Exploiting Thread-Related System Calls for Plagiarism Detection of Multithreaded
Programs

Zhenzhou Tian?®, Ting Liu®*, Qinghua Zheng?, Ming Fan?®, Eryue Zhuang?, Zijiang Yang®?

“MOEKLINNS, Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
bDepartment of Computer Science, Western Michigan University, Kalamazoo, MI 49008, USA

Abstract

Dynamic birthmarking used to be an effective approach to detecting software plagiarism. Yet the new trend towards multithreaded
programming renders existing algorithms almost useless, due to the fact that thread scheduling nondeterminism severely perturbs
birthmark generation and comparison. In this paper, we redesign birthmark based software plagiarism detection algorithms to make
such approach effective for multithreaded programs. Our birthmarks are abstractions of program behavioral characteristics based
on thread-related system calls. Such birthmarks are less susceptible to thread scheduling as the system calls are the sources that
impose thread scheduling rather than being affected. We have conducted an empirical study on a benchmark that consists of 234
versions of 35 different multithreaded programs. Our experiments show that the new birthmarks are superior to existing birthmarks

and are resilient against most state-of-the-art obfuscation techniques.

Keywords: software plagiarism detection, software birthmark, multithreaded program, thread-aware birthmark

1. Introduction

Software plagiarism, ranging from open source code reusing
to smartphone app repacking, severely affect both open source
communities and software companies. It is widespread because
software plagiarism is easy to implement but hard to detect.
For example, a study in 2012 (Zhou et al., 2012) shows that
about 5% to 13% of apps in the third-party app markets are
copied and redistributed from the official Android market. The
unavailability of source code and the existence of powerful au-
tomated semantics-preserving code obfuscation techniques and
tools (Collberg et al., 2003; Wu et al., 2010; Jiang et al., 2007;
Madou et al., 2006; Linn and Debray, 2003) are a few reasons
that make software plagiarism detection a daunting task. Never-
theless, significant progress has been made to address this chal-
lenge. One of the most effective approaches is software birth-
marking, where a set of characteristics, called birthmarks, are
extracted from a program to uniquely identify the program. As
illustrated in previous works (Myles and Collberg, 2004; Tian
etal., 2013; Wang et al., 2009a; Zhang et al., 2014b; Luo et al.,
2014; Ming et al., 2016), with proper algorithms birthmarks can
identify software theft even after complex code obfuscations.

Despite the tremendous progress in software birthmarking,
the trend towards multithreaded programming greatly threatens
its effectiveness, as the existing approaches remain optimized
for sequential programs. For example, birthmarks extracted

*Corresponding author
Email addresses: zztian@stu.xjtu.edu.cn (Zhenzhou Tian),
tingliu@mail.xjtu.edu.cn (Ting Liu), ghzheng@mail.xjtu.edu.cn
(Qinghua Zheng), fanming.911025@stu.xjtu.edu. cn (Ming Fan),
zhuangeryue@stu.xjtu.edu.cn (Eryue Zhuang),
zijiang.yang@wmich.edu (Zijiang Yang)

Preprint submitted to Journal of Systems and Software

from multiple runs of the same multithreaded programs can be
very different due to the inherent non-determinism of thread
scheduling. In this case software birthmarking fails to declare
plagiarism even for simply duplicated multithreaded programs.
In this paper, we introduce a thread-aware dynamic birthmark
called TreSB (Thread-related System call Birthmark) that can
effectively detect plagiarism of multithreaded programs. Be-
ing extracted by mining behavior characteristics from thread-
related system calls, TreSB is less susceptible to thread schedul-
ing as these system calls are sources that impose thread schedul-
ing rather than being affected. In addition, unlike many ap-
proaches (Liu et al., 2006; Prechelt et al., 2002; Cosma and Joy,
2012), our approach operates on binary executables rather than
source code. The latter is usually unavailable when birthmark-
ing is used to obtain initial evidence of software plagiarism.

We have implemented a prototype based on the PIN (Luk
et al., 2005) instrumentation framework, and conducted exten-
sive experiments on an publicly available benchmark! consist-
ing of 234 versions of 35 different multithreaded programs.
Our empirical study shows that TreSB and its comparison al-
gorithms are credible in differentiating independently devel-
oped programs, and resilient to most state-of-the-art semantics-
preserving obfuscation techniques implemented in the best
commercial and academic tools such as SandMark (Collberg
et al., 2003) and DashO (Patki, 2008). In addition, a compari-
son of our method against two recently proposed thread-aware
birthmarks show that TreSB outperforms both of them with re-
spect to any of the three performance metrics URC, F-Measure
and MCC.

1 http://labs.xjtudlc.com/labs/wlaq/TAB-PD/site/download.html

June 22, 2016

The remainder of this paper is organized as following. Sec-
tion 2 presents our thread-related system call birthmark after
introducing the concept and definition of birthmarks. Section 3
describes our approach and prototype on exploiting our birth-
marks to detect plagiarism of multithreaded programs. Sec-
tion 4 presents the empirical study on an open benchmark, in-
cluding the evaluation of its effectiveness and the performance
comparison against existing methods. It also compares TreSB
against another potential birthmark that also exploits thread-
related system calls. Section 5 reviews related work, followed
by conclusions and future work in Section 6.

2. Software Birthmarks

In this section we first give a brief review of the formal def-
initions of software birthmarks. We then introduce our thread-
related system call birthmark TreSB with its implementation,
and explain why it is suitable to serve as birthmark for multi-
threaded programs.

2.1. Dynamic Software Birthmarks

A software birthmark, whose classical definition is given in
Definition 1, is a set of characteristics extracted from a program
that reflects intrinsic properties of the program and that can be
used to identify the program uniquely. This definition leads to
works (Tamada et al., 2004a; Myles and Collberg, 2005; Choi
et al., 2009; Park et al., 2011) that extract birthmarks statically.

Definition 1. Software Birthmark (Tamada et al., 2004a). Let
p be a program and f be a method for extracting a set of char-
acteristics from p. We say f (p) is a birthmark of p if and only
if both of the following conditions are satisfied:

- f(p) is obtained only from p itself.
- Program g is acopy of p = f(p) = f (g).

Generated mainly by analyzing syntactic features, static
birthmarks tend to overlook operational behaviors of a program.
As a result, they are usually ineffective against semantics-
preserving obfuscations that can modify the syntactic structure
of a program. Besides, static birthmarks are easily defeated by
the packing techniques (Roundy and Miller, 2013; Guo et al.,
2008) that add shells to the plagiarized program to evade detec-
tion. Executables processed with these techniques can become
rather different in the static level, and static birthmark methods
cannot be applied unless the shells can be firstly recognized and
unpacked. Thus dynamic birthmarks, as defined in Definition 2,
are introduced to remedy the problems. Comparing with static
birthmarks, dynamic birthmarks are extracted based on runtime
behaviors and thus are believed to be more accurate reflections
of program semantics. It has been generally agreed that dy-
namic birthmarks are more robust against semantics-preserving
code obfuscations (Tamada et al., 2004b; Wang et al., 2009a,b;
Lim et al., 2009; Chan et al., 2013; Tian et al., 2015).

Definition 2. Dynamic Software Birthmark (Myles and
Collberg, 2004). Let p be a program and / be an input to p.
Let f (p) be a set of characteristics extracted from p by execut-
ing p with input I. We say f (p, I) is a dynamic birthmark of p
if and only if both of the following conditions are satisfied:

- f(p,I) is obtained only from p itself when executing p
with input /.

- Program g is a copy of p = f(p,I) = f (¢,).

Based on the above conceptual definitions, various imple-
mentable birthmark methods have been developed by mining
behavior characteristics from different aspects. Representa-
tive dynamic birthmarks include SCSSB (Wang et al., 2009b)
that is extracted from system calls, DYKIS (Tian et al., 2013,
2015) that is extracted from executed instructions, and Birth-
marking (Schuler et al., 2007) that is extracted from executed
Java APIs. As dynamic birthmark based plagiarism detec-
tion is essentially determined by the similarity of execution
behaviors, the new trend towards multithreaded programming
renders existing approaches ineffective. For a program with
n threads, each executing k steps, there can be as many as
(nk)!/(k!Y* > (n!)* different thread schedules or interleavings?,
a doubly exponential growth in terms of n and k. Since execu-
tion order plays a key role, birthmarks generated from multi-
ple executions of the same program can be very different, thus
erroneously indicating the same programs to be independently
developed. In order to address this challenge, Tian et al. (Tian
et al., 2014b) proposed the concept of thread-aware birthmark.

Definition 3. Thread-Aware Dynamic Software Birth-
mark (Tian et al.,, 2014b). Let p,q be two multithreaded
programs. Let / be an input and s be a thread schedule to p
and g. Let f(p, 1, s) be a set of characteristics extracted from
p when executing p with I and schedule s. We say f (p, 1, s) is
a dynamic birthmark of p if and only if both of the following
conditions are satisfied:

- f(p,1,s) is obtained only from p itself when executing p
with input I and thread schedule s.

- Programgisacopyof p = f(p,I,s) = f(q,1,s).

Similar to Definitions 1 and 2, Definition 3 provides a con-
ceptual guideline without considering any implementation de-
tails. In practice it is almost impossible to predetermine a thread
schedule and enforce the same thread scheduling across multi-
ple runs, especially for the programs that have been obfuscated
or even independently developed (Olszewski et al., 2009; Cui
et al., 2011). Thus in our algorithm we mine execution charac-
teristics that are not or little affected by non-deterministic thread
schedules. That is, to make a birthmark thread-aware, we must
ensure that ¥y, ges, f(p,I,s1) = f(p,1,s2), where S denotes
the set of all possible thread schedules of program p.

2In this paper, thread schedule or interleaving of a program refers to the
order of threads whose instructions are executed in a valid execution.

Fork a new Thread

thread Blocked awaked I Running
G @ [Jidle
Thread T 1 I
Time axis % % % % % % %
tl ?2 3't4 t5 t6 t7

TreadT N DN

Lock/Semaphore = Sleep
acquired called

Lock/Semaphore
released

Figure 1: Execution snippet of a multithreaded program with two threads

In this paper, we propose a practical solution that address the
challenge of plagiarism detection of multithreaded programs.
The principle is similar to previous work (Wang et al., 2009a;
Tian et al., 2014b; Wang et al., 2009b; Tian et al., 2016), where
the authors argue that modifications of system calls usually
leads to incorrect program behavior, and therefore, a birthmark
generated from sequence of system calls can be used to identify
stolen programs even after they have been modified. We argue
that thread related system calls are intrinsic to a multithreaded
program. They are the source to impose thread interleaving
rather than being affected by the non-determinism. A random
or deliberate modification to the thread synchronizations can
result in very subtle errors and therefore they are the least pos-
sible code to be changed. Such hypothesis is confirmed by our
empirical study.

2.2. Thread-Related System Call Birthmark

Figure 1 depicts a typical execution snippet between two pos-
sible threads of a multithreaded program. Thread 7'1 (possibly
the main thread) forks a new thread 72 at time ¢1. Both threads
execute concurrently until T'1 is blocked and entered its idle
period at time 3 due to unavailable shared resources (lock or
semaphore) held by 72 since time 2. T2 continues its execu-
tion until time 4 when it invokes sleep and resume its execution
at time 5. At time 16 T2 releases the shared resource, enabling
T1 to resume its execution. Both threads execute concurrently
again until time 7 when T2 terminates. The example shows
that thread scheduling can be complex even for two threads.
The existence of thread synchronization controls and context
switches brings certain determinism to the execution. For ex-
ample the usage of locks protects shared resources and prevents
unexpected executions. Meanwhile, there are certain time seg-
ments, such as between ¢1 and 13 and between t6 and 17, multi-
ple threads enjoys concurrency without any restrictions. Obvi-
ously depending on many factors such as system load, multiple
executions, even under the same input, can produce different ex-
ecution behaviors. This is the key reason that existing dynamic
software birthmarking fails to uniquely identify multithreaded
programs.

Despite the complex thread interleavings as illustrated in Fig-
ure 1, there must exist characteristics or rules that ensure the
correct execution under the chaos. System calls that govern
thread synchronization, priority setting, thread initiating and
disposing, etc, are sources that enforce thread scheduling rather
than being affected. They are also essential to the semantics

and correct executions of a multithreaded program. We call
them thread-related system calls and believe they form a favor-
able basis for generating thread-aware birthmarks. As summa-
rized in Table 1, where Columns No. and Name give the system
call ID and its name, we treat 65 system calls as thread-related.
They accomplish tasks including thread and process manage-
ment (such as creation, join and termination, capability setting
and getting), thread synchronization, signal manipulating, as
well as thread and process priority setting.

The fact that only a small portion, about 20%, of system calls
are thread related may cast doubt on using them as the base for
birthmarks. First of all, what if a multithreaded program does
not even have thread related system calls except forking a bunch
of threads? In theory it is possible but in reality, at least for the
real programs we have studied, such programs do not exist. If
there are no coordination and communication among threads,
programmers may simply develop several sequential applica-
tions. On the other hand, we agree there may exist programs
with minimal number of thread related system calls. Our em-
pirical study shows that they have surprisingly strong capability
to identify thefts and differentiate different program due to their
subtle usage and rich varieties. For example, the nanosleep sys-
tem call used in Figure 1 may never exist in another indepen-
dently developed program, and removing it may likely leads to
subtle errors. Even for the same types of thread operations such
as forking a new thread, a program may use the clone while
other independently developed programs may use fork or vfork.
Due to their complicated parameter usages and subtle difference
in their meanings, it is very difficult for automated tools or even
programmers to change from one to another. Besides, the fre-
quency and order of occurrences, which play important role in
our birthmark generation, also contribute to the credibility and
resilience of our approach.

Based on the above discussions, we propose to extract
thread-aware dynamic birthmarks from thread-related sys-
tem call sequences. A thread-related system call sequence
tos(p,I) = (ej,ez, - ,e,) consists of system calls recorded
during the runtime of a multithreaded program p under input
I, in which e¢; is a thread-related system call instance. Usually,
the thread-related system call sequences across multiple runs
are difficult to compare directly. In order to address the prob-
lem, we adopt the k-gram algorithm (Myles and Collberg, 2005)
to bound the sequences with a length & window, generating a
set of fixed-length short subsequences called k-grams. Finally,
as with the typical dynamic birthmarks such as SCSSB (Wang
et al., 2009b), DYKIS (Tian et al., 2013, 2015) and Birthmark-
ing (Schuler et al., 2007), our birthmark is a key-value pair set.
The keys consist of all unique grams and values are the frequen-
cies of the corresponding grams. Definition 4 gives the formal
definition of TreSB, the birthmark based on thread-related sys-
tem calls.

Definition 4. TreSB. Let tos(p,I) = <(ej,es,---,e,) be a
thread-related system call sequence when executing program
p with input /. A sub-sequence g; of ros(p,I) is a k-
gram if g; = (ej,ej+1,--~,ej+k,1>, where 1 < j < n -
k + 1. Let gram(p,1,k) = <{gi,...,8u-k+1) be the se-

Table 1: Thread-related system calls of Linux kernel version 3.2

No. Name No. Name No. Name No. Name ‘ No. Name No. Name
1 exit 48 signal 81 setgroups 154 sched_setparam 175 rt_sigprocmask 243 set_thread_area
2 fork 53 lock 96 getpriority 155 sched_getparam 176 rt_sigpending 244 get_thread_area
7 waitpid 57 setpgid 97 setpriority 156 sched_setscheduler 177 rt_sigtimedwait 256 epoll_wait
11 execve 64 getppid 114 wait4 157 sched_getscheduler 178 rt_sigqueueinfo 258 set_tid_address
20 getpid 65 getpgrp 117 ipc 158 sched_yield 179 rt_sigsuspend 270 tgkill

26 ptrace 66 setsid 120 clone 159 sched_get_priority_max | 184 capget 284 waitid

29 pause 67 sigaction 123 modify_ldt 160 sched_get_priority_min | 185 capset 321 signalfd

34 nice 69 ssetmask 126 sigprocmask | 161 sched_rr_get_interval 190 vfork 327 signalfd4

37 kill 72 sigsuspend | 132 getpgid 162 nanosleep 238 tkill 331 pipe2

42 pipe 73 sigpending | 136 personality 172 pretl 241 sched_setaffinity | 346 setns

46 setgid 80 getgroups 147 getsid 174 rt_sigaction 242 sched_getaffinity

quence of all the k-grams in fos(p,I). The key-value pair
set ply (k) = {(g). freq(g;)) Is; € gram (p.1.k) AVisj. gi # gj}.
where freq(g;) represents the frequency of g; that occurs in
gram(p, 1, k), is a thread-related system call birthmark TreSB.

We also use pg to represent a TreSB if removing the in-
put symbol does not cause confusion. In addition, we define
kS et(pg) to be the set of keys in the TreSB psg.

3. TreSB Based Software Plagiarism Detection

Obtaining birthmark is the first step towards plagiarism de-
tection. The next step is to quantify the similarities and then
decide whether plagiarism exists.

3.1. Similarity Calculation

In the literature of software birthmarking, the similarity be-
tween two programs is measured by the similarity of their birth-
marks. Different methods of similarity measurements are used
depending on different birthmark formats that in general are
sequences, sets or graphs. For birthmarks in sequence for-
mat, their similarity can be computed with pattern matching
methods, such as measuring the longest common subsequences
(LCS) (Jhi et al., 2011; Zhang et al., 2012; Jhi et al., 2015).
Birthmarks in set form are usually generated by abstracting
sequences into shorter subsequence sets (Myles and Collberg,
2005; Schuler et al., 2007; Xie et al., 2010; Tian et al., 2014a,
2015), and then various metrics used in the field of information
retrieval can be adopted for calculating the similarity between
sets, including Dice coefficient (Choi et al., 2009), Jaccard in-
dex (Schuler et al., 2007), Cosine distance (Tian et al., 2013).
Computing the similarity of graphs is relatively more complex.
It is conducted by either graph monomorphism (Chan et al.,
2013) or isomorphism algorithms (Wang et al., 2009a), or by
translating a graph into a vector using algorithms such as ran-
dom walk with restart (Chae et al., 2013).

Our birthmark is a set composed of key-value pairs, thus sim-
ilarity calculation methods such as Cosine distance, Jaccard in-
dex, Dice coefficient and Containment can be used. Since these
four metrics all have ever been used for computing birthmark
similarity in previous studies, we implement all of them in our
prototype for better comparison against existing works.

Given two TreSBs pg = {(ki,v1), -, (ky,vy)} and gg =
{(k1:v1). -+ . (V). Tet U = kSet(pg) U kS et(qs). We con-

vert set U to vector ZI = <k1’, I kl/l,/|> by assigning an arbitrary
order to the elements in U. Let vector p_g; = (a, a2 ,au),
where
a = vi, if kI € kSet(pg)
"0, if k¢ kSet(pg)

Likewise we define gg = (b1, b2, -+ ,by)). The four metrics
that quantify the similarities between pg and gg are defined as:

Ex — Cosine (pg,qs) = _(;Zﬂg’ X0,

Ex — Jaccard (pg,qg) = —lZﬁBZﬁI 0,
. 2|ps

Ex = Dice (ps.qs) = {2502 X 0,

Ex — Containment (pg, qg) = m@%@ X 0
where
in7.)
0=—"="T751
masx (|pa| oz
and
= _ 2 —| _ 2
|p8| - Za,-e;g ai ’ 98| = Zbiezﬁg bi
The similarity of two TreSBs 1is represented by
Sim(pg,qs) = sim.(ps,qs), where ¢ € {Ex— Cosine,

Ex — Jaccard, Ex — Dice, Ex — Containment}.

3.2. Plagiarism Detection

The purpose of extracting birthmarks and calculating their
similarity is to eventually determine whether there exists pla-
giarism. False negatives are possible due to sophisticated code
obfuscation techniques that camouflage stolen software. One of
our goals is to make our approach resilient to these techniques
and tools. False positives, on the other hand, are also possible,
even though executions faithfully represent program behavior
under a particular input vector. For example, two independently
developed programs adopting standard error-handling subrou-
tines may exhibit identical behavior under error-inducing in-
puts. In order to alleviate this problem, multiple similarity

scores are computed for birthmarks obtained under multiple in-
puts, and the average of the scores is used to decide plagiarism.

Let p and g be the plaintiff and defendant programs, re-
spectively. Given a set of inputs {[j,1,---,I,} to drive
the execution of the programs, we obtain n pair of TreSBs

{(ps,,q8),(Ps,,98,) s - ,(Ps,,qs,)} - The similarity score
between program p and ¢ is calculated by Sim(p,q) =

n
>, sim(pgs,,qs,)|n , whose value is between 0 and 1. The exis-
i=1
tence of plagiarism between p and q is then decided according
to the average similarity score and a predefined threshold ¢ as

follows:

>1—¢ positive: qisacopyof p
< & negative: qisnotacopyof p Q)
otherwise inconclusive

sim (p,q) =

3.3. Implementation

Figure 2 gives an overview of our TreSB based birthmark-
ing tool, where plaintiff and defendant represent the origi-
nal program and the program suspected of plagiarism, respec-
tively. The tool consists of several modules. The first module,
TreTracer, is implemented as a PIN (Luk et al., 2005) plu-
gin to monitors program executions. It recognizes and records
the thread-related system calls by instrumenting call sites dy-
namically. Table 1 lists the 65 thread-related system calls of
Linux kernel v3.2, on which platform we evaluate the effec-
tiveness of the TreSB method. The output of this module is
a thread-related system call sequence under a particular input
vector. Each record in the sequence consists of a system call
number and its corresponding system call name, and the return
value during the execution.

The raw sequences extracted by the TreTracer are not ap-
propriate to be directly used for birthmark generation. Since
failed calls do not affect the behavior characteristics of a pro-
gram (Wang et al., 2009a; Tian et al., 2014b; Wang et al.,
2009b), we treat them as noise and delete them from the se-
quences. This is accomplished by checking the return value
of each record. Also, in order to further reduce the impact
of thread scheduling as well as other random factors such as
os-state related operations, each program is executed multiple
times with the same input. We then select two most similar se-
quences for further analysis. These tasks are accomplished by
an optimization module.

The birthmark generator obtains TreSBs from the thread-
related system call sequences passed from the optimizer. In the
similarity calculator, scores are computed between the birth-
marks of plaintiff and defendant programs with respect to each
of the four similarity metrics as described in section 3.1. Finally
a decision is made using Equation 1, where a default value of
& = 0.3 is adopted. However, users can adjust its value depend-
ing on how strong the plagiarism evidence is desired. A & value
between 0.15 and 0.35 has been used in prior work (Choi et al.,
2009; Schuler et al., 2007; Tian et al., 2014b; Chae et al., 2015).

4. Experiments and Evaluation

A high quality birthmark must exhibit low ratio of incorrect
classifications for a certain €. This can be quantified by the
resilience and credibility properties (Myles and Collberg, 2005;
Choi et al., 2009). In order to demonstrate the merit of our
birthmarking technique, we center our empirical study on the
two properties.

Property 1: Resilience. Let p be a program and g be a copy
of p generated by applying semantics-preserving code transfor-
mations 7. A birthmark is resilient to 7 if sim (pg,qs) > 1 — €.

Property 2: Credibility. Let p and g be independently de-
veloped programs that may accomplish the same task. A birth-
mark is credible if it can differentiate the two programs, that is
sim(ps, qs8) < &.

4.1. Experimental Setup

We have conducted extensive experiments for evaluating the
effectiveness of our method on an open benchmark established
by Tian et al. (Tian et al., 2014b). Table 2 lists basic informa-
tion about the benchmark. Column #Ver gives the number of
versions of each program including the original program and
its obfuscated versions. Column Size lists the number of kilo-
bytes of the largest version, with its version number listed in
Column Version. In the following we summarize our testing
environment.

e The benchmark consists of 234 versions of 35 mature mul-
tithreaded software implemented in C or Java, including:

— six compression/decompression software:
1bzip, lrzip, pbzip2, plzip and rar.

pigz,

— five audio players:
mplayer and sox.

cmus, mocp, mp3blaster,

— ten web browsers: arora, chromium, dillo,
dooble, epiphany, firefox, konqueror, luakit,
midori and seaMonkey.

— four Java programs from the JavaG benchmark:
Crypt, Series, SparseMat and SOR.

— ten programs from the PARSEC 3.0 bench-
mark: blackschole, bodytrack, fludanimate,
canneal, dedup, ferret, fregmine,
streamcluster, swaption, x264.

e We evaluate the resilience of TreSB against relatively
weak obfuscations provided by two different compilers
gcc and 11vm with various optimization levels.

e We evaluate the resilience of TreSB against strong ob-
fuscations implemented in special obfuscators, includ-
ing Sandmark, Zelix KlassMaster, Allatori, DashO,
Jshrink, ProGuard and RetroGuard.

e We evaluate the resilience of TreSB against packing tool
UPX which can obfuscate binaries.

e We evaluate the credibility of TreSB with independently
developed programs.

Plaintiff . o -
];m;tl d ar;d TreTracer | Optimizer Birthmark | Similarity Decision
ctendan p Generator Calculator Maker
Figure 2: Overview of the TreSB based software plagiarism detection tool
Table 2: Benchmark programs.

Name Size(kb) Version #Ver \ Name Size(kb) Version #Ver \ Name Size(kb) Version #Ver

pigz 294 2.3 21 chromium 80,588 28.0.1500.71 1 SOR 593.3 JavaG1.0 44
Ibzip 113.3 2.1 1 dillo 610.9 3.0.2 1 blackschole 12.5 Parsec3.0 2
Irzip 219.2 0.608 1 Dooble 364.4 0.07 1 bodytrack 647.5 Parsec3.0 2
pbzip2 67.4 1.1.6 1 epiphany 810.9 3.4.1 1 fludanimate 46.4 Parsec3.0 2
plzip 51 0.7 1 firefox 59,904 24.0 1 canneal 414.7 Parsec3.0 2
rar 511.8 5.0 1 konqueror 920.1 4.8.5 1 dedup 127.2 Parsec3.0 2
cmus 271.6 243 1 luakit 153.4 d83cc7e 1 ferret 2,150 Parsec3.0 2
mocp 384 25.0 1 midori 347.6 043 1 freqmine 227.6 Parsec3.0 2
mp3blaster 265.8 325 1 seaMonkey 760.9 2.21 1 streamcluster 102.7 Parsec3.0 2
mplayer 4,300 134540 1 Crypt 518.1 JavaG1.0 43 swaption 94 Parsec3.0 2
SOX 55.2 14.3.2 1 Series 593.3 JavaG1.0 43 X264 896.3 Parsec3.0 2

arora 1,331 0.11 1 SparseMat 593.3 JavaG1.0 43

e We compare the overall performance of the TreSB method
with two latest thread-aware birthmarks SCSSBg, and
SCSSBgs (Tian et al., 2014b), as well as the traditional
birthmark SCSSB (Wang et al., 2009b), with respect to
three widely used metrics including URC, F-Measure, and
MCC.

e We propose another birthmark called TreCxtB that also ex-
ploits thread-related system calls, and compare it against
TreSB.

It should be noted that, with all other factors the same, dif-
ferent values of k leads to different TreSBs. Fortunately, as
it has been confirmed in previous papers (Tian et al., 2013,
2015; Wang et al., 2009a; Schuler et al., 2007) where k-grams
are also used to generate birthmarks, setting the value of k
to 4 or 5 is a proper compromise between accuracy and effi-
ciency. In our evaluation we set k = 5 as adopted in (Tian
et al.,, 2014b) and (Wang et al., 2009b), since they are the
works that we mainly compare with. As discussed in Sec-
tion 3.2, programs are executed multiple times under differ-
ent inputs. However, we always give the same inputs to the
plaintiff and defendant programs. In our experiments, when-
ever available, we utilize the inputs that are distributed with
the benchmarks. For example, eighteen testing audio, im-
age and text files that are distributed with pigz are used
to drive the executions of pigz and its obfuscated versions
in our experiments. For other programs such as the ten
web browsers, we feed them with multiple websites such as
https://en.wikipedia.org/wiki/Plagiarism.

4.2. Validation of Resilience Property
4.2.1. Resilience to Different Compilers and Optimization Lev-
els
Stolen software is often compiled with different compilers
or compiler optimization levels to evade detection. In this ex-
periment, we choose the multithreaded compression software

pigz-2.3 as the experimental subject. Compiled with two
compilers 11vm3.2 and gcc4.6.3, along with multiple opti-
mization levels (-00, -01, -02 -03 and -0s) and the debug
option (-g) switched on or off, we obtain 20 different executa-
bles. The statistical characteristics of the 20 binaries, obtained
by using the disassembler IDA Pro, are summarized in Table 3.
The table gives the statistical differences on the size, the num-
ber of functions, the number of instructions, the number of ba-
sic blocks and the number of function calls. The data indicate
that even weak code transformations can make significant dif-
ferences to the produced binaries.

Since the 20 binaries are obtained from the same source code,
our approach is resilient to these weak code transformations if
the similarity scores are high, indicating the existence of plagia-
rism. Figure 3 illustrates the distribution graph of the similarity
scores calculated between the birthmarks of the 20 pigz bina-
ries, where the vertical axis represents the metrics adopted for
similarity computation, and the horizontal axis represents the
percentage of birthmark pairs belonging to each range as spec-
ified in the legend. It can be observed that the similarity scores
are all above 0.8, except for Ex-Jaccard, and the majority are
above 0.9. Even for Ex-Jaccard, only a tiny fraction of the sim-
ilarity scores are between 0.7-0.8 and all others are above 0.8.
For a threshold value of 0.3, our technique will claim the ex-
istence of plagiarism for all the experiments. The experimen-
tal results indicate that TreSB exhibits strong resilience against
the obfuscations caused by different compilers and optimization
levels.

4.2.2. Resilience to Advanced Obfuscation Tools

In this group of experiments, we evaluate the resilience of
TreSB against advanced obfuscation techniques available in
sophisticated tools. Specifically, we conduct experiments on
the 165 obfuscated versions of the 4 programs from the JavaG
Benchmark, including Crypt, Series, SparseMat and SOR.

Table 3: Statistical differences between pigz versions generated with different compilers and optimization levels

Size(Kb) #Functions #Instructions #Blocks #Calls
Max. 295 415 22178 3734 2376
Min. 84 342 13860 2672 1031
Avg. 151.75 380.25 16269 3068.9 1206.8
Stdev. 60.53 23.4 2679 286.58 280.9

[0<0.6 @(0.6,0.7) B[0.7,0.8) @[0.8,0.9) §[0.9,1]]

Ex-Containment /77ZZ2ZNNNNNNNNNUNNNINNINIIIINNIINIINNN
Ex-Dice - 7ZZNNNNNNAANNNRNNNNNNNNNNNNNNNNRNY

Ex-Jaccard

Ex-Cosine

0 10 20 30 40 50 60 70 80 90 100
Percentage (%)

Figure 3: Similarity scores between pigz versions generated with different
compilers and optimization levels.

These 165° versions are obtained by either applying the 39
obfuscation techniques implemented in the obfuscation tool
SandMark (Collberg et al., 2003) to each program one at a time,
or by applying multiple obfuscation techniques implemented
in six commercial and open source obfuscation tools, includ-
ing Zelix KlassMaster®, Allatori’, Dash0° JShrink’,
ProGuard® and RetroGuard’, simultaneously to a single pro-
gram, on the premise of ensuring semantics equivalence be-
tween each original and the transformed programs. Semantic
equivalence is confirmed via empirical study rather than theo-
retical proof. We consider a transformed program is equivalent
to the original one if they produce the same outputs in our ex-
periments.

The similarity scores are calculated between the original pro-
gram and one of its obfuscated versions. Figure 4 gives the sim-
ilarity score distribution with the vertical and horizontal axes
indicating the same meaning as in Figure 3. It can be observed
that the majority scores locate in the 0.7-above region. Yet as
indicated by the white bars in the figure, there exist some sim-
ilarity scores that are relatively low. We checked the experi-
mental data, and found that these low scores all happened be-
tween each program and its Allatori-obfuscated version. It
seems that TreSB is susceptible to the obfuscation produced by

3Note that with our experimental setup, there should be 180 obfuscated ver-
sions if all the obfuscations are successfully applied. Yet some of the obfusca-
tions fail to transform the programs or fail to transform them into semantically
equivalent executables.

4http://WWW.zelix.com/klassmaster

3 http://www.allatori.com

Shttps://www.preemptive.com/products/dasho

7https://Www.e—t.com/jshrink.html

8http://proguard.sourceforge.net

9http://java—source.net/open—source/obfuscators/retroguard

[0<0.6 3[0.6,0.7) @[0.7,0.8) @[0.8,0.9) N[0.9,1]

Ex-Containment H ,k\\\\\ \\\\\\\

NI
Ex-Dice | 7ZANMNNRNANANNNNNINNNINNINNNNNNNNNN
AN

Ex-Jaccard i%m \\\\\\\\
N\ NN

Ex-Cosine

0 10 20 30 40 50 60 70 80 90 100
Percentage (%)

Figure 4: Similarity scores between a program and its obfuscated versions

Allatori. By manually investigating the recorded execution
traces, we find that an extra thread is added in the Allatori-
obfuscated version, compared with its original version during
runtime. The new thread decrypts strings that are encrypted
during the obfuscation process of Allatori, which introduces
extra thread-related system calls. For example, NR_waitpid and
NR _pipe, which do not appear in the execution of the original
version, appear in the trace of Allatroi-obfuscated Crypt.
We anticipate an approach to defeat our algorithm is to intro-
duce new threads that emit thread-related system calls to dis-
guise plagiarism. To address this issue, we can add a prepro-
cessing module. After firstly projecting a trace on individual
threads, the module performs maximal matching among all sub-
traces of the plaintiff and defendant to detect unmatched sub-
traces. The unmatched traces are very likely to be the noise
introduced by the obfuscation and thus can be removed. Fig-
ure 5 gives the distribution graph after performing such trace
filtering. It can be observed that all scores are above 0.6. It
indicates that TreSB is resilient to such anticipated obfuscation
techniques.

4.2.3. Resilience to Packing Tools

The packing tools or packers (Roundy and Miller, 2013; Guo
et al., 2008; Kim et al., 2010), which implement various bi-
nary obfuscation techniques as well as compression and en-
cryption techniques, are widely used to hide malicious malware
or to protect proprietary software from illegal modification and
cracking. Such techniques may be used to evade plagiarism
detection. These tools can defeat static birthmarks as they sig-
nificantly modify the original programs.

In this section, resilience of TreSB is evaluated on the bi-
naries in the benchmark that are processed with packing tech-
niques, including the previously used pigz, Crypt, Series,

| 0<0.6 0[0.6,0.7) @[0.7,0.8) B[0.8,0.9) 8[0.9,1]]

Ex-Containment

Ex-Dice

Ex-Jaccard

Ex-Cosine

0 10 20 30 40 50 60 70 80 90 100
Percentage (%)

Figure 5: Similarity scores with trace filtering performed

|0<0.6 @[0.6,0.7) B[0.7,0.8) @[0.8,0.9) §[0.9,1]

Ex-Containment

Ex-Dice

Ex-Jaccard

Ex-Cosine

0 10 20 30 40 50 60 70 80 90 100
Percentage (%)

Figure 6: Similarity scores between a program and its UPX-packed versions

SparseMat, SOR as well as 10 other multithreaded programs
blackschole, bodytrack, fludanimate, canneal, dedup,
ferret, freqmine, streamcluster, swaption and x264.
These programs all have versions packed by UPX'’, the only
publicly available packing tool for the ELF-format (executable
file format under Linux).

Figure 6 depicts the distribution of the similarity scores cal-
culated between birthmarks of the original programs and their
corresponding UPX-packed versions. It can be observed the ma-
jority of the scores are above 0.7 and all scores are above 0.6.
For a default threshold value of 0.3, there are very few cases,
when adopting Ex-Jaccard and Ex-Cosine metrics, TreSB is un-
certain about the existence of plagiarism.

4.3. Validation of Credibility Property

Credibility of TreSB is evaluated by its capability of dis-
tinguishing independently developed programs. Three widely
used types of software are selected as our experimental
subjects, including six multithreaded compression software
(1bzip2, 1lrzip, pbzip2, pigz, plzip and rar), ten web
browsers (arora, chromium, dillo, Dooble, epiphany,
firefox, konqueror, luakit, midori and seaMonkey), and
five audio players (cmus, mocp, mp3blaster, mplayer and
SO0X).

10http://upx.sourceforge.net/

(0[0,0.1) B[0.1,0.2) @[0.2,0.3) @[0.3,0.4) B >=0.4]

Ex-Containment I

Ex-Dice |

Ex-Jaccard |

Ex-Cosine |
0 10 20 30 40 50 60 70 80 90 100
Percentage (%)

Figure 7: Similarity scores for software in different categories

4.3.1. Distinguishing Programs in Different Categories

In this group of experiments, similarity scores between the
compression programs and audio players are computed. Since
the comparison is between software that accomplish totally dif-
ferent tasks, we expect very low similarities. As shown in Fig-
ure 7, the results are as expected. All the similarity scores are
below 0.1, indicating good credibility of TreSB in distinguish-
ing programs without much in common.

4.3.2. Distinguishing Programs in Same Categories

Distinguishing programs in the same category is more chal-
lenging because they overlap greatly in their functionality. Fig-
ure 8 depicts the distribution of the similarity scores calculated
between the ten web browsers. It can be observed that the ma-
jority of the scores are below 0.1, indicating good capability
of TreSB in distinguishing similar but independently developed
programs. However, there exist a few cases where the similarity
scores are above 0.3, which shows that TreSB is unsure about
whether plagiarism exists.

In order to better interpreting the data, Table 4 gives the max
and average similarity scores in the first two columns after the
names of the matrices. Consistent with the distribution graph,
while the average scores are well below 0.1, the maximum sim-
ilarity scores are all above 0.25. After careful examination of
the programs we have found that some of the browsers share the
same layout engine. Specifically, five of the browsers (arora,
Dooble, epiphany, luakit and midori) are Webkit-based
while the others utilize different layout engines. Column Avg+
lists the average similarity scores between those five Webkit-
based browsers, and Column Avg- gives the average scores be-
tween the Webkit-based and non-Webkit-based browsers. As
expected, the values in Column Avg+ are 6 to 10 times bigger
than the values in Column Avg-.

Since the goal of TreSB is to detect whole program plagia-
rism, we believe the experimental results show strong cred-
ibility for real-world applications where certain libraries are
shared. If there exist trivial programs that simply calls the same
third-party functions, it is hard to give a conclusive judgment
even with manual examination.

0[0,0.1) B8[0.1,0.2) B[0.2,0.3) @[0.3,0.4) B >=0.4

Ex-Containment - 2
Ex-Dice - A
Ex-Jaccard - }
Ex-Cosine — N

0 10 20 30 40 50 60 70 80 90 100
Percentage (%)

Figure 8: Similarity scores for software in the same category

Table 4: Credibility evaluation using ten web browsers

Max Avg Avg+ Avg-
Ex-Cosine 0.584 0.068 0.178 0.023
Ex-Jaccard 0.373 0.030 0.092 0.008
Ex-Dice 0.509 0.049 0.142 0.015
Ex-Contaiment 0.512 0.055 0.144 0.024

4.4. Comparing with Other Birthmarks

This section compares the performance of TreSB against two
birthmarks SCSSBg, and SCSSBgg (Tian et al., 2014b) that
adapt SCSSB (Wang et al., 2009b) for multithreaded programs,
as well as the original SCSSB. All the programs from Sec-
tion 4.2 to Section 4.3 are taken as the experimental subjects.

4.4.1. Performance Evaluation with Respect to URC

As discussed earlier, resilience and credibility reflect from
different aspects the qualities of a birthmark. URC (Union of
Resilience and Credibility) (Xie et al., 2010), defined below, is
a metric that considers both aspects.

RxC

R+C @
In the equation, R represents the ratio of correctly classified
pairs where plagiarism exists and C represents the ratio of cor-
rectly classified pairs where plagiarism does not exist. The
value of URC ranges from O to 1, with higher value indicating a
better birthmark. Let EP be the set of pairs of programs such
that ¥V (p,q) € EP, plagiarism indeed exists between g and p,
and JP be the set of pairs such that V (p, g) € JP, a plagiarism
detection method believes that plagiarism exists between g and
p. Similarly, let EI to be the set of pairs such that ¥V (p, q) € EI,
q and p are independent, and JI be the set of pairs that are
deemed independent by a plagiarism detection method. R and
C are defined as:

|[EP N JP| |[EINJI|
=—— and C=—
|EP| IE]|

URC =2 X

3

As indicated by Equation 1, the detection result relies on the
value of threshold €. Therefore in the experiments we vary the
value of € from 0 to 0.5. Note that £ cannot be greater than 0.5,
otherwise plagiarism can be claimed to be existing and non-
existing at the same time. Figure 9 depicts the experimental

Ex-Containment Metric

" " Ex-Cosine Metric

0.9+ 0.9+
0.8+ 0.8+
0.7+ 0.7+

Sosl Sosl

g g

3 0.5f 3 0.5f

X o4t T o4t

> —o— TreSB > —o—TreSB
03¢ scssBg, 03¢ SCSsBg,
0.2r —o— SCSSBgg 0.2r —o— SCSSBgg
01 —8—SCSSB 01 —8—5CSSB

0c
0 0.050.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5
Threshold €)

Ex-Jaccard Metric

0c
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Threshold €)

Ex-Dice Metric
1 1

09l 09f
08l 08|
07t 07}

Sosf Sosf

f 05f f 05f

T 04f T 04

—o—TreSB —6— TreSB
03r SCSSBg, 03r SCSSBg,
gf —o— SCSSBg gf r —o—SCSSBg
- —8—5CSSB ’ —=—SCssB

C“b 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Threshold)

010 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Threshold)

Figure 9: Performance evaluation with respect to the URC metric.

results, where each subfigure corresponds to the specific metric
utilized for similarity computation. As indicated by the pink
lines, TreSB always performs better than the other three birth-
mark methods.

4.4.2. Evaluation with F-Measure and MCC

Equation 1 indicates that the birthmark based plagiarism de-
tection give three-value results. If the similarity score of two
birthmarks is between & and 1 — g, there is no definite answer
whether plagiarism exists. The inconclusiveness reflects the na-
ture of birthmark based techniques, which are mostly used for
collecting evidence rather than proving or disproving the ex-
istence of plagiarism. Such three-value outcome also explains
the reason that URC gives better results with higher value of &
in Figure 9. This is because URC mainly measures the rate of
correct classifications, where inconclusiveness is considered as
incorrect classification. As the value of ¢ increases, the chance
of inconclusiveness becomes smaller, leading to less incorrect
classifications.

To address the problem, we further compare the birth-
mark methods against two other metrics, F-Measure and MCC
(Matthews Correlation Coefficient) (Matthews, 1975), that are
widely used in the areas of information retrieval and machine
learning. However, these two metrics cannot be directly ap-
plied as they mainly measure binary classifications. Thus in
the following, we revise the definition of sim by removing the
inconclusiveness:

. _) ze qisacopyof p
SLm(pB’qB)_{ <e q isnotacopyof p “)

F-Measure is based on the weighted harmonic mean of
Precision and Recall:

2 X Precision X Recall
F-Measure = — (®)]
Precision + Recall

Ex-Containment Metric
[—o— TreSB SCSSBg, —o— SCSSBgg —— scssg[
08

So7 \
3

>06 \
°

505 \
2 \
$04 ‘\
03 \
02 \
0.1

Ex-Cosine Metric
[+ TreSB —v— SCSSBg, —6— SCSSBg +scsss[

P

0.9 ﬁ

m08 \&\s

o7

s

>06

®

505 |

3

$04

03
02
0.1

f

09/§§§’¢v

0 01 02 03 04 05 06 07 08 09
Threshold)

Ex-Dice Metric
SCSSB;, —o— SCSSBy —a- 50558]

0 01 02 03 04 05 06 07 08 09
Threshold ¢)

Ex-Jaccard Metric
SCSSBy, —o— SCSSBy, —a— 50558

[—o— TreSB

e o o
w N

[+ TreSB

o 08
So7
s
>06 (
° \
505 \
2 \
§o04 \
03 \
02 \
01

0 01 02 03 04 05 06 07 08 09
Threshold)

0 01 02 03 04 05 06 07 08 09
Threshold ¢)

Ex-Containment Metric
SCSSB,, o~ SCSSBy, —a- 50558

Ex-Cosine Metric
SCSSBy, —o- SCSSBg, —a- 50558

—o— TreSB [+ TresB

1 1
— — =
09 09 ?/Wﬁ p R
08 08 N
407 07, \
206 08 \
>05 05 A

01 02

C
MCC Value

03 04 05 06 07 08 09
Threshold)

Ex-Dice Metric
SCSSBg, —o— SCSSByg —a— SCSSB

01 02 03 04 05 06 07 08 09
Threshold ¢)

Ex-Jaccard Metric
SCSSBg, —o— SCSSByg —a— SCSSB

—o— TreSB —o— TreSB

C
MCC Value

01 02 03 04 05 06 07 08 09

Threshold)

01 02 03 04 05 06 07 08 09
Threshold ¢)

Figure 10: Performance evaluation with respect to F~Measure and MCC

where Precision and Recall are defined as following:

|EP N JP|
|JP|

|[EP N JP|

and Recall =
|EP|

Precision =

MCC, defined below, is regarded as one of the best metrics that
evaluate true and false positives and negatives by a single value.

_ TPXTN—-FPXFN
"~ TP+ FP)(TP+ FN)(IN + FP)(TN + FN)
where TP, TN, FP and FN are the number of true positives,

true negatives, false positives and false negatives, respectively.
They can be computed with the following formulas:

MCC

(6)

TP=|EPNJP|; FN =|EPNJI|

FP=|EINJP|; TN=|EINJI|

The values of F-Measure are between 0 and 1, and MCC be-
tween -1 and 1, with closing to 1 indicating better quality. The
experimental results are depicted in Figure 10 . The left four
sub-figures give results of F-Measure and the right four sub-
figures show the results of MCC. Note that the values between -1
and 0 never appear in our experiments so the scale in the figure
for MCC is between 0 and 1. It can be observed that TreSB al-
most always performs better than all the other birthmarks across
the whole x-axis.

4.4.3. Comparing Birthmarks with AUC Analysis

For more specific and intuitional comparison, we compute
AUC (Area Under the Curve) for each birthmarking method with
respect to the URC, F-Measure and MCC metrics. Note that
larger value of AUC indicate better birthmark quality. The ex-
perimental results are summarized in the Table 5, where S A and
SS denote birthmarks SCSSBg,4 and SCSSBgg, respectively.
As it shows, the AUC values of TreSB are all larger than that of
the other birthmarks’.

We quantify the performance gains by taking the original SC-
SSB as baseline. That is, we compute the improvement of each
thread-aware birthmark against SCSSB with respect to the same

10

similarity metric and the same performance evaluation metric
using the following equation:

AUcmh - AUCscssb

100%
AUCscssb X ’

PerGain =

where AUC,,;, and AUC,., represent the AUC value of a
thread-aware birthmark and SCSSB, respectively. Note that
both AUC,,, and AUC . in the equation are relative. Their
values vary with respect to different similarity metrics and per-
formance evaluation metrics. For example, the AUC ., value
with respect to Ex-Cosine similarity and URC metric is 0.776,
while its value with respect to Ex-Dice similarity and URC met-
ric is 0.619. Therefore, the corresponding PerGain values for
TreSB are:

0.857-0.776
0.776

0.843-0.619

100% = 10%, and
x100% o, an 0619

x100% = 36%
respectively. The last row in Table 5 gives the average and max-
imal performance gains of each birthmark against SCSSB. It
can be observed TreSB is significantly better that other birth-
marks.

4.5. Effectiveness of the Sequence Selection

As mentioned in Section 3.3, we conduct an optimization
by pre-selecting two most similar sequences from plaintiff and
defendant programs to reduce the randomness of thread inter-
leaving. To evaluate the necessity of this optimization, in the
first four rows of Table 6 we give the AUC values of compar-
isons between birthmarks generated from two most dissimilar
sequences. It can be observed the data are not as good as those
in Table 5. In order to quantify the performance degradation we
use the following equation and give the results in the last row
PerDegr.

Z AUC()pT -A UCm)Opr
PerDegr = simMetrics X 100%
> AUC,,
simMetrics

We can see that the performance of all birthmark methods are
improved after the optimization, indicating the necessity and

Table 5: Comparison Using AUC Values

URC F-Measure MCC
SCSSB SA SS TreSB SCSSB SA SS TreSB SCSSB SA SS TreSB
Ex-Containment 0.618 0.693 0.709 0.863 0.802 0.847 0.853 0.942 0.704 0.737 0.753 0.868
Ex-Cosine 0776 0.816 0.793 0.857 0919 0933 0924 0938 0.814 0.837 0.827 0.861
Ex-Dice 0.619 0.694 0.71 0.843 0.802 0.847 0.853 0.927 0.705 074 0754 0.84
Ex-Jaccard 0.412 0.564 0.591 0.827 0.691 0.768 0.784 00912 0.602 0.665 0.687 0.818
PerGain (%) - 17\37 19\43 47\101 - 6\11 7\13 17\32 - 6\10 7\14 21\36
Table 6: Effectiveness of Sequence Selection
URC F-Measure MCC
SCSSB SA SS TreSB SCSSB SA SS TreSB SCSSB SA SS TreSB
Ex-Containment 0.344 0.614 0.635 0.753 0.659 0.799 0.809 0.874 0.577 0.711 0.723 0.761
Ex-Cosine 0.74 0.794 0.792 0.767 0.876 0923 0.908 0.881 0.769 083 0817 0.781
Ex-Dice 0343 0.614 0.631 0.778 0.659 0.798 0.809 0.888 0578 0.712 0.721 0.79
Ex-Jaccard 0.098 0.4 0.465 0.734 0.503 0.687 0.722 0.859 0.436 0.604 0.636 0.75
PerDegr (%) 37.1 12.5 10.0 10.6 16.1 5.5 49 5.8 16.5 4.1 4.1 9.0
benefit of applying the optimization. It can also be observed
that the performance degradation of SCSSBs are more signifi- . context(s) =<k-prefix(s,),s; k-suffix(s)>
context(s;) .

cant than that of thread-aware birthmarks, which correctly re-
flect the significant impact of thread interleaving on traditional
SCSSB and the fact that thread-aware birthmarks are needed
for multithreaded programs.

4.6. Alternative Approach

So far, we have discussed and evaluated TreSB extracted
from a sequence composed of thread-related system calls. Be-
sides TreSB, there are other ways to extract birthmarks based
on thread-related system calls. In this section, we discuss an
alternative birthmark called TreCxtB (short for thread-related
system call with context birthmark) that considers the context
of individual thread-related system calls.

4.6.1. Thread-related System Call with Context Birthmark

Figure 11 depicts the context of a thread-related system call
in a trace, which includes the system calls immediately before
and after it. Formally, given an execution trace trace (p,I) =
(81,82, , 8,y consisted of system calls recorded during the
runtime of program p under input /, a subsequence tos (p,) =
(e1, ez, , ey consisted of just thread-related system calls can
be obtained. For each thread-related system call e; in tos (p, I),
we define its k-prefix as the nearest k system calls executed pre-
ceding e; in trace (p, I), and its k-suffix as the nearest k system
calls executed succeeding e; in trace (p, I). The context of e; is
then defined as the sequence that concatenates the k-prefix, e;,
and the k-suffix. Similarly to TreSB, TreCxtB is defined as the
key-value pair set consists of all unique context and their cor-
responding frequencies. Algorithm 1 gives the pseudo-code on
TreCxtB generation.

11

________ k-Suffix(s;) =<sji1,....8j11>
I(k-’;’; ;};i;;‘:) fe-suffix (“/))| k-prefix(s)=<s,...,;.1> -
A frace'(p, 1)

s; is a thread-related system call

Figure 11: Context of a thread-related system call

Algorithm 1 Extracting TreCxtB
Input:

trace: an execution trace consisted of system calls

k: the scope for determining prefix and suffix
Output:
cxtg: the birthmark TreCxtB, which is a key-value pair set
cxtg ()
for each system call s in trace do

if 5 is a thread-related system call then

k — pre = prefix(s,k)

k — suf = suffix(s, k) > Obtain the nearest k

system calls preceding and succeeding s

1:
2:
3:
4
5

6: cxt = concat(k — pre, s,k — suf) > Generate the
context for s

7: if cxtg.keyset.contains(cxt) then

8: + + cxtg.getkey(cxt) 1> Update the value of key
cxtin cxtg

9: else

10: cxtg — cxtg ® (cxt, 1) > Add the new key-value
pair to cxtg

11: end if

12 endif

13: end for

Ex-Containment Metric Ex-Cosine Metric

1 —b 1
ool /@/w 1 ool //E/v
0.8 ; 0.8

o7t 207t

5 / 5

To6F T os6f

3 ° 3

S o5 S o5

Soal [o TreCxtB,, o4 o TreCxtB,,

203 —o—TreSBy g 03l —o— TreSB,
02t TrerIBc 02t 7'rertBc
0l TreSB, 0.1 TreSBg,

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Threshold §)

Ex-Jaccard Metric

O,J'
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Threshold §)

4 Ex-Dice Metric 4
v TR ¢

0.9F
0.8
0.7f
0.6
0.5f

Resilience/Credibility

04l o Trer(BR o TrertBR
Z 03l —o—TresB,, —o—TreSB,,

0.2+ Trer{BC Trerch

0.1 TreSB, 7'reSBC

U0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Threshold ¢)

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Threshold ¢)

Figure 12: Comparing the resilience and credibility of TreCxtB and TreSB. We
use TreS Bg and TreS B¢ to denote the R and C of TreSB, and use TreCxtBg
and TreCxtB¢ to denote the R and C of TreCxtB.

4.6.2. Performance Evaluation of TreCxtB

Same as TreSB, we evaluate the performance of TreCxtB
with respect to the three performance metrics URC, F-Measure
and MCC, respectively. Note that TreCxtB depends on a factor
k that determines the range of its contexts. Table 7 summarizes
the AUC values as well as the Average/Maximum PerGain val-
ues of TreCxtB with different k£ values. As it shows, TreCxtB
exhibits the best performance (the largest average and maxi-
mum PerGain values with respect to all metrics among the
tested k values) when k = 1. With increasing k values, both
the average and maximum PerGain values with respect to ei-
ther performance metric decrease. There is no need to test
more k values, as larger kK makes two TreCxtB more dissim-
ilar, which decreases resilience while increases credibility of
TreCxtB. In other words, larger k leads to more false negatives
but less false positives. With birthmarking being a detecting
technique of suspected copies, false negative is more critical
than false positive(Tian et al., 2015). Besides, larger k incurs
more computational cost. Thus k = 1 is the best choice for
TreCxtB.

As indicated by AUC and PerGain values in Table 7, when
k = 1 TreCxtB is significantly better than SCSSB and outper-
forms SCSSBs 4 and SCSSBgs. But it is no better than TreSB.
We also consider R and C as defined in equation 3. Figure 12 il-
lustrates the resilience (reflected by R) and credibility (reflected
by C) of TreCxtB and TreSB. From the figures, we can see that
the R curve of TreCxtB is below that of TreSB, while the C
curve of TreCxtB is occasionally above that of TreSB. It in-
dicates that TreSB is no better than TreCxtB in terms of the
resilience against semantics-preserving obfuscations. The main
shortcoming of TreCxtB lies in its credibility of distinguishing
programs when there is no plagiarism.

12

5. Related Work

In this section we discuss related work on birthmark based
software plagiarism detection. Since we target binaries, pre-
vious researches assuming availability of source code are not
discussed here.

Static birthmark based plagiarism detection: Myles et
al. (Myles and Collberg, 2005) proposed k-gram based static
birthmarks, where sets of Java bytecode sequences of length
k are taken as the birthmarks. Although being more robust
than birthmarks proposed by Tamada (Tamada et al., 2004a),
the birthmarks were still vulnerable to code obfuscation attacks.
A static birthmark based on disassembled API calls from exe-
cutables is put forward by Seokwoo et al. (Choi et al., 2009),
yet the requirement for de-obfuscating binaries before apply-
ing their method is too restrictive and thus reduces its availabil-
ity. An obfuscation-resilient method based on longest common
subsequence of semantically equivalent basic blocks was pro-
posed (Luo et al., 2014). They utilized symbolic execution to
extract from basic blocks symbolic formulas, whose pair-wise
equivalence are compared via a theorem prover. Being static
analysis method, accuracy can not be assured since it has diffi-
culty in handling indirect branches. There are also some works
focusing on detecting plagiarism for smartphone applications.
DroidMOSS (Zhou et al., 2012) detects plagiarism by applying
fuzzing hashing on instruction sequences. Yet simple obfusca-
tions such as noise injection can invalidate the method. View-
Droid (Zhang et al., 2014a) proposes the feature view graph
birthmark by capturing users’ navigation behaviors. But it’s
vulnerable to dummy view insertion and encryption attacks.

Dynamic birthmark based plagiarism detection: Myles
et al. (Myles and Collberg, 2004) suggested the whole pro-
gram path (WPP) birthmark generated by compressing a whole
dynamic control flow trace into a directed acyclic graph to
uniquely identify a program. Even with compression the
method does not scale, and it’s susceptible to various loop trans-
formations. Schuler (Schuler et al., 2007) treated Java API call
sequences at object level as dynamic birthmarks for Java pro-
grams. Such approach gave better performance than WPP birth-
mark, but they also pointed out that their method was affected
by thread scheduling. Wang et al. (Wang et al., 2009b) proposed
System Call Short Sequence birthmark (SCSSB), which treated
the sets of k-length system call sequences as birthmarks. As
illustrated in this paper, although dynamic birthmarks exhibit
certain resilience to syntax modifications, they are not suitable
for plagiarism detection of multithreaded programs.

Thread aware birthmarks: There has been very few work
that target birthmark based plagiarism detection of multi-
threaded programs. To the best of our knowledge, SCSSBg4
and SCSSBgg proposed by Tian et al. (Tian et al., 2014b) are
the only two birthmarks that consider the impact of thread
scheduling. Their principle was to extract birthmarks based
on the events in individual threads. Yet the assumption that
events happened in each thread is stable is not always true, as
events happened in each thread are variable due to the inter-
actions between threads. In addition, such isolated approach
cannot catch the overall program behavior, especially thread in-

Table 7: AUC values of TreCxtB

k=1 k=2 k=3

URC F-Measure MCC URC F-Measure MCC URC F-Measure MCC
Ex-Containment 0.674 0.903 0.749 0.718 0.879 0.753 0.697 0.843 0.735
Ex-Cosine 0.782 0.924 0.81 0.775 0.897 0.799 0.724 0.858 0.772
Ex-Dice 0.726 0.903 0.773 0.756 0.879 0.774 0.706 0.845 0.752
Ex-Jaccard 0.748 0.883 0.767 0.667 0.826 0.724 0.551 0.766 0.675
PerGain (%) 27\82 13\28 11\27 25\62 9\20 9\20 13\34 4\11 S5\12

teractions that are a crucial component of multithreaded pro-
grams. Therefore, although the method is able to alleviate the
impact of non-deterministic thread scheduling to some extent,
false negatives are not uncommon, especially when the thread
interplay is complex. In addition, their method of calculat-
ing maximum similarity score through bipartite graph match-
ing may lead to false positives, since scores calculated between
independent programs tends to be higher. As verified by our
experiments, our approach based on thread related system calls
is superior in terms of both accuracy and efficiency.

6. Conclusion and Future Work

As multithreaded programming becomes increasingly more
popular, existing dynamic software plagiarism detection tech-
niques geared towards sequential programs are no longer suffi-
cient. This work fills the gap by proposing a new thread-aware
birthmarking technique. The primary contributions of this pa-
per include the following:

e We proposed a new kind of thread-aware birthmark called
TreSB, which works efficiently for plagiarism detection of
multithreaded programs. There has been very few work
dealing with the impact of thread scheduling on plagiarism
detection.

e We implemented a tool and evaluated its effectiveness.
The experiments on 234 versions of 35 programs show that
our approach is not only accurate in detecting plagiarism
of multithreaded programs, but also resilient to most state-
of-the-art semantics-preserving obfuscation techniques.

e We compared TreSB against two latest and currently
only existing thread-aware birthmarks SCSSBg4 and
SCSSBgs. The comparison results with respect to three
metrics including URC, F-Measure, and MCC indicate our
approach is superior.

e We suggested an alternative birthmark generating ap-
proach called TreCxtB that also exploits thread-related
system calls. The experiments show that TreCxtB outper-
forms SCSSBSA and SCSSBSS.

In this paper, TreSB is mainly evaluated on the detection of
whole program plagiarism, where a complete program is copied
and disguised through code obfuscation techniques. In recent
years, whole program plagiarism of mobile apps has become a

13

serious problem. About 5 to 13 percent of apps in the third-
party app markets are copied and redistributed from the offi-
cial Android market. We plan to conduct case studies for this
domain. On the other hand, while whole program plagiarism
detection is very useful in practice, there are also many cases
that only part of a program is copied, such as the web browser
experiment where the Webkit layout engine is utilized in mul-
tiple browsers. We will explore whether our approach can be
adapted to detect partial plagiarisms.

To our best knowledge there do no exist obfuscation tech-
niques that particularly target multithreaded programs. How-
ever, it is inevitable that such obfuscations will surface once
plagiarism detection techniques as TreSB are being used. In
the future we plan to investigate obfuscation techniques that
can potentially defeat thread-aware birthmarks. Based on our
investigation we will continually optimize TreSB and design
other thread-aware birthmarks to defend against these obfusca-
tions.

Acknowledgement

This work was supported by the National Natural Sci-
ence Foundation of China (91218301, 91418205, 61472318,
61428206), Key Project of the National Research Program of
China (2013BAK09B01), Ministry of Education Innovation
Research Team (IRT13035), the Fundamental Research Funds
for the Central Universities, and the National Science Founda-
tion (NSF) under grant CCF-1500365. Any opinions, findings,
and conclusions expressed in this material are those of the au-
thors and do not necessarily reflect the views of the funding
agencies.

References

Chae, D.-K., Ha, J., Kim, S.-W., Kang, B., Im, E. G., 2013. Software plagiarism
detection: a graph-based approach. In: Proceedings of the 22nd ACM In-
ternational Conference on Information & Knowledge Management (CIKM
’13). ACM, pp. 1577-1580.

Chae, D.-K., Kim, S.-W., Cho, S.-J., Kim, Y., 2015. Effective and efficient de-
tection of software theft via dynamic api authority vectors. Journal of Sys-
tems and Software 110, 1-9.

Chan, P. P., Hui, L. C., Yiu, S.-M., 2013. Heap graph based software theft
detection. Information Forensics and Security, IEEE Transactions on 8 (1),
101-110.

Choi, S., Park, H., Lim, H.-i., Han, T., 2009. A static api birthmark for windows
binary executables. Journal of Systems and Software 82 (5), 862-873.

Collberg, C., Myles, G., Huntwork, A., 2003. Sandmark-a tool for software
protection research. IEEE Security & Privacy 1 (4), 40—-49.

Cosma, G., Joy, M., 2012. An approach to source-code plagiarism detection and
investigation using latent semantic analysis. Computers, IEEE Transactions
on 61 (3), 379-394.

Cui, H., Wu, J., Gallagher, J., Guo, H., Yang, J., 2011. Efficient determinis-
tic multithreading through schedule relaxation. In: Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP *11). ACM, pp.
337-351.

Guo, F., Ferrie, P., Chiueh, T.-C., 2008. A study of the packer problem and
its solutions. In: the 11th International Symposium on Recent Advances in
Intrusion Detection (RAID *08). Springer, pp. 98-115.

Jhi, Y.-C., Jia, X., Wang, X., Zhu, S., Liu, P,, Wu, D., 2015. Program char-
acterization using runtime values and its application to software plagiarism
detection. Software Engineering, IEEE Transactions on 41 (9), 925-943.

Jhi, Y.-C., Wang, X., Jia, X., Zhu, S., Liu, P., Wu, D., 2011. Value-based pro-
gram characterization and its application to software plagiarism detection.
In: Proceedings of the 33rd International Conference on Software Engineer-
ing (ICSE ’11). pp. 756-765.

Jiang, L., Misherghi, G., Su, Z., Glondu, S., 2007. Deckard: Scalable and accu-
rate tree-based detection of code clones. In: Proceedings of the 29th Inter-
national Conference on Software Engineering (ICSE *07). IEEE Computer
Society, pp. 96-105.

Kim, M.-J., Lee, J.-Y., Chang, H.-Y., Cho, S., Wilsey, P. A., 2010. Design
and Performance Evaluation of Binary Code Packing for Protecting Embed-
ded Software against Reverse Engineering. In: the 13th IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing (ISORC ’10). pp. 80-86.

Lim, H.-i., Park, H., Choi, S., Han, T., 2009. A method for detecting the theft of
java programs through analysis of the control flow information. Information
and Software Technology 51 (9), 1338-1350.

Linn, C., Debray, S., 2003. Obfuscation of executable code to improve resis-
tance to static disassembly. In: Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS *03). ACM, pp. 290-299.

Liu, C., Chen, C., Han, J., Yu, P. S., 2006. GPLAG: Detection of software
plagiarism by program dependence graph analysis. In: Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’06). ACM, New York, NY, USA, pp. §72-881.

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace,
S., Reddi, V. J., Hazelwood, K., 2005. Pin: Building customized program
analysis tools with dynamic instrumentation. In: Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI *05). ACM, New York, NY, USA, pp. 190-200.

Luo, L., Ming, J., Wu, D., Liu, P, Zhu, S., 2014. Semantics-based obfuscation-
resilient binary code similarity comparison with applications to software
plagiarism detection. In: Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (FSE ’14).
ACM, pp. 389-400.

Madou, M., Van Put, L., De Bosschere, K., 2006. Loco: An interactive code
(de) obfuscation tool. In: Proceedings of the 2006 ACM SIGPLAN Sym-
posium on Partial Evaluation and Semantics-based Program Manipulation
(PEPM "06). ACM, pp. 140-144.

Matthews, B. W., 1975. Comparison of the predicted and observed secondary
structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure 405 (2), 442-451.

Ming, J., Zhang, F., Wu, D., Liu, P, Zhu, S., 2016. Deviation-based
obfuscation-resilient program equivalence checking with application to soft-
ware plagiarism detection (accepted). Reliability, IEEE Transactions on, 1—
1.

Myles, G., Collberg, C., 2004. Detecting software theft via whole program path
birthmarks. In: the 7th Information Security International Conference (ISC
’04). Springer, pp. 404-415.

Myles, G., Collberg, C., 2005. K-gram based software birthmarks. In: Pro-
ceedings of the 2005 ACM Symposium on Applied Computing (SAC ’05).
ACM, New York, NY, USA, pp. 314-318.

Olszewski, M., Ansel, J., Amarasinghe, S., 2009. Kendo: efficient deterministic
multithreading in software. ACM Sigplan Notices 44 (3), 97-108.

Park, H., Lim, H.-i., Choi, S., Han, T., 2011. Detecting common modules in
java packages based on static object trace birthmark. The Computer Journal
54 (1), 108-124.

Patki, T., 2008. Dasho java obfuscator, http://www.cs.arizona.edu/ coll-
berg/teaching/620/2008/assignments/tools/dasho/index.html.

Prechelt, L., Malpohl, G., Philippsen, M., 2002. Finding plagiarisms among a

14

set of programs with JPlag. Journal of Universal Computer Science 8 (11),
1016-1038.

Roundy, K. A., Miller, B. P,, 2013. Binary-code obfuscations in prevalent
packer tools. ACM Computing Surveys 46 (1), 4.

Schuler, D., Dallmeier, V., Lindig, C., 2007. A dynamic birthmark for java.
In: Proceedings of the 22nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE "07). ACM, pp. 274-283.

Tamada, H., Nakamura, M., Monden, A., Matsumoto, K.-i., 2004a. Design and
evaluation of birthmarks for detecting theft of java programs. In: IASTED
Conference on Software Engineering (IASTED ’04). pp. 569-574.

Tamada, H., Okamoto, K., Nakamura, M., Monden, A., Matsumoto, K.-i.,
2004b. Dynamic software birthmarks to detect the theft of windows applica-
tions. In: International Symposium on Future Software Technology (ISFST
’04). Vol. 20.

Tian, Z., Liu, T., Zheng, Q., Tong, F., Fan, M., Yang, Z., 2016. A new thread-
aware birthmark for plagiarism detection of multithreaded programs (ac-
cecpted). In: Proceedings of the 38th International Conference on Software
Engineering (ICSE *16 Companion). pp. 1-1.

Tian, Z., Zheng, Q., Fan, M., Zhuang, E., Wang, H., Liu, T., 2014a. DBPD:
A dynamic birthmark-based software plagiarism detection tool. In: the 26th
International Conference on Software Engineering and Knowledge Engi-
neering (SEKE ’14). pp. 740-741.

Tian, Z., Zheng, Q., Liu, T., Fan, M., 2013. DKISB: Dynamic key instruction
sequence birthmark for software plagiarism detection. In: 2013 IEEE Inter-
national Conference on High Performance Computing and Communications
(HPCC ’13). IEEE, pp. 619-627.

Tian, Z., Zheng, Q., Liu, T., Fan, M., Zhang, X., Yang, Z., 2014b. Plagiarism
detection for multithreaded software based on thread-aware software birth-
marks. In: Proceedings of the 22nd International Conference on Program
Comprehension (ICPC *14). ACM, pp. 304-313.

Tian, Z., Zheng, Q., Liu, T., Fan, M., Zhuang, E., Yang, Z., 2015. Software
plagiarism detection with birthmarks based on dynamic key instruction se-
quences. Software Engineering, IEEE Transactions on 41 (12), 1217-1235.

Wang, X., Jhi, Y.-C., Zhu, S., Liu, P., 2009a. Behavior based software theft
detection. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS ’09). ACM, pp. 280-290.

Wang, X., Jhi, Y.-C., Zhu, S., Liu, P, 2009b. Detecting software theft via sys-
tem call based birthmarks. In: Annual Computer Security Applications Con-
ference (ACSAC ’09). IEEE, pp. 149-158.

Wau, Z., Gianvecchio, S., Xie, M., Wang, H., 2010. Mimimorphism: A new ap-
proach to binary code obfuscation. In: Proceedings of the 17th ACM Con-
ference on Computer and Communications Security (CCS *10). ACM, pp.
536-546.

Xie, X., Liu, F., Lu, B., Chen, L., 2010. A software birthmark based on
weighted k-gram. In: IEEE International Conference on Intelligent Com-
puting and Intelligent Systems (ICIS *10). Vol. 1. IEEE, pp. 400-405.

Zhang, F., Huang, H., Zhu, S., Wu, D., Liu, P., 2014a. Viewdroid: Towards
obfuscation-resilient mobile application repackaging detection. In: Proceed-
ings of the 7th ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec ’14). Citeseer, pp. 25-36.

Zhang, F., Jhi, Y.-C., Wu, D., Liu, P,, Zhu, S., 2012. A first step towards algo-
rithm plagiarism detection. In: Proceedings of the 2012 International Sym-
posium on Software Testing and Analysis (ISSTA *12). ACM, pp. 111-121.

Zhang, F., Wu, D., Liu, P, Zhu, S., 2014b. Program logic based software pla-
giarism detection. In: IEEE 25th International Symposium on Software Re-
liability Engineering (ISSRE ’14). IEEE, pp. 66-77.

Zhou, W., Zhou, Y., Jiang, X., Ning, P., 2012. Detecting repackaged smartphone
applications in third-party android marketplaces. In: Proceedings of the 2rd
ACM conference on Data and Application Security and Privacy (CODASPY
’12). ACM, pp. 317-326.

	Introduction
	Software Birthmarks
	Dynamic Software Birthmarks
	Thread-Related System Call Birthmark

	TreSB Based Software Plagiarism Detection
	Similarity Calculation
	Plagiarism Detection
	Implementation

	Experiments and Evaluation
	Experimental Setup
	Validation of Resilience Property
	Resilience to Different Compilers and Optimization Levels
	Resilience to Advanced Obfuscation Tools
	Resilience to Packing Tools

	Validation of Credibility Property
	Distinguishing Programs in Different Categories
	Distinguishing Programs in Same Categories

	Comparing with Other Birthmarks
	Performance Evaluation with Respect to URC
	Evaluation with F-Measure and MCC
	Comparing Birthmarks with AUC Analysis

	Effectiveness of the Sequence Selection
	Alternative Approach
	Thread-related System Call with Context Birthmark
	Performance Evaluation of TreCxtB

	Related Work
	Conclusion and Future Work

