 990 57
smhb 888 104 25 Y >2h 341 1219 120
siic 967 162 Y Y 4020 260 1188 79
spr 1001 617 85 Y >2h 1617 428 430
sdir 1050 209 136 Y >2h 394 3135 120
srdo 1211 215 128 Y >2h 496 2482 145
core3 1213 189 41 Y >2h 205 139 101
ppp 1435 ? 208 277 >2h >2h 3194 540

The results show that our new disjunctive image computation method re-
duces the peak memory usage significantly: Compared to both New and New2,
the curve of Old is much deeper. The reduction in BDD size also translates
into reduction in CPU time; both New and New2 can complete more steps than
Old. Note that although New2 was initially designed to trade CPU time for
memory usage, its advantage over New was not clearly demonstrated. We have
observed similar results on other test examples, as well. The reason that New2
is not a clear winner is that BDDs need to be transferred frequently from one
BDD manager to another manager while propagating new reachable states,
which may trigger frequent dynamic variable reordering. Consuming a lot of
CPU time, frequent reordering often offset the benefit of having smaller BDDs
inside image computation.

Table III gives the comparison of the conventional method and our new
method with single BDD order on a larger set of test cases. The time limit was
set to two hours. Columns 1 and 2 show, for each test case, the name and num-
ber of binary state variables of the model. Column 3 shows the sequential depth
when reachability analysis converges, where a question mark (?) indicates that
the sequential depth cannot be obtained within the time limit. Columns 4 and 5
show whether the reachability computation can be completed by the methods.
If not, the actual number of completed steps is listed. Columns 6 and 7 compare
the CPU time in seconds; columns 8 and 9 compare the peak number of live
BDD nodes in thousands.

The results in Table III show that the performance improvement achieved
by our new method is significant and consistent. Reachability analysis with
disjunctive decomposition is significantly faster, and at the same time consumes
less memory. The improvements in both CPU time and memory usage can be
by orders of magnitude.

Table IV compares the three different partitioning heuristics: liveVar, as-
signedVar, and cfgEdge. They are all based on multiway hypergraph partition-
ing, but differ in the optimization criteria. We evaluate their impact on image
computation by comparing the performance of reachability analysis. The time

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

Disjunctive Image Computation for Software Verification • 23

Table IV. Comparing the Three Partitioning Heuristics (with New)

Model CPU time (s) Peak live BDD (k) Num. partitions
name live asgn cfg live asgn cfg live asgn cfg
sssdf 0.02 0.02 0.02 0.8 0.8 0.8 1 1 1
sfi 0.6 0.6 0.6 4 4 4 1 1 1
sirpp 6 6 6 10 10 10 1 1 1
srb 146 >1h 112 106 - 71 4 4 4
core1 89 126 128 51 68 68 4 4 4
core2 80 98 96 70 55 56 5 5 5
srr 151 115 132 57 46 45 15 17 20
smhb 343 2723 1533 120 1726 2270 12 10 14
siic 260 251 291 79 85 105 11 11 12
spr 1617 >1h 3156 430 - 172 15 14 14
sdir 394 318 378 120 150 86 17 19 24
srdo 496 443 494 145 97 98 18 20 25
core3 205 314 294 101 92 115 12 12 12
ppp* 3592 >1h >1h 731 - - 17 17 28

limit for these experiments was set to one hour. The CPU time and peak memory
usage are compared in columns 2–4 and columns 5–7, respectively. Note that
the peak memory usage is updated at the end of each image computation. For
some experiments the first image computation takes longer than one hour. In
this case we use “-” to indicate that we are not able to obtain any data on peak
memory usage. Columns 8–10 compare the number of disjunctive partitions
created by the different heuristics. All CPU time and memory usage data are
compared after reachability analysis converges, except PPP, whose data is com-
pared at step 228. All experiments were conducted with method New (i.e., with
a single BDD order), and with the partition threshold (i.e., maximum number
of live variables) set to 175.

The results in Table IV show that the partitioning heuristic has a signifi-
cant impact on the performance of disjunctive image computation. The overall
reachability analysis runtime with the three partitioning heuristics are 7,379,
>15,194, and >10,220 seconds, respectively. The primary goal of this set of
experiments was to identify, during partitioning, the most significant factor af-
fecting the overall verification performance. Overall, the liveVar-based heuris-
tic is better than the others, especially on most of the harder cases. It is worth
pointing out that further improvement may be achieved by defining new cost
functions that take into account all three heuristics with different weights.

9. CONCLUSIONS

We have presented a novel disjunctive image computation algorithm for soft-
ware model checking, by exploiting the unique characteristics of embedded soft-
ware. It decomposes the software model into a set of submodules and then per-
forms image computation on each. By dividing an expensive computation into
a set of easier ones, our new method significantly reduces the peak memory us-
age required. Program modularity and variable locality are used to get a good
disjunctive partition, and to simplify the transition relations and disjunctive
sets of reachable states. Experiments on real embedded C programs have shown

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

24 • C. Wang et al.

that our method significantly outperforms the best known conventional method
based on conjunctive partitions. Although previous experience with hardware
verification shows that symbolic model checking often loses its robustness when
the number of state variables exceeds 200, our work demonstrates that by ex-
ploiting their unique characteristics, BDD-based algorithms can directly handle
software models with thousands of variables.

REFERENCES

AHO, A., SETHI, R., AND ULLMAN, J. 1986. Compilers: Princeples, Techniques and Tools. Addison-
Wesley, Reading, MA.

ALUR, R., COURCOUBETIS, C., AND DILL, D. 1993. Model-Checking in dense real-time. Inf. Com-
put. 104, 1, 2–34.

BALL, T., MAJUMDAR, R., MILLSTEIN, T., AND RAJAMANI, S. K. 2001. Automatic predicate abstrac-
tion of C programs. In Proceedings of the Programming Language Design and Implementation
Conference (PLDI) (Snowbird, UT).

BALL, T. AND RAJAMANI, S. K. 2000. Bebop: A symbolic model checker for Boolean programs. In
SPIN Workshop on Model Checking of Software. Lecture Notes in Computer Science, vol. 1885.
Springer Verlag, Berlin. 113–130.

BARNER, S. AND RABINOVITZ, I. 2003. Efficient symbolic model checking of software using partial
disjunctive partitioning. In Proceedings of the 12th Advanced Research Working Conference on
Correct Hardware Design and Verification Methods (CHARME). Lecture Notes in Computer
Science, vol. 2860. Springer Verlag, Berlin.

BOUJJANI, A., ESPARZA, J., AND MALER, O. 1997. Reachability analysis of pushdown automata: Ap-
plications to model checking. In Proceedings of the 8th International Conference on Concurrency
Theory. Lecture Notes in Computer Science, vol. 1243. Springer Verlag, Berlin. 135–150.

BRAYTON, R. K., HACHTE, G. D., SANGIOVANNI-VINCENTELLI, A., SOMENZI, F., AZIZ, A., CHENG, S.-T.,
EDWARDS, S., KHATRI, S., KUKIMOTO, Y., PARDO, A., QADEER, S., RANJAN, R. K., SARWARY, S., SHIPLE,
T. R., SWAMY G., AND VILLA T. 1996. VIS: A system for verification and synthesis. In Proceedings
of the Eighth Conference on Computer Aided Verification (CAV), T. Henzinger and R. Alur, eds.
Springer-Verlag, Rutgers University, 428–432. LNCS 1102.

BROWNE, M., CLARKE, E. M., AND GRUMBERG, O. 1999. Reasoning about networks with many iden-
tical finite state processes. Inf. Comput. 81, 13–31.

BRYANT, R. E. 1986. Graph-Based algorithms for Boolean function manipulation. IEEE Trans.
Comput. C-35, 8 (Aug.), 677–691.

BURCH, J. R., CLARKE, E. M., AND LONG, D. E. 1991. Representing circuits more efficiently in
symbolic model checking. In Proceedings of the Design Automation Conference (San Francisco,
CA). 403–407.

BURCH, J. R., CLARKE, E. M., MCMILLAN, K. L., DILL, D. L., AND HWANG, L. J. 1990. Symbolic model
checking: 1020 states and beyond. In Proceedings of the 5th Annual IEEE Symposium on Logic
in Computer Science. IEEE Computer Society Press, Los Alamitos, CA. 1–33.

CABODI, G., CAMURATI, P., LAVAGNO, L., AND QUER, S. 1997. Disjunctive partitioning and partial
iterative squaring: An effective approach for symbolic traversal of large circuits. In Proceedings
of the Design Automation Conference (Anaheim, CA). 728–733.

CHAUHAN, P. P., CLARKE, E. M., JHA, S., KUKULA, J., SHIPLE, T., VEITH, H., AND WANG, D. 2001. Non-
Linear quantification scheduling in image computation. In Proceedings of the International Con-
ference on Computer-Aided Design (San Jose, CA). 293–298.

CHO, H., HACHTEL, G. D., MACII, E., PONCINO, M., AND SOMENZI, F. 1996. Automatic state space
decomposition for approximate FSM traversal based on circuit analysis. IEEE Trans. Comput.
Aided Des. 15, 12 (Dec.), 1451–1464.

CLARKE, E., GRUMBERG, O., AND PELED, D. 2000. Model checking. MIT Press, Cambridge, MA.
CLARKE, E., KROENING, D., AND LERDA, F. 2004. A tool for checking ANSI-C programs. In Tools and

Algorithms for the Construction and Analysis of Systems, K. Jensen and A. Podelski, eds. Lecture
Notes in Computer Science, vol. 2988. Springer Verlag, Berlin. 168–176.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

Disjunctive Image Computation for Software Verification • 25

CLARKE, E. M. AND EMERSON, E. A. 1981. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Proceedings of the Workshop on Logics of Programs. Lecture
Notes in Computer Science, vol. 131. Springer Verlag, Berlin. 52–71.

CLARKE, E. M., GRUMBERG, O., AND PELED, D. A. 1999. Model Checking. MIT Press, Cambridge,
MA.

COOK, B., KROENING, D., AND SHARYGINA, N. 2005. Symbolic model checking for asynchronous
Boolean programs. In Proceedings of the 12th International SPIN Workshop on Model Check-
ing of Software. 75–90.

CORBETT, J., DWYER, M., HATCLIFF, J., LAUBACH, S., PĂSĂREANU, C., ROBBY, AND ZHENG, H. 2000. Ban-
dera: Extracting finite-state models from Java source code. In Proceedings of the International
Conference on Software Engineering. 439–448.

COUDERT, O., BERTHET, C., AND MADRE, J. C. 1989. Verification of sequential machines based on
symbolic execution. In Automatic Verification Methods for Finite State Systems, J. Sifakis, ed.
Lecture Notes in Computer Science, vol. 407. Springer Verlag, Berlin. 365–373.

DAS, S., DILL, D. L., AND PARK, S. 1999. Experience with predicate abstraction. In Proceedings
of the 11th Conference on Computer Aided Verification (CAV), N. Halbwachs and D. Peled, eds.
Lecture Notes in Computer Science, vol. 1633. Springer Verlag, Berlin. 160–171.

EDWARDS, S., MA, T., AND DAMIANO, R. 2001. Using a hardware model checker to verify software.
In Proceedings of the 4th International Conference on ASIC (ASICON). IEEE, Los Alamitos, CA.

GRAF, S. AND SAı̈DI, H. 1997. Construction of abstract state graphs with PVS. In Proceedings of
the 9th Conference on Computer Aided Verification (CAV), O. Grumberg, ed. Lecture Notes in
Computer Science, vol. 1254. Springer Verlag, Berlin. 72–83.

HIND, M. AND PIOLI, A. 2001. Evaluating the effectiveness of pointer alias analyses. Sci. Comput.
Program. 39, 1, 31–55.

HOLZMANN, G. 1997. The model checker SPIN. IEEE Trans. Softw. Eng. 23, 5, 279–295.
HOLZMANN, G. J. AND PELED, D. 1994. An improvement in formal verification. In Proceedings

of the International Conference on Formal Description Techniques (FORTE). IFIP Conference
Proceedings, vol. 6. Chapman and Hall. 197–211.

IVANČIĆ, F., YANG, Z., GUPTA, A., GANAI, M., AND ASHAR, P. 2004. Efficient SAT-based bounded model
checking for software verification. In 1st International Symposium on Leveraging Applications
of Formal Methods.

IVANČIĆ, F., YANG, Z., SHLYAKHTER, I., GANAI, M., GUPTA, A., AND ASHAR, P. 2005. F-SOFT: Software
verification platform. In Proceedings of the Conference on Computer-Aided Verification. Lecture
Notes in Computer Science, vol. 3576. Springer Verlag, Berlin. 301–306.

JIN, H., KUEHLMANN, A., AND SOMENZI, F. 2002. Fine-Grain conjunction scheduling for symbolic
reachability analysis. In Proceedings of the International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS) (Grenoble, France). Lecture Notes in Computer
Science, vol. 2280. Springer Verlag, Berlin. 312–326.

JIN, H., RAVI, K., AND SOMENZI, F. 2002. Fate and free will in error traces. In Proceedings of
the International Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS) (Grenoble, France). Lecture Notes in Computer Science, vol. 2280. Springer Verlag,
Berlin. 445–459.

KARYPIS, G. AND KUMAR, V. 1998. Multilevel algorithms for multi-constraint graph partitioning.
Tech. Rep. 98-019, University of Minnesota, Department of Computer Science. May.

KUPFERMAN, O. AND VARDI, M. Y. 2001. Model checking of safety properties. Formal Methods Syst.
Des. 19, 3, 291–314.

MCMILLAN, K. L. 1994. Symbolic Model Checking. Kluwer Academic, Boston, MA.
MOON, I.-H., HACHTEL, G. D., AND SOMENZI, F. 2000. Border-Block triangular form and conjunction

schedule in image computation. In Formal Methods in Computer Aided Design, W. A. Hunt, Jr.
and S. D. Johnson, eds. Lecture Notes in Computer Science, vol. 1954. Springer Verlag, Berlin.
73–90.

NARAYAN, A., ISLES, A. J., JAIN, J., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A. L. 1997. Reach-
ability analysis using partitioned ROBDDs. In Proceedings of the International Conference on
Computer-Aided Design. 388–393.

QUIELLE, J. P. AND SIFAKIS, J. 1981. Specification and verification of concurrent systems in CESAR.
In Proceedings of the 5th Annual Symposium on Programming.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

26 • C. Wang et al.

RANJAN, R. K., AZIZ, A., BRAYTON, R. K., PLESSIER, B. F., AND PIXLEY, C. 1995. Efficient BDD algo-
rithms for FSM synthesis and verification. Presented at IWLS (Lake Tahoe, CA).

REPS, T., HORWITZ, S., AND SAGIV, M. 1996. Precise interprocedural dataflow analysis with appli-
cations to constant propagation. Theor. Comput. Sci. 167, 131–170.

RUGINA, R. AND RINARD, M. 2000. Symbolic bounds analysis of pointers, array indices, and ac-
cessed memory regions. In Proceedings of the Conference on Programming Language Design and
Implementation. ACM Press, New York. 182–195.

SÉMÉRIA, L. AND MICHELI, G. D. 1998. SPC: Synthesis of pointers in C: Application of pointer
analysis to the behavioral synthesis from C. In Proceedings of the International Conference on
Computer-Aided Design. 340–346.

VISSER, W., HAVELUND, K., BRAT, G., AND PARK, S. 2000. Model checking programs. In Proceedings
of the 15th IEEE International Conference on Automated Software Engineering.

WANG, C., HACHTEL, G. D., AND SOMENZI, F. 2003. The compositional far side of image computation.
In Proceedings of the International Conference on Computer-Aided Design. 334–340.

WANG, C., YANG, Z., IVANCIC, F., AND GUPTA, A. 2006. Disjunctive image computation for emebedded
software verification. In Proceedings of the Design, Automation and Test in Europe Conference
(DATE) (Munich, Germany).

WOLPER, P. AND LEROY, D. 1993. Reliable hashing without collision detection. In Proceedings of
the 5th Conference on Computer Aided Verification (CAV), C. Courcoubetis, ed. Lecture Notes in
Computer Science, vol. 697. Springer Verlag, Berlin. 59–70.

ZAKS, A., SHLYAKHTER, I., IVANČIĆ, F., CADAMBI, H., YANG, Z., GANAI, M., GUPTA, A., AND ASHAR, P. 2006.
Range analysis for software verification. In 4th International Workshop on Software Verification
and Validation (SVV).

Received July 2006; revised November 2006; accepted December 2006

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 10, Publication date: April 2007.

