
Itinerary-Based Access Control for Mobile Tasks in Scientific Workflows

Zijiang Yang 1†∗ Shiyong Lu 2† Ping Yang 3

1 Western Michigan University, Kalamazoo, Michigan, USA

2 Wayne State University, Detroit, Michigan, USA

3 Binghamton University, Binghamton, New York, USA

Abstract

Current scientific workflow models require datasets to be
transferred from their source to the hosts where they can
be processed. This seriously impedes data-intensive appli-
cations. In order to address this limitation, we propose a
notion of mobile tasks that can move from their home hosts
towards datasets and perform computation on the dataset
side. Since a mobile task might migrate across various ad-
ministrative domains and get executed at multiple hosts, it
is critically important to ensure the security of a mobile-
task-based workflow system. In this paper, we propose an
itinerary-based access control model to ensure the secure
migration of mobile tasks.

1 Introduction

Recently, scientific workflows have gained tremendous
momentum due to their critical role in e-Science [8]. Scien-
tists use scientific workflows to “glue” together data man-
agement, analysis, simulation and visualization services
over often voluminous complex and distributed scientific
data and services. In contrast to traditional business work-
flows, which are task-centric and control-flow oriented, sci-
entific workflows are typically data-centric and dataflow-
oriented, and thus pose different challenges [8].

In contrast to traditional business workflows [4, 6], a sci-
entific workflow has the following two features: (1) Dif-
ferent tasks might be serviced by different providers and
thus geographically distributed across different administra-
tive domains. For example, while Segmentation might be
serviced by John Hopkins University, Registration might be
serviced by University of Michigan. Most traditional busi-
ness workflows only consider tasks that are within one en-
terprise. (2) Voluminous complex and distributed scientific
data need to be integrated with various tools to conduct a

∗This work was supported by funds from the Faculty Research and Cre-
ative Activities Support Fund, Western Michigan University.

†The first two authors contributed equally to this paper.

complicated scientific analysis. Each dataset is potentially
large in size.

Together, these two features impose a new computational
challenge over traditional workflow engines: since tasks are
static in traditional workflows, large datasets need to be
transferred from source hosts to target hosts where com-
putational tasks reside, resulting in extremely unbearable
network communication overhead.

To overcome this limitation, we propose a mobile task
model for scientific workflows where mobile tasks can mi-
grate from one host to another towards large datasets to con-
duct data-intensive computation. More specifically, each
mobile task is equipped with an itinerary, the set of hosts
that the mobile task will visit and the pattern of visiting
them. However, since a mobile task might migrate across
several administrative domains and get executed at multi-
ple hosts, it is critically important to develop trustworthy
mechanisms to ensure the secure migration and execution
of these itinerary-driven mobile tasks.

The main contributions of this paper are: (1) We pro-
pose a mobile task model for scientific workflows to meet
the need of data-intensive applications. (2) We design a for-
mal itinerary-based access control model. While our previ-
ous work [15] considers only the itinerary of a mobile task,
both the visit history and future itinerary of a mobile task
are considered in this paper. (3) We propose formal syntax
and semantics of itinerary based access control policy, and
develop algorithms to verify the access request of a mobile
task against the access control policy at the host. (4) We
develop a host visit scheduling algorithm for mobile tasks
based on their itineraries and the dynamic host visit scenar-
ios.

Organization. The rest of the paper is organized as fol-
lows. Section 2 presents an overview of related work. Sec-
tion 3 describes our proposed architecture for mobile task
migration and execution. The algorithms to schedule a mo-
bile task based on its itinerary is presented in Section 4,
followed by the innovative approaches on host access con-
trol in Section 5. Finally, Section 6 concludes the paper and
suggests some possible future work.

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

2 Related work

In recent years, scientific workflows have gained great
momentum due to their critical roles in e-Science and cy-
berinfrastructure applications [8]. There is a plethora of
scientific workflows covering a wide range of scientific
disciplines. Yu and Buyya characterize and classify var-
ious approaches for building and executing workflows on
the Grid [18] and highlight that scheduling workflow tasks
in a distributed Grid environment is a challenging prob-
lem. The workflow scheduling problem is showcased in the
ASKAON project [14] by Wieczorek et al. While Simmhan,
Plale and Gannon argue that data provenance is a critical
component of scientific workflows and summarize the key
research efforts and open problems in this area [11], Mede-
rios et al. envision that shared catalogues of workflows in-
dexed by metadata should be used in order to facilitate the
reuse of scientific workflows in new applications [9]. Nev-
ertheless, none of the above work has addressed the security
and correctness issues of scientific workflows that support
mobile tasks.

Many researchers have investigated various security is-
sues in mobile agents [12, 2], in particular, the access con-
trol at each host [1, 10]. However, existing host visit ac-
cess control models only consider the visit history of a mo-
bile agent and do not consider future behavior of a mobile
agent. In contrast, our access control model supports the
specification of a host visit access control policy that not
only considers the host visit history of a mobile agent but
also its future itinerary which prescribes its future mobility
behavior. Another unique feature of our model is that each
mobile task is equipped with a “scheduler”, which is able
to communicate with the list of candidate hosts that the mo-
bile task intends to visit according to its itinerary and then
schedules the next host to visit. The next host will guarantee
the permission of such an access. As a result, a mobile task
will always follow a trace of hosts which permit its access
if such an trace exists. None of existing work supports this
salient scheduling feature.

Finally, our notion of mobile tasks is developed from
our previously proposed notion of itinerary-driven mobile
agents [7, 5, 15, 16] with the following additional features
necessary for scientific workflow applications: (i) mobile
tasks have well-defined input and output ports such that data
links can be used to connect these ports to compose com-
posite task or a scientific workflow, while traditional mobile
agents do not support input and output ports that target for
data links, and (ii) a mobile task might possess some of the
ACID (Atomicity, Consistency, Isolation, and Durability)
properties of a transaction, while traditional mobile agents
usually do not support such properties.

3 Architecture for Mobile Task Migration
and Execution

Mobile Task X�

Residue Itinerary�

Computation�
Specification�

Visit History�
migrate�

Host A�

Host A�

Scheduler�

Computation RES�

Runtime Execution System�

execute� execute�
Itinerary� RVS� Computation� RVS�

Access Control System�

Itinerary� ACP� Computation� ACP�

Figure 1. Architecture for mobile task migra-

tion and execution

Figure 1 depicts our proposed architecture for the migra-
tion and execution of mobile tasks at a host. A mobile task
X consists of computation and itinerary components, where
specification of the navigational behavior of a mobile task
is separated from the specification of its computational be-
havior.
-Computation Component. The computation specification
can be written in a traditional programming language such
as Java.
-Itinerary Component. An itinerary includes visit history
and residue itinerary. The visit history records all the hosts
that this mobile task has visited, and the residue itinerary
is a host pattern to be visited in the future. The scheduler
considers both the visit history and residue itinerary and
interacts with access control systems of hosts to schedule
which host H to visit next. Once the access request to H is
granted, X will migrate to H and the residue itinerary and
visit history will be updated accordingly.

Each host is equipped with a mobile task virtual machine
to support the secure execution of mobile tasks. The virtual
machine consists of the following two components.
-Runtime Execution System (RES). The RES will execute
the computation task specified in the computation compo-
nent of a mobile task.
-Access Control System (ACS). The ACS of a host con-
tains itinerary Access Control Policy (ACP) and computa-
tion ACP that are used to control the host visit and resource
access privileges of mobile tasks. When a host A receives a
visit request from a mobile task X , X’s itinerary will be ver-
ified against A’s itinerary ACP. X may visit A only if X’s
itinerary satisfies A’s itinerary ACP. After X migrates to A,
A’s computation Runtime Verification System (RVS) will
verify at runtime if X’s computation model satisfies host
A’s computation ACP. If it does, then agent X can execute

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

its computation specification; otherwise, none of agent X’s
computation specification will be executed.

In this paper we concentrate on mobile task schedul-
ing and itinerary access control. Since the computation
task of a mobile task can be developed using general pur-
pose programming language, software verification tech-
niques [3, 13, 17] can be applied to handle computation ac-
cess control.

4 Mobile Task Scheduling

We consider a simple form of itinerary that has the fol-
lowing BNF syntax.

i ::= s | i1; i2 | i1#i2 | i1 ∥ i2

where ;, #, and ∥ denote sequential, nondeterministic
choice, and parallel operators, respectively. We use the in-
terleaving semantics for the parallel operator.

Given an itinerary I , Algorithm 1 calculates the set
of hosts to be visited next and the corresponding residue
itineraries. It is a migration set because there maybe multi-
ple hosts that can be visited following the specification of an
itinerary. Each item in the returned set is a pair P = (sk, ik)
where sk, referred as P.h, is a host that a mobile task may
visit next, and ik, referred as P.r, is the residue itinerary
if the mobile task chooses to visit sk next. The algorithm
works as follows. If the itinerary I is s (Lines 1-2), the
host to be visited next is s. If I has the top level pattern
i1; i2, the algorithm first obtains the set M from i1. For
each item in M that is not (, ∅) where is a wildcard, i2
is appended to the item’s residue itinerary (Lines 6-7); oth-
erwise, the residue itinerary becomes i2 in the item(Line
9). If I is i1#i2 (Lines 12-13), the migration set is the
disjunction of those of i1 and i2. Finally, if I is i1 ∥ i2,
the migration sets for both i1 and i2 need to be considered.
The residue itineraries of i1 are interleaved with i2, and the
residue itineraries of i2 are interleaved with i1.

The procedure Schedule(), shown in Algorithm 2, is used
to schedule which host to visit next for a mobile task. The
parameter history, initially ∅, is the list of hosts that the
mobile task has visited. The parameter residue, initially
the full itinerary I , contains the hosts to be visited. The pa-
rameter stack, initially empty, is a stack with each item
recording other possible route at each traversal step. At line
1 the function Migration() is called to compute the migra-
tion set M . The loop between lines 2-23 guides the task
based on M and stack. The loop terminates when either
the mobile task has successfully traversed its full itinerary,
or has exhausted all alternative routes but still cannot pro-
ceed as required. The while loop between lines 3-16 tries to
navigate the mobile task based on the migration set M . A
pair (next, R) is removed from M where next is the host
to be visited next, and R is the residue after next is visited.

Algorithm 1 SET MIGRATION(ITINERARY I)

1: if I = s then
2: M = {(s, ∅)};
3: else if I = i1; i2 then
4: M = Migration(i1);
5: for all (P ∈ M) do
6: if P ̸= (, ∅) then
7: P = (P.h, P.r; i2);
8: else
9: P = (P.h, i2);

10: end if
11: end for
12: else if I = i1#i2 then
13: M =Migration(i1)∪ Migration(i2);
14: else if I = i1 ∥ i2 then
15: M1 = Migration(i1);
16: M2 = Migration(i2);
17: M = {M1.h, M1.r ∥ i2} ∪ {M2.h,M2.r ∥ i1};
18: end if

19: return M ;

An access request to host next is made at Line 9. The algo-
rithm for host access control is discussed in Section 5. If the
access request is denied, another pair will be selected from
M . Otherwise the mobile task will visit next and continue
its scheduling based on its new history and residue itinerary
(Lines 10-15). Note that at Line 11 we save M in stack

for the purpose of backtrack in the future. This is because
the access of host next does not guarantee that the mobile
task can visit the hosts specified in R successfully. It is
possible that the mobile task has to backtrack to choose a
different route. M becomes empty when accesses to all po-
tential next hosts are denied. In this case, the mobile task
will backtrack. If stack is empty (Lines 17-19), the mo-
bile task has exhausted all possible routes that conform to
the mobile task’s residue itinerary, but still cannot fulfill the
requirement of the itinerary. Otherwise, the mobile task will
pop a set to replace M and backtrack to the last host in its
history (Lines 20-22).

5 Itinerary-Based Access Control

In this section we discuss approaches for itinerary-based
host access control. We first define the syntax of the access
control policy in Section 5.1. Then we explain its seman-
tics using Host Transition Graph in Section 5.2. Finally in
Section 5.3, we present algorithms to verify mobile task’s
itinerary against the access control policy.

5.1 Access Control Policy

We consider the Computational Tree Logic (CTL) as the
basis for the itinerary-based Access Control Policy (ACP).
In CTL, formulas are composed of path quantifiers that are
used to describe the branching structure, and temporal oper-
ators that are used to describe properties of a path. There are

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

Algorithm 2 SCHEDULE(STACK, HISTORY, RESIDUE)

1: M =Migration(residue);
2: while true do
3: while M ̸= ∅ do
4: if (s, ∅) ∈ M then
5: visit s;
6: terminate with success;
7: end if
8: (next, R) =Remove(M);
9: r =AskAccessPermission(next, history, R);

10: if r == OK then
11: stack.Push(M);
12: Visit next and perform computation task;
13: history.appendEnd(next);
14: Schedule(stack, history, R);
15: end if
16: end while
17: if stack is empty then
18: terminate with failure;
19: end if
20: M = stack.Pop();
21: h = history.removeEnd();
22: backtrack to h;

23: end while

two path quantifiers: A (for all paths) and E (for some path);
and five temporal operators: X(next time), F(eventually),
G(always), U(until). In order to reason about past-time be-
haviors, we introduce the following past temporal operators:
Y(in the previous time instance), and S (since). Note that in
our context, the visit history has only one path without any
branches, so the past temporal operators can only be com-
bined with A.

Formally, the syntax of an ACP formula is defined by
the grammar below. In the definition, φ defines an ACP
formula that builds upon its past-time formula ν and future-
time formula µ.

Definition 1. [Access Control Policy]

φ ::= µ | ν | φ ∨ φ | ¬φ (1)

µ ::= h | EXµ | µ EU µ (2)

ν ::= h | AY ν | ν AS ν (3)

where h is a host.

Note that the unary temporal connective EX (possibly-
next), AY (previous), and the binary temporal connective
EU (possibly-until, AS (since)can be used to define other
connectives:
- possibly-eventually: EFµ for true EUµ;
- Inevitably-next: AXµ for ¬EX¬µ;
- Inevitably-always: AFµ for ¬EF¬µ.
- past: AP ν for true AS ν;
- Inevitably-past: AH ν for ¬AP¬ν.

For example, AP(f ∧ AP e) specifies that a mobile task
can visit current host only if it has visited e first and then
visited f sometime later (possibly visit other hosts in be-
tween).

5.2 Host Transition Graph

We define the semantics of access control policy with
respect to a Host Transition Graph (HTG), defined as a tuple
G = ⟨V, T, λ, c⟩ where V is a set of vertices, T ∈ H × H
is a set of transitions, λ is a function that labels each vertex
with a set of host control policy formulas, and c is the to-
be-visit-next vertex. In order to link different components
during HTG construction, we define two sets START and
END. Given a subgraph G′ ⊆ G, s ∈ START (G′) iff
s ∈ G′ and ∃(t ̸∈ G′ ∧ (t → s) ∈ G), and s ∈ END(G′)
iff s ∈ G′ and ∃(t ̸∈ G′ ∧ (s → t) ∈ G).

Algorithm 3 CREATHTG(HISTORY, h0 , RESIDUE)

1: GH = CreateHistoryHTG(history);
2: GR = CreateResidueHTG(residue);
3: create vertex v0 with λ(v0) = {h0};
4: G = GH ∪GR ∪ (END(GH) → v0)∪ (v0 → START (GR));

5: G.c = v0;

Algorithm 3 shows the pseudo-code on how to construct
a HTG based on three inputs: history is the hosts that has
been visited, h0 is the host to be visited next, and residue

is the residue itinerary. The algorithm first creates the HTGs
GH and GR for history and residue (Lines 1-2), then
link the two components through the to-be-visit-next vertex
v0 that is labeled with the set {h0}.

Algorithm 4 shows how to construct the HTG compo-
nent for residue. It is straightforward when residue

is a single host (Lines 1-3). In case residue is sequen-
tial (Lines 4-9), we first construct HTGs G1 and G2 for its
component i1 and i2, then the edges link the end set of G1

and the start set of G2 is added. Note that (END(G1) →
START (G2)) should be interpreted as Cartesian product
with direction. For example, if END(G1) = {s1, s2} and
START (G2) = {s3, s4}, following four edges are added:
s1 → s3, s2 → s3, s1 → s4, s2 → s4. In the case of non-
deterministic choice, the start and end sets are the union of
its components. Finally when residue is an interleaving
itinerary, we need to consider all the combinations. Each
pair of edge s1 → s2 and t1 → t2 in different components
result in Cartesian product s1 → s2 × t1 → t2, which de-
note the following edges: s1 → s2 → t1 → t2, t1 → t2 →
s1 → s2, s1 → t1 → s2 → t2, t1 → s1 → t2 → s2, t1 →
s1 → s2 → t2, s1 → t1 → t2 → s2. The start(end) set
of the graph needs to be re-calculated, since the start(end)
point of a component may no longer be the start(end) point
of the resulted HTG. The algorithm to calculate the new
start(end) set is omitted here.

The semantics of access control policy can be explained
on host transition graphs. When a model task X requests for
access at host h0, the itinerary tuple ⟨hisotry, h0, residue⟩
of X will be used to construct a HTG GX . Note that ini-
tially each vertex in GX is labeled with a singleton set and

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

Algorithm 4 HTG CREATRESIDUEHTG(RESIDUE)

1: if Residue == s then
2: add a vertex v to G with λ(v) = {h};
3: START (G) = END(G) = {v};
4: else if Residue == i1; i2 then
5: G1 = CreatResidueHTG(i1);
6: G2 = CreatResidueHTG(i2);
7: G = G1 ∪ G2 ∪ (END(G1) → START (G2));
8: START (G) = START (G1);
9: END(G) = END(G2);

10: else if Residue == i1#i2 then
11: G1 = CreatResidueHTG(i1);
12: G2 = CreatResidueHTG(i2);
13: G = G1 ∪ G2;
14: START (G) = START (G1) ∪ START (G2);
15: END(G) = END(G1) ∪ END(G2);
16: else if Residue == i1||i2 then
17: G1 = CreatResidueHTG(i1);
18: G2 = CreatResidueHTG(i2);
19: for all s1 → s2 ∈ G1 do
20: for all t1 → t2 ∈ G2 do
21: G = G ∪ {s1 → s2 × t1 → t2};
22: end for
23: end for
24: START (G) = GetStartSet(G);
25: END(G) = GetEndSet(G);
26: end if

27: return G;

GX .c is labeled with {h0}. It is also possible that multiple
vertices in GX are labeled with the same host name. The
set of access control policy formulas labeled at each vertex
will be changed in the algorithms introduced in Section5.3.

The definition on whether G satisfies the access control
policy formula φ is defined as follows.

Definition 2. [Satisfaction relationship |=] Let v0 be a
vertex in GX created from the itinerary of mobile X , and φ
be an access control policy. The relation v0 |= φ is defined
inductively as follows:
-v0 |= s iff s ∈ λ(v0).
-v0 |= ¬φ iff not v0 |= φ.
-v0 |= φ1 ∨ φ2 iff v0 |= φ1 or v0 |= φ2.
-v0 |= EXφ iff for some vertices v such that (v0 → h) ∈
G, v |= φ.
-v0 |= φ1 EUφ2 iff for some paths (v0, v1, . . .), ∃i[i ≥ 0 ∧
vi |= φ2 ∧ ∀j[0 ≤ j < i =⇒ vi |= φ1]]
-v0 |= AY φ iff for the vertex v such that (v, v0) ∈ R, v |= φ.
-v0 |= φ1 AS φ2 iff for the path (. . . , v1, v0), ∃i[i ≥ 0∧vi |=
φ2 ∧ ∀j[0 ≤ j < i =⇒ vi |= φ1]]
The mobile task X can access host h with control policy φ
iff G.c |= φ.

5.3 Access Control Verification

In this section we discuss the algorithms to verify a host
transition graph G submitted by a mobile task against an
access control policy φ at a host h0. We consider only

EX, EU, AP, AS as other operators can be defined from
these basic connectives.

In the proposed algorithm we proceed inductively on the
structure of φ. The subformulas of φ is defined as follows.

Definition 3. [Subformulas] The set Sub(φ) of subformu-
las of φ is defined inductively:

Sub(h) = {h}if h is a host

Sub(φ1 ∨ φ2) = {φ1 ∨ φ2} ∪ Sub(φ1) ∪ Sub(φ2)

Sub(¬φ) = {¬φ} ∪ Sub(φ)

Sub(EXφ) = {EXφ} ∪ Sub(φ)

Sub(φ1 EU φ2) = {φ1 EU φ2} ∪ Sub(φ1) ∪ Sub(φ2)

Sub(AY φ) = {AY φ} ∪ Sub(φ)

Sub(φ1 AS φ2) = {φ1 AS φ2} ∪ Sub(φ1) ∪ Sub(φ2)

OrderedSub(φ) is a queue with the subformulas of φ such
that a formula appears only after all its subformulas. That
is, if φ1 ∈ Sub(φ) and φ2 ∈ Sub(φ1), then φ2 precedes φ1

in OrderedSub(φ).

Definition 4. [Characteristic Region] Given a
(sub)formula φ, the characteristic region [φ]G of φ
in G is the set of all the vertices that satisfy φ. Let
λ(v) be the set of formulas that are labeled in v, then
v ∈ [φ]G ↔ φ ∈ λ(v).

Algorithm 5 BOOLEAN ACCESSCONTROL(HTG G, POLICY φ)

1: for all ψ ∈ OrderedSub(φ) do
2: if ψ ≡ (φ1 ∨ φ2) then
3: AccessControlOr(G, φ1 ∨ φ2);
4: else if ψ ≡ (¬φ1) then
5: AccessControlNot(G, ¬φ1);
6: else if ψ ≡ (EX φ1) then
7: AccessControlEX(G, EXφ1);
8: else if ψ ≡ (φ1 EUφ2) then
9: AccessControlEU(G, φ1 EU φ2);

10: else if ψ ≡ (AY φ1) then
11: AccessControlAY(G, AY φ1);
12: else if ψ ≡ (φ1 EUφ2) then
13: AccessControlAS(G, φ1 ASφ2);
14: end if
15: end for

16: return(φ ∈ λ(G.c)? Yes : No);

In order to check if the HTG G satisfies the access con-
trol policy φ at host h0, we compute the characteristic re-
gion on φ’s ordered subformulas inductively, as shown in
Algorithm 5. The for loop (Lines 4-18) iterates over all
the subformulas of φ and call functions that handle partic-
ular formula types. After the loop, each vertex v is labeled
by a set λ(v) of subformulas of φ that satisfies v. Note
that the policy φ is its own subformula and the last item in
OrderedSub(φ). Finally (Line 19), if the input policy φ

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

is a member of λ(G.c), the host h0 should grant access to
the mobile task who submits the request; otherwise h0 will
reject the request. This is because G.c |= φ iff h0 ∈ [φ]G.

Algorithm 6 ACCESSCONTROLEX(HTG G, POLICY EXφ1)

1: for all v ∈ G do
2: if ∃v′|(v → v′) ∈ G ∧ φ1 ∈ λ(v′) then
3: λ(v) = λ(v) ∪ EXφ1;
4: end if

5: end for

Algorithm 6 shows the function to check formulas with
format EXφ1. For each v ∈ G, if one of its successor v′ has
φ1 ∈ λ(v′), then EXφ1 ∈ λ(v) due to the semantics of EX.
The algorithms to check other operators can be designed
similarly.

Theorem 1. Let φ be an access control policy with ρ sym-
bols, and let G be a host transition graph with n hosts and
m transitions. Given the input φ and G, Algorithm 5 solves
the access control problem in O(ρ × (n + m)) time, and
requires O(ρ × n)space .

6 Conclusions and Future Work

We have presented an architecture for mobile tasks to
address the need for supporting data-intensive applications
in the context of scientific workflows. To support secure
migration and execution of mobile tasks, we proposed an
itinerary based access control model for host visit that not
only considers the host visit history of a mobile task but
also its future migration behavior that is prescribed by the
residue itinerary.

Several future work can be pursued. First, itinerary
language can be extended with additional constructs such
as cloning and loop. Second, the access control model
can be extended to support fine-grained access to scien-
tific datasets. Finally, the mobile task framework can be
extended for collaborative scientific workflows, in which a
consortium can be formed by several member institutions
for a collaborative scientific study.

References

[1] C. Cao and J. Lu. A path-history-sensitive access control
model for mobile agent environment. In ICDCSW ’05: Pro-
ceedings of the Third International Workshop on Mobile
Distributed Computing (MDC) (ICDCSW’05), pages 660–
663, Washington, DC, USA, 2005. IEEE Computer Society.

[2] W. M. Farmer, J. D. Guttman, and V. Swarup. Security for
mobile agents: Authentication and state appraisal. In Pro-
ceedings of the Fourth European Symposium on Research in
Computer Security, pages 118–130, Rome, Italy, 1996.

[3] F. Ivančić, Z. Yang, I. Shlyakhter, M. Ganai, A. Gupta,
and P. Ashar. F-SOFT: Software verification platform.
In Computer-Aided Verification, pages 301–306. Springer-
Verlag, 2005. LNCS 3576.

[4] S. Lu. Semantic Correctness of Transactions and Workflows.
PhD thesis, State University of New York at Stony Brook,
May 2002. Advisor: Dr. Arthur Bernstein.

[5] S. Lu. Itinerary safety reasoning and assurance. In C. zhong
Xu, editor, Scalable and Secure Internet Services and Archi-
tecture, pages 247–262. Chapman & Hall/CRC, 2005.

[6] S. Lu, A. Bernstein, and P. Lewis. Completeness and real-
izability: Conditions for automatic generation of workflows.
International Journal of Foundations of Computer Science,
17(1):223–245, 2006.

[7] S. Lu and C. zhong Xu. A formal framework for mo-
bile agent itinerary specification, safety reasoning, and logic
analysis. In Proc. of the 3rd IEEE International Workshop
on Mobile Distributed Computing (MDC05), in conjunction
with ICDCS2005, Columbus, OH, USA, 2005.

[8] B. Ludascher and C. Goble. Guest editor’s introduction
to the special section on scientific workflows. SIGMOD
Record, 34(3):3–4, Sept. 2005.

[9] C. B. Medeiros, J. Perez-Alcazar, L. Digiampietri, G. Z.
Pastorello, A. Santanche, R. S. Torres, E. Madeira, and
E. Bacarin. WOODSS and the web: Annotating and reusing
scientific workflows. SIGMOD Record, 34(3):18–23, Sept.
2005.

[10] G. Navarro, J. Borrell, J. A. Ortega-Ruiz, and S. Robles.
Access control with safe role assignment for mobile agents.
In AAMAS ’05: Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems,
pages 1235–1236, New York, NY, USA, 2005. ACM Press.

[11] Y. Simmhan, B. Plale, and D. Gannon. A survey of data
provenance in e-science. SIGMOD Record, 34(3):31–36,
Sept. 2005.

[12] J. Tardo and L. Valente. Mobile agent security and Tele-
script. In IEEE CompCon ’96, pages 58–63, 1996.

[13] C. Wang, Z. Yang, F. Ivancic, and A. Gupta. Disjunctive
image computation for emebedded software verification. In
Design, Automation and Test in Europe (DATE’06), Munich,
Germany, Mar. 2006. to appear.

[14] M. Wieczorek, R. Prodan, and T. Fahringer. Scheduling
of scientific workflows in the ASKALON grid environment.
SIGMOD Record, 34(3):57–62, Sept. 2005.

[15] Z. Yang, S. Lu, and P. Yang. Runtime security verifica-
tion for itinerary-driven mobile agents. In Proc. of the 2nd
IEEE International Symposium on Dependable, Autonomic
and Secure Computing, pages 177–186, Indianapolis, USA,
September 2006.

[16] Z. Yang, S. Lu, and P. Yang. Model checking approach to
itinerary-based access control enforcement of mobile tasks
in scientific workflows. Journal of Autonomic and Trusted
Computing, 2007. To appear.

[17] Z. Yang, C. Wang, F. Ivancic, and A. Gupta. Mixed sym-
bolic representations for model checking software programs.
In ACM/IEEE International Conference on Formal Methods
and Models for Codesign (Memocode’06), 2006.

[18] J. Yu and R. Buyya. A taxonomy of scientific workflow
systems for grid computing. SIGMOD Record, 34(3):44–
49, Sept. 2005.

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

