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We present an efficient symbolic search algorithm for software model checking. Our algorithms
perform word-level reasoning by using a combination of decision procedures in Boolean, integer
and real domains, and use novel symbolic search strategies optimized specifically for sequen-
tial programs to improve scalability. Experiments on real-world C programs show that the new
symbolic search algorithms can achieve several orders-of-magnitude improvements over existing
methods based on bit-level (Boolean) reasoning.
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1. INTRODUCTION

Software has become pervasive in civilian and military infrastructure as increasingly ca-
pable and less expensive hardware processors and communication devices are routinely
being embedded into an ever-growing list of physical devices. Software is now being used
for controlling critical systems such as nuclear power plants, patient monitors, and planes.
Consequently, the problem of making software reliable has become one of today’s most
important challenges.

While specialized domain-specific languages are available for programming embedded
hardware, C and its derivatives such as nesC [Gay et al. 2003] are still the most popu-
lar languages in this domain due to its ability to manipulate the runtime memory using
low-level constructs. However, C is inherently an unsafe language [Cardelli 1997]. In par-
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ticular, pointers and explicit memory management lead to erroneous programs with buffer
overruns, uninitialized variables, memory leaks, and null pointer dereferences.

Model checking is a method to algorithmically verify formal systems [Clarke and Emer-
son 1981; Quielle and Sifakis 1981]. This is achieved by verifying if the model, often
derived from a hardware or software design, satisfies a formal specification. It has been
successfully used in the design of complex circuits and communication protocols [Clarke
et al. 2000; McMillan 1994]. The procedure normally uses an exhaustive search of the
model under consideration. As a result, model checking tools face a combinatorial blow
up of the state-space, commonly known as the state explosion problem. In order to address
the problem, various symbolic search techniques have been proposed to represent and ma-
nipulate set of states instead of each individual state, therefore significantly improving the
search capacity [McMillan 1994; Biere et al. 1999].

Although automated detection of software errors has been tackled previously with static
analysis, the problem is far from being solved. Static analysis produces a large num-
ber of false alarms due to inherent inaccuracy. While symbolic model checking has been
extensively studied for hardware verification in industrial settings, its application to ana-
lyzing source code programs written in modern programming languages (as opposed to
specialized modeling languages) is relatively new [Visser et al. 2000]. Existing symbolic
model checking tools in this category, including [Ball and Rajamani 2000; Clarke et al.
2004a], often restrict their representations in the pure Boolean domain; that is, they extract
a Boolean-level model from the given program and then apply symbolic decision proce-
dures such as Binary Decision Diagrams (BDDs) [Bryant 1986] and SAT [Davis et al.
1962] to perform verification. Although modeling program variables of various types as
bit-vectors is accurate, such a high precision approach is often not needed and may gener-
ate models of very large sizes. In addition, it is difficult to model floating point numbers as
bit-vectors.

In this paper we present an efficient symbolic search algorithm for model checking C
programs. In order to design scalable algorithms to verify C programs against program-
ming bugs such as array bound violations, use of uninitialized variables, memory leaks,
locking rule violations, and division by zero, we combine multiple symbolic representa-
tions at Boolean, integer and real level to efficiently represent the transition relation and
reachable states and use a combination of decision procedures for reachability computa-
tion. The novel features of the new algorithms include

—mixed symbolic representations using composite symbolic formulas to model C pro-
grams with rich data types and complex expressions;

—new symbolic search strategies and optimization techniques specific to sequential pro-
grams that can significantly improve the scalability of model checking algorithms.

We have implemented the proposed techniques and performed a set of experiments on
control intensive C programs. Our experimental results show that the new algorithm sig-
nificantly outperforms existing methods in terms of both CPU time and memory usage.
In particular, the experimental study shows that the new algorithm is significantly more
scalable than pure Boolean-level algorithms based on BDDs and SAT, indicating that it is
advantageous to raise abstraction levels in symbolic model checking.

A preliminary version of this paper has been presented at the Memocode’06 confer-
ence [Yang et al. 2006]. While the preliminary version only presented the major techniques
used in the reachability analysis, this paper presents the complete model checker, including
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, August 2008.



Model Checking Sequential Software · 3

the software modeling techniques that transform C programs to mixed symbolic models.
In addition, experiments on industrial proprietary software have been performed since the
preliminary version to show the effectiveness of the proposed algorithms. The remainder
of this paper is organized as follows. After describing the related works in Section 2 and
the concept of composite symbolic formulas in Section 3, we present the architecture for
our mixed symbolic model checker in Section 4. In Section 5 we introduce the software
modeling approach by explaining the transformation from C programs into mixed symbolic
models. We also review the basic set-theoretic operations on composite formulas and the
corresponding model checking procedure. In Section 6, we present our software specific
optimization techniques in decomposing and minimizing the transition relation represen-
tations. In Section 7, we present two new strategies for symbolic fixpoint computation in
order to exploit the unique characteristic of sequential models. We give the experimental
results in Section 8 and then conclude in Section 9.

2. RELATED WORK

A plethora of tools exists for analyzing different aspects of C programs. Most well-known
program analysis tools for C perform lightweight data flow analysis, such as Splint and
LCLint [D.Evans et al. 1994], PREfix and PREfast [Bush et al. 2000], Uno [Holzmann
2002], ESP [Das et al. 2002], and Codesurfer [Anderson et al. 2003]. On the other end
of the spectrum, model checkers such as MAGIC [Chaki et al. 2003], CBMC [Clarke
et al. 2004b], and BLAST [Beyer et al. 2007] perform finite state model checking of C
programs. These tools first generate a finite Boolean model from the source code using
bit-vector encoding of program variables or predicate abstraction techniques. Analysis is
then carried out on this finite Boolean model using techniques similar to hardware model
checking.

In [Bultan et al. 1997], Bultan et al. proposed to use Presburger formulas in an infinite-
state model checker. Then in [Bultan et al. 2000; Yavuz-Kahveci and Bultan 2003], they
proposed a composite symbolic representation by combining the relative strengths of two
symbolic representations: BDDs for Boolean formulas and finite unions of convex poly-
hedrons for formulas in Presburger arithmetic. Their approach has the advantage of rep-
resenting both bit-level and word-level expressions uniformly at the suitable abstraction
levels. However, the technique in its original form was not aimed at directly handling
large sequential programs written in a general purpose programming language. In [Bultan
et al. 2000; Yavuz-Kahveci and Bultan 2003], one needs to specify the model in a domain-
specific input format called action language, and the published experimental evaluations of
their symbolic algorithms were on relatively small concurrent protocols.

In this paper, we follow the general framework of [Bultan et al. 2000; Yavuz-Kahveci
and Bultan 2003] in combining multiple symbolic representations. However, our focus is
on improving the scalability of the composite model checking algorithms, with the appli-
cation to verifying source code level sequential programs. In our application domain, the
number of program variables is often orders-of-magnitude larger than in previous stud-
ies [Yavuz-Kahveci et al. 2005]. We differentiate our work from the prior art primarily in
the following aspects: (1) we use mixed symbolic representations to model programs with
significantly richer data types and more complex expressions; and (2) we develop new
search strategies and optimizations specific to sequential programs to improve the scala-
bility of model checking algorithms. In particular, we derive high-level information of the
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software model using a static control flow analysis, and use it to decompose and minimize
the transition relations and to improve the performance of symbolic fixpoint computation.

Linear constraint representations and polyhedral analysis have also been used in the
verification of real-time and hybrid systems [Henzinger et al. 1995; Asarin et al. 2000].
These systems are often specified as timed or hybrid automata with variables of infinite data
types and continuous dynamics. A state set is represented symbolically as a polyhedron as
opposed to a finite union of polyhedrons; the union of two state sets is approximated into
their convex union. Since a convex hull is often expensive to compute, this approach is
known to have scalability problems. In addition, convex hull causes a precision loss in the
analysis result.

The Symbolic Analysis Laboratory (SAL) [Bensalem et al. 2000] also provides a method
for combining different decision procedures. However, it is different from our approach
in the sense that the different decision procedures and verification tools of SAL are glued
together loosely at a very high level by a specification language that models concurrent
systems in a compositional manner. On the other hand, a plethora of SMT (satisfiability
modulo theories) tools exist to combine Boolean and integers at solvers’ level. Note that
SMT and our tool are targeting different applications. SMT is solving satisfiability prob-
lems, ideally for bounded model checking, while our tool performs fix-point reachability
computation with repeated existential quantifications.

Word-level model for C programs has also been used in linear programs where program
variables can range over a numeric domain [Armando et al. 2006; Armando et al. 2006].
However, our work emphasizes the combination of different modeling techniques such that
each domain can be solved by the most efficient decision procedure.

3. BACKGROUND: COMPOSITE SYMBOLIC FORMULAS

In this section we review the definition of composite symbolic formulas and the corre-
sponding set theoretic operations.

3.1 Composite Symbolic Formulas

Let Z be the set of integer numbers and R be the set of real numbers. An integer linear
constraint is denoted by aix ≤ b, where x,ai ∈ Zn (x is the variable) and b ∈ Z is a scalar
constant. Similarly, a real linear constraint is denoted by ciy ≤ d, where y, ci ∈ Rn (y is
the variable) and d ∈ R is a scalar constant.

Definition 3.1 (c.f. [Yavuz-Kahveci et al. 2001]) The composite symbolic formula F is de-
fined as follows,

F ::= F ∧ F | ¬F | FB | F I | FR ,

where FB , F I , and FR are formulas in Boolean logic, Presburger arithmetic, and Boolean
combination of real linear constraints, respectively.

The above definition extends the one in [Yavuz-Kahveci et al. 2001] by introducing one
more elementary formula type, Boolean combination of linear constraints on reals. A
formulation of composite symbolic representation for arbitrary number of types is given
in [Bultan et al. 2000]. A composite symbolic formula can be put into the Disjunctive
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Normal Form (DNF) as follows

F =
∨

i

FB
i ∧ F I

i ∧ FR
i ,

where each disjunct is called an atom, and the number of atoms is finite in a DNF. As-
sume that all expressions in a composite formula are type-consistent, then subformulas of
different types share no common variables.

3.2 Basic Set-Theoretic Operations

The general approach of carrying out set-theoretic operations on composite symbolic for-
mulas is to rewrite the operands into DNF, process the corresponding subformulas with
suitable decision procedures, and assemble the result back into DNF. Note that the DNF
representation is not canonical, and there are heuristic algorithms [Yavuz-Kahveci et al.
2001] to make the result more compact. One can use the CUDD package [Somenzi 1995]
to represent Boolean formulas, the Omega library [Pugh 1991] to represent Presburger
formulas, and the Parma Polyhedral Library [Bagnara et al. 2002] to represent linear con-
straints on reals. These underlying manipulation packages all support set-theoretic opera-
tions such as union (∨), conjoin (∧), negation (¬), and quantification (∃).

Since there is no common variable shared by FB , F I , and FR, subformulas in different
domains do not interfere with each other during these set-theoretic operations. Given two
composite symbolic formulas f =

∨nf

i=1 fB
i ∧ f I

i ∧ fR
i and g =

∨ng

j=1 gB
j ∧ gI

j ∧ gR
j ,

we briefly illustrate how to perform set-theoretic operations at composite level. For more
details, please refer to [Yavuz-Kahveci et al. 2001].

The union of two composite formulas is defined as

f ∨ g =
nf+ng∨

i=1

(kB
i ∧ kI

i ∧ kR
i ) , (1)

where ki = fi for 1 ≤ i ≤ nf , and ki = gi−nf
for nf + 1 ≤ i ≤ nf + ng. The number of

disjuncts in the results is O(nf + ng).
The conjunction of two composite formulas is the union of pair-wise conjunctions of

their subformulas.

f ∧ g =
nf∨

i=1

ng∨

j=1

(fB
i ∧ gB

j ) ∧ (f I
i ∧ gI

j ) ∧ (fR
i ∧ gR

j ) . (2)

The number of disjuncts in the results is O(nf × ng).
The negation of a composite formula is defined as

¬f =
nf∧

i=1

(¬fB
i ) ∨

nf∧

i=1

(¬f I
i ) ∨

nf∧

i=1

(¬fR
i ) . (3)

The number of disjuncts in the results is O(3nf ).
Due to the fact that the sets of Boolean variables vB , integer variables vI , and real

variables vR are disjoint, existential quantification distributes not only over unions (which
is true in the pure Boolean domain) but also over conjunctions of subformulas of different

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, August 2008.



6 · Zijiang Yang et al.

types; that is,

∃vB ,vI ,vR f =
nf∨

i=1

(∃vBfB
i ) ∧ (∃vI f I

i ) ∧ (∃vRfR
i ) . (4)

Although the number of DNF terms can be as large as (nF × nG) for conjunction and
3nF for negation, such a worst-case blowup does not happen in any of our experiments
performed in Section 8. There may be two explanations: (1) Our benchmarks are all control
intensive embedded software. We may observe a worst-case blowup in other types of
applications such as numerical computation programs. (2) There exist efficient heuristics
in Omega and Parma Polyhedral Library to reduce the number of DNF terms.

4. TOOL ARCHITECTURE

C Program

Safety Property


Program

Slicing


Reachability

Computation


Static

Analysis


Boolean

Computation


Integer

Computation


Real

Computation


CUDD

Library


Omega

Library


Parma

Library


Bug

Localization


Fig. 1. Mixed symbolic model checker architecture

Figure 1 shows the overall architecture of the mixed symbolic model checker, which is
part of the F-SOFT [Ivančić et al. 2005; Ivančić et al. 2009] tool suite for analyzing safety
properties of C programs. In reachability analysis, we check whether certain statements
are reachable from an entry point of the program. A large set of programming bugs, such
as assertion failure, buffer overruns, use of uninitialized variables, memory leaks, locking
rule violations, and division by zero, can be formulated as reachability problems by adding
suitable property monitors automatically to the given program.

The F-SOFT tool tries to combine the complimentary strengths of static program anal-
ysis based on techniques such as abstraction interpretation and model checking to ensure
high efficiency with low false alarm rate. Specifically, we use static program analysis
techniques such as program slicing [Jayaraman et al. 2005; Tip 1995], constant folding,
range or interval analysis [Cousot and Cousot 1976; Rugina and Rinard 2000; Zaks et al.
2008], and other techniques to reduce the model size. We also use several sound nu-
merical analysis techniques to prove the correctness of as many properties of interest as
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, August 2008.
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possible [Sankaranarayanan et al. 2006; Sankaranarayanan et al. 2007]. These techniques
extend the analysis capabilities of the interval domain, which allows us to compute invari-
ants over multiple variables such as the octagon domain [Miné 2001].

Since these static analysis techniques are quite efficient and thus have a relatively low
overhead compared to model checking, we generally try to resolve as many properties
as possible in this phase of the analysis. Though several such properties get resolved
during this phase, most of them still remain unresolved. Model checking technology as
described in this paper is then employed to reduce the burden on the user of the tool by
finding precise witness traces that can guide the debugging effort. The details of the static
analysis techniques are out of scope of this paper. Interested readers are referred to the
cited papers for more information. The experimental results presented in this paper, both
with and without the mixed symbolic analysis, are obtained after using the static analysis
techniques. In addition to the reduction in the model by proving certain properties, we use
the interval analysis [Zaks et al. 2008] also to decide how to represent certain variables
during the model checking stage. For integer variables that are found to have relatively
small ranges, we choose to model them as finite-length bit-vectors using BDDs as opposed
to integer variables using polyhedrons.

As mentioned before, counterexamples are an important advantage that model checkers
can provide to the user. Although the counterexample returned by a model checker can help
in reproducing the symptom related to a defect, a significant amount of effort is still often
required for the programmer to interpret it in order to locate the cause of the problem. Note
that the model checker finds a counterexample in the model of the software, which means
that it need not correspond to an actual bug in the original code but rather in the modeling
assumptions employed to handle the unknown environment. In the bug localization com-
ponent, we provide an automated procedure to focus on potential model defects (and relate
them back to the original software) by analyzing a single concrete counterexample. For a
detailed explanation of the algorithms, please refer to [Wang et al. 2006].

5. SOFTWARE MODELING

F-SOFT begins with a program in full-fledged C and applies a series of source-to-source
transformations into smaller subsets of C, until the program state is represented as a col-
lection of simple scalar variables and each program step is represented as a set of parallel
assignments to these variables. For a comprehensive description of the transformations,
please refer to [Ivančić et al. 2005]. In this section we present the details relevant to the
construction of a mixed symbolic model.

5.1 Labeled Transition Graph

Figure 3 shows the graphical representation of the sample code in Figure 2, by separating
the graph into two subgraphs. The control logic subgraph at the left-hand is used to define
the transition relation in terms of basic block changes. The data logic subgraph at the right-
hand side concentrates on how variables are updated in each individual block, and therefore
is used to define the transition relation for program variables. A preprocessing analysis
determines that function foo is not called in a recursive manner. The two return points are
recorded by an encoding that passes a unique return location as a special parameter using
the variable rtr.

Each rectangle in the data logic subgraph is a basic block consisting of a set of parallel
assignments that can be executed at the same time. Compared with sequential assign-
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int foo(int s) {
int t = s + 2;
if (t>6)

t -= 3;
else

t –;
return t;

}

void bar( ) {
int x = 3;
int y = x - 3;
x = y + 4;
while (x<=4) {

y ++;
x = foo(x);

}
y = foo(y);

}

Fig. 2. Sample C code
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s := y; s := x;

t := s+2;

y :=y+1;

t :=t−3;

t := t−1;

Fig. 3. Labeled transition graph (divided into control logic and data path)

ments that need one transition relation expression for each assignment, the set of parallel
assignments in a basic block requires a single transition relation expression; thus reduces
the number of image computations in reachability analysis. The assignments in block 1
of Fig. 3 show the parallel assignments converted from the original sequential assign-
ments x = 3; y = x − 3; x = y + 4; in the function bar() of Fig. 2. For any variable
that is written by right-hand expression e in the basic block, we substitute all the subse-
quent reads of the variable with e. After the substitution, the three assignments become
x = 3; y = 3− 3;x = (3− 3) + 4;. Then the dead assignments are removed, which leads
to two remaining assignments y = 3− 3;x = 3− 3 + 4 in this example.

The edges in Fig. 3 are labeled by conditional expressions, e.g., the transition from
block 2 to block 3 is guarded by x ≤ 4. In case an edge is not labeled by any condition,
the default condition is true. Finally, block 1 is the entry block and block 9 is the one that
leaves the analysis scope.

Formally, the transformations produce a simplified program that can be represented as a
labeled transition graph.

Definition 5.1 A labeled transition graph G is a 5-tuple 〈B, E, X, δ, θ〉, wherein

—B = {b1, . . . , bn} is a finite non-empty set of basic blocks. bs ∈ B is an initial basic
block.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, August 2008.
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—E ⊆ B ×B is a set of edges representing transitions between basic blocks.
—X is a finite set of variables that consists of actual source variables and auxiliary vari-

ables added for modeling and property monitoring.
—δ : B → 2ΣA is a labeling function that labels each basic block with a set of parallel

assignments, where ΣA represents the set of all possible C assignment expressions.
—θ : E → ΣC is a labeling function that labels each edge with a condition, where ΣC

represents the set of all possible C conditional expressions, such as the conditions in the
C code as part of if-then-else or while expressions.

We denote a valuation of all variables in X by ~x, and the set of all valuations by X .
The state space of the entire program is Q ⊆ B × X . we define a state to be a tuple
q = (b, ~x) ∈ Q. The initial states of the program are in the initial basic block bs with
an arbitrary data valuation, denoted by Q0 = {(bs, ~x)|~x ∈ X} ⊆ Q. The set of parallel
assignments in each bi ∈ B, denoted by δ(bi), can be written as {x1 := e1, . . . , xn := en},
where {x1, . . . , xn} ⊆ X and {e1, . . . , en} ⊆ ΣA.

For checking reachability properties, we define a subset QErr ⊆ Q to be error states;
model checking is then used to prove or disprove that these error states can be reached. Let
q1 → q2 denote a valid transition between the two states q1, q2 ∈ Q. We define a path in
the state space Q to be a sequence of states (b0, ~x0), . . . , (bk, ~xk) such that (b0, ~x0) ∈ Q0

and for all 0 ≤ i < k − 1, (bi, ~xi) → (bi+1, ~xi+1). A counterexample is a path that ends
in an error state (bk, ~xk) ∈ QErr.

5.2 Pointer and Memory Modeling

One difficulty in modeling C programs lies in modeling indirect memory accesses via
pointers, such as x=*(p+i) and q[j]=y. We replace all indirect accesses with equiva-
lent expressions involving only direct variable accesses, by introducing additional variables
and conditional expressions as described below.

—To facilitate the modeling of pointer arithmetic, we build an internal memory representa-
tion of the program by assigning to each variable a unique natural number representing
its memory address. Adjacent variables in C program memory (e.g., elements of an
array) are given consecutive memory addresses.

—We perform a points-to analysis [Hind and Pioli 2001] to determine, for each indirect
memory access, the set of variables that may be accessed (called the points-to set). If a
pointer can point to a set of variables at a given program location, we rewrite a pointer
read as a conditional assignment expression using the numeric memory addresses as-
signed to the variables.

—For accesses via pointers, we adopt an approach from hardware synthesis [Séméria and
Micheli 1998] and create additional variables for each pointer variable. The declaration
int **p creates three variables: vp for pointer p, v̇p for pointer dereference ∗p, and v̈p

for pointer dereference ∗ ∗ p. A pointer reference in the C code, such as &q, also leads
to an additional variable – in this case the variable v̂q .

As an example, consider the assignment p=&q, where p is declared as int **p and q
as int *q. This assignment directly corresponds to the assignment vp = v̇q. However,
since p = &q implies ∗p = q and ∗ ∗ p = ∗q, two new assignments v̇p = vq and v̈p = v̇q

are also inferred from the original assignment in the source code. We call such assignments
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, August 2008.
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implied assignments. Consider another assignment q = &m in the same program where
m is declared as int m. This assignment gives rise not only to the assignments vq = v̇m

and v̇q = vm, but also to conditional assignments due to aliasing. Since p may equal &q,
it is possible that ∗p and ∗ ∗ p are assigned new values when q is assigned. This results in
the conditional assignments v̇p = (vp == v̂q)?v̂m : v̇p (which stands for ∗p = (p ==
&q)?&m : ∗p) and v̈p = (vp == v̂q)?vm : v̈p (which stands for ∗ ∗ p = (p == &m)?m :
∗ ∗ p). These kind of assignments are called aliasing assignments.

5.3 Unbounded Data and Recursion

The C language specification does not bound heap or stack size, but our focus is on gen-
erating a model with bounded dynamic arrays and recursions. Such modeling approach
works well on control intensive programs such as device drivers and embedded software in
portable devices, although it may not be suitable for programs in some application domains
such as scientific computing and memory management. We model the heap as a finite ar-
ray, adding a simple implementation of malloc() that returns pointers into this array. We
also add a bounded depth stack as another global array in order to handle bounded recur-
sion, along with code to save and restore local state for recursive functions only. Therefore,
we only handle bounded recursions with the bound provided by users. However, we ar-
gue that there is always a trade-off between precision and termination, given the fact that
program verification in general is undecidable.

5.4 Symbolic Representation of the Model

Let P denote the set of program counter (PC) variables for encoding the set B of basic
blocks (or program locations);1 then P and X form the complete set of state variables of
the model. Their next-state values are represented by the primed version P ′ and X ′. The
verification model is represented by 〈T, I〉, wherein T (P, X, P ′, X ′) is the transition rela-
tion and I(P, X) is the initial state predicate. An evaluation of the characteristic function
T (b, ~x, b′, ~x′) is true if and only if there is a transition from the state (b, ~x) to the state
(b′, ~x′). Similarly, the evaluation of function I(b, ~x) is true if and only if (b, ~x) is an initial
state.

We choose to represent expressions related to PC variables as Boolean formulas. That
is, we allocate a finite set of Boolean variables P = {p1, p2, ..., pk} with p1 the least
significant bit. This is based on the observation that formulas involving the PC variable
are often control-intensive, for which the representation of linear constraints is ill-suited.
For instance, a PC value of 5 (p1 = p3 = 1, p2 = 0) is encoded as (p3 ∧ ¬p2 ∧ p1).
For convenience, in the rest of the paper we use P = val to denote the value of the PC
variables is val, although it should be understood that P is a set and it presents multiple
Boolean variables.

On the other hand, we use integer and real linear constraints to model the data-path.
Individual expressions in δ(bi) such as (x′k = eik) are represented either by a Boolean
formula, Presburger formula, or polyhedrons on real, depending on the type of the variable
x′k. If there are expressions that are not type-consistent, we perform over-approximation
similar to that for non-linear operators to be discussed next. In this case, the correlation of
variables from two different types are ignored.

1P consists of dlog |B|e Boolean variables in a pure bit-level representation, or a single integer variable in a
word-level representation.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, August 2008.



Model Checking Sequential Software · 11

Reachable states are also represented disjunctively as the union of subformula. For
instance, given a set of initial values {x1 = e01; . . . ;xm = e0m} and the entry block bs,
we have the initial predicate I ≡ (P = bs)∧

∧m
k=1(xk = e0k). Given a composite formula

representing an arbitrary state set, we can easily partition the conjuncts and convert it to
DNF.

5.5 Handling Non-Linear Operators

Since non-linear operators on integer and real variables cannot be modeled by polyhedrons,
they need special treatment. If all operands are of integer type and of bounded size, we
can model a non-linear operation as Boolean-level operations through the instantiation of
predefined logic components such as multipliers. However, not all non-linear operations
can be handled this way: if a bounded integer variable x is treated as a fixed-length bit-
vector, then (1) any operation on x must be treated as a bit-vector operation; and (2) any
other operand of the same bit-vector operation must be treated as a bit-vector. Therefore,
the definition of bit-vector variable is transitive. If a non-linear operation involves both
fixed-length bit-vectors and unbounded integers, it cannot be modeled in pure Boolean
logic. The requirement of disallowing common variables shared among different symbolic
decision procedures clearly differentiates this modeling approach from the Nelson-Oppen
framework for cooperating decision procedures [Nelson 1984].

If the above requirement is not satisfied, we resort to approximate modeling. A straight-
forward way is to assume that the result of a non-linear operation takes an arbitrary value.
For instance, the assignment xk ← xi ∗xj becomes xk ← w, where w is a nondeterminis-
tic pseudo input variable of the suitable type. During post-condition computation w will be
existentially quantified out, therefore modeling the fact that xk can take an arbitrary value.
If an upper and/or lower bound on the values of its operands is known, we can improve
the approximation by estimating the output value range of the non-linear operation. For
instance, given 1 ≤ xi ≤ 4 and 2 ≤ xj ≤ 5, we can impose the additional constraint
2 ≤ w ≤ 20. The bound information of variables xi and xj may come from an interval
analysis [Zaks et al. 2008], which determines a conservative value interval of each variable
in the given program.

6. MIXED SYMBOLIC TRANSITION RELATIONS

Now we present our software specific optimizations that decompose and simplify mixed
symbolic representations of the transition relation and the reachable state set.

6.1 Disjunctive Transition Relations

From the labeled transition graph of a given program, we construct the symbolic represen-
tation of its verification model as follows. We define transition relation of the entire model
as

T ≡
∨

(bi,bj)∈E

tdi ∧ tcij , (5)

where tcij denotes the transition of control flow from block bi to block bj , and tdi denotes
the data assignments inside block bi. Given a transition from bi to bj under the condition
θ(bi, bj), the transition relation tcij is defined as follows,

tcij ≡ (P = i) ∧ (P ′ = j) ∧ θ(bi, bj) (6)
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, August 2008.
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Given a block bi ∈ B, tdi describes the conjunction of all assignments in δ(bi), and there-
fore is defined as follows,

tdi ≡ (P = i) ∧
|X|∧

k=1

(x′k = eik) (7)

Inside a block bi, for each variable xk ∈ X , the elementary transition relation is x′k = eik

such that

eik =
{

e , if (xk := e) ∈ δ(bi) ,
xk , otherwise (8)

A disjunctively partitioned T is naturally suited for sequential software programs. Let
T =

∨
Tij and Tij = tdi ∧ tcij ; then Tij corresponds to a transition in the labeled transition

graph.

Tij ≡ (P = i) ∧ (P ′ = j) ∧ θ(bi, bj) ∧
|X|∧

k=1

(x′k = eik) (9)

Note that the partitioning of T into Tij is independent of any symbolic representation.
When we use composite formulas to represent each Tij , there will be another level of
decomposition which further partitions each component Tij into individual conjuncts based
on their formula types. It is worth pointing out that these two levels of decomposition are
different, and indeed complementary.

6.2 Simplifying Transition Relations

The main reason for state explosion inside symbolic model checking is the exponential
dependency of the state space on the number of state variables of the model. For many
realistic C programs, the number of variables of the verification model can easily be in the
hundreds (including those added for modeling indirect memory accesses, function calls,
and encoding properties), which is well above the capacity of state-of-the-art BDD and
polyhedral analysis algorithms. Although all elementary decision procedures can dynam-
ically simplify representations—variable sifting in CUDD and simplify in the Omega
library—they are time-consuming in the presence of many variables.

The symbolic model checking algorithm as outlined up to this point still suffers from
performance problems. In a normal reachability fixpoint computation, it is often the case
that both the number and the size of polyhedrons in the reachable state set quickly become
too large for the underlying polyhedral libraries.

Our observation is that most variables in sequential programs are inherently local, and
therefore should be considered as state-holding only when they affect the control flow or
the data-path. In our previous work [Wang et al. 2007], we have successfully exploited
this characteristic of sequential program to simplify BDD-based image computation, and
have obtained significant performance improvement. Here we extend the technique to
simplify the transition relation as well as reachable state sets for model checking using
mixed representations.

Definition 6.1 Variable x ∈ X is live in block bm ∈ B if and only if bm is on an execution
path π from bi to bj (including bi and bj) such that,

—x is defined in δ(bi) and not redefined in any other blocks in π, and
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, August 2008.
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code fragment live variables

L1: x = y = 0; { }
L2: x = 7; { }
L3: s = x; { x }
L4: y = 8; { s }
L5: s = s + y ; { s, y }
L6: if (s) goto L2; { s }
L7: ERROR: { }

Fig. 4. An example of live variables

—x is read in an assignment in δ(bj) or in the condition θ(bj , bk) where (bj , bk) ∈ E.

In our reachability procedure, we associate a reachable state subset with each basic block
(i.e., a disjunctive partition of the reachable state set). From the above definition, it is
clear that if x is not live in block bi, there is no need to record its value in the associated
reachable state subset. Note that according to the definition a variable x may be live in a
block even if x is not accessed in the block.

Locally defined variables are live only inside the program scopes in which they are
defined; these variables can be identified syntactically. However, we note that even globally
defined variables may not be live (according to our definition) at all basic blocks. We use
the code fragment in Fig. 4 to show that global variables are often live at a limited number
of locations. Assume that x, y, and s are global variables but do not appear elsewhere in
the program. Then none of them are live at program locations 1 and 2 since their values
will not affect the control flow and data-path. Variable x is considered live at L3 because
its value will be assigned to s, and similarly for y at L5. We consider s as live at L6 because
its value may affect the control flow. (Fig. 4 is for illustration purposes only.)

Finding the set of blocks in which variable x is live is a standard program analysis
problem. We use the live variable analysis for the following optimization. During the con-
struction of the transition relation Tij , if a certain variable xk is not alive in the destination
block bj , we remove x′k = eik from the transition relation component since the value of
xk would be immaterial in the destination block. The next-state variable x′k in this case
can assume an arbitrary value thereby providing an abstraction of the search state space.
Note that the live variable analysis can achieve significantly more reduction of the tran-
sition relation size than a simple program slicing. In Fig. 4, for instance, we can remove
the implicit assignments x′ = x from the transition relations at Lines 4-6 where x is not
live; however, a property dependent program slicing along cannot remove them. Our expe-
rience shows that in practice, live variables with respect to any individual block comprise
typically less than 30% of the entire program variables in X .

In our previous work [Wang et al. 2007], the live variable information was used to ex-
istentially quantify dead variables out of image results at each iteration. In this paper,
however, we use live variables to directly simplify the mixed symbolic representations
of individual transition relation components. This prevents transition relations of dead
variables from being involved in the often costly post-condition computation. Existential
quantification of dead variables from the post-condition results, as was done in [Wang et al.
2007], is avoided since dead variables never appear in the result in the first place.
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Removing dead variables not only reduces the sizes of the symbolic representations,
but also leads to a potentially faster convergence of reachability analysis. Take the code
fragment in Fig. 4 as an example. With the live variable based simplification, one can
declare the termination of reachability fixpoint computation after going from L1 through
L6 only once. This is because the post-condition of L6 is (P = 2 ∧ s = 15), which
has already been covered by (P = 2), the post-condition of L1 (wherein s can take any
value). However, if x and y are assumed to be live everywhere, we will have much larger
polyhedrons to represent in the reachable states at each location. In addition, we can no
longer declare convergence after L6, since the post-condition (P = 2 ∧ s = 15 ∧ x =
7 ∧ y = 8) is not covered by (P = 2 ∧ x = 0 ∧ y = 0), the post-condition of L1. As a
result, we need a few more iterations in order to declare convergence.

7. SYMBOLIC SEARCH STRATEGIES

In this section we present symbolic search algorithms that are suitable for software verifi-
cation using mixed symbolic representations.

7.1 Disjunctive Symbolic Reachability Computation

In symbolic model checking, the state transition graph of the model is represented sym-
bolically by 〈T, I〉, where T (X, P, X ′, P ′) is the characteristic function of the transition
relation, and I(X, P ) is the initial state predicate. Reachability analysis is a least fixpoint
computation,

R = µZ . I ∨ post(T,Z) . (10)

Here µ denotes the least fixpoint and Z is an auxiliary variable for iteration. Reach-
ability fixpoint computation starts from the initial state set and repeatedly adds the post-
condition of already reached states until convergence. Given a transition relation T and a
set D(X, P ) of states, the post-condition or image of D with respect to T consists of all
the successors of D in the state transition graph. Let f(X/X′) denote the substitution of X ′

variables in f by the corresponding X . Then

post(T, D) = (∃X,P T ∧D)(X/X′,P/P ′) . (11)

Partitioned transition relations for symbolic image computation were proposed in [Burch
et al. 1991; Cabodi et al. 1997] in both disjunctive and conjunctive forms. In [Narayan et al.
1997], multiple variable orders were used together with partitioned BDDs [Bryant 1986]
to reduce the peak memory usage in reachability analysis. However, these works were not
targeted for handling software models. In general, image computation based on a disjunc-
tively partitioned transition relation is effective only if a good partition can be efficiently
computed. For hardware verification, previous applications of disjunctively partitioned
transition relation were not successful, since creating a good disjunctive partition itself is
a non-trivial task. Our work demonstrates that disjunctive partitioning is naturally suited
for software models due to their sequential nature. Our new method differs from the prior
work in the criteria we use for decomposition and in our software-specific simplifications.

Since we have disjunctive transition relation, the post-condition computation can be
decomposed into a set of easier steps as follows,

post(T, D) =
(∃X,P ∨(bi,bj)∈E (Tij ∧D)

)
(X/X′,P/P ′)

= ∨(bi,bj)∈E (∃X,P (Tij ∧D))(X/X′,P/P ′)
(12)
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Based on Equation 2, we can convert Tij ∧D into DNF format. Let Tij ∧D =
∨

(fB
ij ∧

f I
ij∧fR

ij ), where fB
ij , f I

ij , and fR
ij are sub-formulas in Boolean logic, Presburger arithmetic,

and Boolean combination of real linear constraints, respectively. Let X = XB∪XI∪XR,
where XB , XI and XR represent the set of Boolean, integer and real variables. The post-
condition computation can be decomposed further as follows,

post(T,D) = ∨(bi,bj)∈E(∃XB ,XI ,XR,P ∨ (fB
ij ∧ f I

ij ∧ fR
ij ))(X/X′,P/P ′)

= ∨(bi,bj)∈E(∨∃XB ,XI ,XR,P (fB
ij ∧ f I

ij ∧ fR
ij ))(X/X′,P/P ′)

= ∨(bi,bj)∈E(∨(∃XB ,P fB
ij ) ∧ (∃XI f I

ij) ∧ (∃XRfR
ij ))(X/X′,P/P ′)

(13)

Computing post-condition subsets individually is often more efficient than computing
the entire set on a monolithic transition relation, since it reduces the peak size of symbolic
representations for intermediate products. For BDD-based operations, the disjunctive de-
composition can reduce the peak live BDD nodes [Wang et al. 2007]; for polyhedron-based
operations, it can reduce the peak number of polyhedrons and the number of linear con-
straints.

7.2 The Reach Frontier Strategy

Let Ri−1 and Ri represent the sets of reachable states at two consecutive steps; in com-
puting Ri+1, one can use post(T,Ri \Ri−1) instead of post(T, Ri) if the symbolic repre-
sentation of (Ri \Ri−1) = Ri∧ 6 Ri−1 is smaller than that of Ri. In BDD based symbolic
model checking, the set Ri \Ri−1 is called the frontier set [Ranjan et al. 1995]. However,
in order to detect convergence, one still needs to store the entire reachable state set Ri (in
order to stop as soon as Ri+1 = Ri).

We have observed that maintaining the entire reachable state set Ri at every iteration
is costly. In symbolic model checking, it is a known fact that the size of symbolic rep-
resentation of Ri often increases in the middle stages of fixpoint computation and then
decreases when it is close to convergence. The case becomes even more severe with poly-
hedrons in our mixed representations, which is largely due to the fact that composite for-
mula representation is not canonical — after being propagated through various branching
and re-converging points, polyhedrons are fragmented more easily into smaller pieces.

We propose a specialized symbolic search strategy called REACH FRONTIER to improve
reachability fixpoint computation. The idea is to avoid storing the entire reachable state set
at each iteration, but use an augmented frontier set to detect convergence. Given an LTG G,
we say block bi dominates block bj if every path from the initial block to bj goes through
bi. A back edge is an edge (bj , bi) whose head bi dominates its tail bj . Fig. 5 shows
the control flow graph of a C code on its left, where the dotted line indicate a back edge.
To its right is the corresponding dominator tree, in which each block dominates only its
descendants in the tree. There exist classic algorithms [Aho et al. 2006] to compute the set
of dominators and back edges.

Let Eback ⊆ E be the set of back edges in the LTG, whose removal will make the graph
acyclic2. Let Qbt ≡ ∨(bj ,bi)∈Eback

(P = bj) be the subspace associated with the tails of the

2Removing back edges will make LTG acyclic if the graph is derived from programs with exclusive use of
structured flow-of-control statements such as if-then-else, while-do, continue and break statements. However,
programs written using goto statements may cause the resulted LTG to be not reducible, in which the LTG may
contain cycle even after remove back edges. If this case, we remove retreating edges, a super set of back edges.
For more information on retreating edges and reducibility, please refer to [Aho et al. 2006].
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int x = 0;
while (x < 1)

x++;

4
3


2


1

x=0


x=x+1


1


2


3


4


x<1
x>=1


Fig. 5. Control flow graph of a C code and its dominator tree

bool Reach Frontier(T ,I ,QErr ,Qbt)
{

F = I;
S = I ∧Qbt;
while (F 6= false)

if ((F ∧QErr) 6= false)
return false;

F = (post(T, F ) \ F ) \ S;
S = S ∨ (F ∧Qbt);

return true;
}

Fig. 6. Reachability computation with the REACH FRONTIER approach

Table I. Reachability computations with or without the REACH FRONTIER approach
iteration F S R

1 P = 1 ∧ x = 0 false P = 1 ∧ x = 0
2 P = 2 ∧ x = 0 false P = 1 ∧ x = 0 ∨

P = 2 ∧ x = 0
2 P = 3 ∧ x = 1 P = 3 ∧ x = 1 P = 1 ∧ x = 0 ∨

P = 2 ∧ x = 0 ∨
P = 3 ∧ x = 1

4 P = 2 ∧ x = 1 P = 3 ∧ x = 1 P = 1 ∧ x = 0 ∨
P = 2 ∧ (x = 0 ∨ x = 1) ∨
P = 3 ∧ x = 1

5 P = 4 ∧ x = 1 P = 3 ∧ x = 1 P = 1 ∧ x = 0 ∨
P = 2 ∧ (x = 0 ∨ x = 1) ∨
P = 3 ∧ x = 1 ∨
P = 4 ∧ x = 1

6 false - -

back edges. In Fig. 5, for instance, the subspace is represented by Qbt ≡ (P = 3). If we
record all the reached states falling inside Qbt, which is S = R ∧Qbt, then the emptiness
of the set (F \R ∧Qbt) can be used to detect convergence.

Our new reachability procedure in Fig. 6 takes as parameters the symbolic model 〈T, I〉,
the set of error states QErr, as well as the state subspace Qbt associated with tail blocks of
back edges Eback. We use set S to represent the subset of already reached states that falls
inside Qbt. When we define Qbt ≡ ∨bi∈B(P = bi), the algorithm becomes the same as
the ordinary reachability analysis procedure.

Table I illustrates the effectiveness of the reachability computation with the REACH FRONTIER
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approach. The reachability computation is performed on the example shown in Fig. 5. In
the table Column 1 shows the index of the iterations, Column 2 gives the formula that rep-
resents the frontier set, Columns 3 and 4 show the formulas for the set of reachable states S
at Qbt using the REACH FRONTIER approach, and the set of reachable states R in conven-
tional reachability computation, respectively. It can be observed that the size of S is much
smaller than that of R. Note that even the ordinary reachability analysis procedure may
not converge since program verification in general is undecidable in the polyhedral abstract
domain. However, what we can guarantee is that, our REACH FRONTIER approach is able
to terminate as long as the ordinary procedure terminates.

Theorem 7.1 Let D be the longest path starting from the entry block in the LTG after the
removal of back edges. Then the REACH FRONTIER procedure terminates with at most D
more iterations after the conventional reachability analysis procedure terminates.

Proof: By definition, S = R ∧ Qbt where R is the set of reached states. Therefore at the
i-th iteration we have Si = Ri ∧ Qbt. It follows that if Ri \ Ri−1 becomes empty, then
Si \ Si−1 is also empty. The set F i may not become empty immediately after Ri \ Ri−1

becomes empty , but it will never add any new state inside Si. Therefore, the frontier set
F is guaranteed to become empty after going through all the forward edges one more time.
Since the LTG becomes a directed acyclic graph with a maximal depth D if we remove
all the back edges in Eback, the REACH FRONTIER procedure terminates with at most D
more iterations after the conventional reachability analysis.

7.3 The Reach Lockstep Strategy

Our REACH FRONTIER search strategy can significantly reduce the peak memory usage
in the middle stages of fixpoint computation. However, there are still cases for which even
the mixed representation of F i becomes too large. When an LTG has multiple cycles of
different lengths and the cycles are not well synchronized at the re-convergence points,
new states (in frontier set) may easily scatter in a large number of basic blocks. Since this
often means a larger number of polyhedrons (and more linear constraints), the gain by the
REACH FRONTIER strategy gradually evaporates.

To address this problem, we propose another search strategy called REACH LOCKSTEP,
which is an improvement of the REACH FRONTIER procedure in Algorithm 6. The idea
is to synchronize multiple cycles by controlling the time when new states are propagated
through back edges. For this we bi-partition the transition relation T into Tf and Tb, such
that Tf consists of forward edges only and Tb consists of back edges only. We conduct
reachability analysis using the REACH LOCKSTEP approach, by first propagating the fron-
tier set through Tf until convergence, and then feeding back the set R ∧ Qbt through Tb.
Note that this may introduce some stuttering steps, where propagation from some cycles is
delayed.

The new procedure in Algorithm 7 takes as inputs the symbolic model 〈Tf , Tb, I〉, the set
of error states QErr, as well as the state subspace Qbt associated with tail blocks of back
edges. It terminates only when no new state is reached by post-condition computations on
both Tf and Tb. Note that REACH LOCKSTEP has the same effect with REACH FRONTIER
on straight-line code where there are no back edges. However, by synchronizing the prop-
agation through back edges, we can significantly reduce the size of F . Note that with the
REACH LOCKSTEP strategy, we may get longer counterexamples due to the addition of
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bool Reach Lockstep(Tf ,Tb,I ,QErr ,Qbt)
{

F = I;
S = Snew = I ∧Qbt;
while(F 6= false)

if ((F ∧QErr) 6= false)
return false;

F = (post(Tf , F ) \ F ) \ S;
S = S ∨ (F ∧Qbt);
Snew = Snew ∨ (F ∧Qbt);
if (F = ∅)

F = post(Tb, Snew) \ S;
Snew = ∅;

return true;
}

Fig. 7. Reachability computation with the REACH LOCKSTEP approach

stuttering steps. This may be a disadvantage considering the fact that counterexamples
may take more iterations to generate. However, we shall show that there are some ex-
amples on which the REACH FRONTIER strategy takes much longer runtime or may not
even finish in the allocated time; in these cases, the REACH LOCKSTEP strategy becomes
a viable option.

8. EXPERIMENTS

We have implemented the new techniques on the F-SOFT verification platform [Ivančić
et al. 2005; Ivančić et al. 2009]. We are able to evaluate the proposed techniques by
comparing to the best known composite model checking algorithm in [Yavuz-Kahveci et al.
2005], as well as pure Boolean level algorithm using BDDs and SAT. Our experiments were
conducted on a workstation with 2.8 GHz Xeon processors and 4GB of RAM running Red
Hat Linux 7.2. We set the CPU time limit to one hour for all runs.

Our benchmarks are control intensive C programs from public domain as well as indus-
try (e.g., device drivers, embedded software of portable devices). For all test examples, we
check reachability properties. Program counter variables are modeled as Boolean type and
pointer variables are modeled as integers. Other program variables are modeled according
their types in the program.

Among the eleven test cases in Sections 8.1 and 8.2, bakery is a C model of Leslie
Lamport’s bakery protocol; tcas is an air traffic control and avionic system; ppp is C public
domain implementation of the Point-to-Point protocol. The examples starting with mcf
are from an industry embedded software of a portable device, for which we only have the
verification models but no source code information (such as the lines of C code). The ftpd
examples are from the FTP daemon code in Linux. The benchmarks in Section 8.3 are all
industrial proprietary software programs.

8.1 Comparing Search Strategies

First, we evaluate the proposed techniques by comparing the performance of composite
model checking with and without the new features (i.e., program-specific optimizations
and search strategies).

The results are given in Table II, wherein for each test example, we list in Columns 1-
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Table II. Comparing search strategies in reachability fixpoint computation where T/O
stands for time out, M/O for memory out, and - for no data

Test Program Total CPU Time (s) Peak GEQ Formulas
name loc vars blks old live front lstep old live front lstep
bakery 94 10 26 T/O 755 35 13 - 1518 264 128
tcas-1a 1652 59 133 T/O T/O T/O 374 - - - 17656
tcas-any 1652 65 215 T/O T/O T/O 415 - - - 14920
ppp 2623 91 720 T/O T/O T/O 51 - - - 3782
mcf1 as - 92 92 2475 57 3 2 3394 355 45 45
mcf2 afr - 126 155 T/O 91 7 5 - 344 110 165
mcf3 mrr - 80 299 T/O 79 4 4 - 407 55 55
bftpd useringrp 1115 242 13 12 1 1 1 829 6 4 4
bftpd chkuser 2584 591 175 M/O 59 20 20 - 187 57 57
bftpd chkshell 2931 674 364 M/O 576 47 48 - 995 358 358
bftpd chkpasspwd 1166 547 463 M/O 681 760 760 - 579 2362 2362

4 the name, the lines of C code, the number of variables, and the number of blocks.
Columns 5-8 compare the runtime performance of the four implementations, where old
denotes the baseline algorithm, live denotes the live variable based simplification, front
denotes the one augmented with the REACH FRONTIER algorithm, and lstep denotes the
REACH LOCKSTEP algorithm. Live variable analysis is applied in both new search strate-
gies. On average about 70% of the program variables are eliminated in each basic block
by the live variable analysis. We use T/O to indicate time out and M/O memory out.
Columns 9-12 compare the peak number of linear equalities and inequalities used in Omega
library. We omit the peak BDD sizes since for these examples the BDD sizes are all very
small.

Of the 11 examples, the baseline reachability algorithm can complete only 2, while the
one with our optimizations and the new REACH LOCKSTEP strategy completes all. For
the cases where all methods can do a complete traversal, the performance gained by our
optimizations can be several orders-of-magnitude. The results clearly show that exploiting
sequentiality and variable locality is a key to making symbolic software model checking
scalable. The comparison of the number of linear constraints at each iteration shows that
our proposed techniques are also extremely effective in reducing the size of the mixed
symbolic representation.

8.2 Comparison with Boolean Decision Procedures

We also give the comparison of the REACH LOCKSTEP approach against pure Boolean-
level symbolic decision procedures, including BDD-based model checking and SAT-based
bounded model checking. Both of these two Boolean level decision procedures are based
on matured techniques and have been fine-tuned for handling sequential programs [Ivančić
et al. 2005; Wang et al. 2007]. In particular, the BDD-based algorithm also uses decompo-
sition and simplification based on live variables.

The results are given in Table III. Columns 1-3 give the name of the program, the
number of bit variables in the Boolean model, and the sequential depth at which point all
given properties can be decided. Columns 4-6 show for each of the three methods whether
verification can be completed, and the maximum reached depth for the incomplete cases.
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Table III. Comparing the REACH LOCKSTEP algorithm with pure Boolean-level algo-
rithms, where T/O stands for time out

Test Program Completed CPU Time (s)
name bvars depth bdd-mc sat-bmc mix-ls bdd-mc sat-bmc mix-ls
bakery 84 172 Y (68) Y 2 T/O 13
tcas-1a 307 119 Y (103) Y 433 T/O 374
tcas-any 362 181 (103) (100) Y T/O T/O 415
ppp 1435 132 Y (84) Y 687 T/O 51
mcf1 as? 500 192 Y (98) Y 150 T/O 2
mcf2 afr 508 211 Y (60) Y 110 T/O 5
mcf3 mrr 1212 148 Y (43) Y 190 T/O 4
bftpd useringrp 1163 11 Y Y Y 1 1 1
bftpd chkuser 5000 75 (0) (70) Y T/O T/O 20
bftpd chkshell 7849 94 (0) (44) Y T/O T/O 48
bftpd chkpasspwd 2826 147 (10) (13) Y T/O T/O 760

Note that the BDD-based methods may time out before the transition relation is built, in
which cases the maximum reached depth is 0. Finally, Columns 7-9 list the run time of
each method in seconds. Note that the comparison may not be entirely fair for mcf1 as
because the program contains non-linear operations. While BDD/SAT models non-linear
operations as bit-vector operations (maximum 32 bits), our approach approximates them.
We put a star besides the name of the program.

Table III shows that the REACH LOCKSTEP algorithm is the only method that can com-
plete traversal in all examples. This, we believe, is due to the fact that REACH LOCKSTEP
models the different behaviors of the system at the right levels of abstractions. Note that
our method is significantly different from static analysis based on the polyhedral abstract
domain [Halbwachs et al. 1997]. Although both methods use polyhedral representations,
we are conducting an exact state space exploration – none of our results relies on convex
hull based approximation or widening; when a property fails, we can generate a concrete
counterexample trace.

We also checked the same test examples with a counterexample driven predicate abstrac-
tion algorithm [Jain et al. 2005]. Since the predicate abstraction procedure was designed
for checking one property at a time, whereas all the other methods used in our experimental
study can check multiple properties simultaneously in one run, a fair comparison was pos-
sible only on the first four examples (each of which has a single property). The results are
as follows: (1) predicate abstraction completed bakery, tcas-1a, and tcas-any in 1 second,
137 seconds, and 836 seconds, respectively; (2) on ppp it timed out after one hour. This
indicates that our exact composite reachability computation algorithm has already better
performance than an advanced predicate abstraction procedure. Note that the procedure
in [Jain et al. 2005] builds upon a pure Boolean-level model. We believe it is possible to
combine predication abstraction with our mixed symbolic algorithm, which we leave as a
future work.

8.3 Experiments on Industrial Proprietary Software Programs

Finally we applied our approach to verify real-world examples. All the examples in Ta-
ble IV are industrial proprietary embedded software programs for portable devices. We
substitute the real names by numbers in the first column. Column 2 shows the number of
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, August 2008.
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Table IV. Experiments on industrial proprietary software programs
Test Program F-SOFT w/o Mix F-SOFT w Mix Improvement

name LOC type #prop proof witness proof witness more proof more witness
ary 350 246 57 260 65 14 8

1 7669 ptr 173 128 37 132 27 4 0
str 362 95 11 94 11 -1 0
ary 2552 2220 7 2270 8 50 1

2 1521 ptr 1005 910 3 910 3 0 0
str 39 35 4 35 4 0 0
ary 938 758 79 825 85 67 6

3 5797 ptr 484 387 54 429 55 42 1
str 215 200 0 207 7 7 7

Total run time 16.2 hrs run time 8.1 hrs 183 23

lines of code in the three examples. Columns 3 and 4 list the types and the number of
properties under verification. There are three types of properties: ary checks array bound
violations, ptr checks null pointer dereference, and str checks string related properties.
All property monitors are automatically generated. Each property id given one hour time
limit.

Columns 5-8 compare the performance of F-SOFT with or without mixed symbolic
analysis. After preprocessing and static analysis as outlined in Section 4, F-SOFT with-
out Mix uses SAT solver to perform bounded model checking (Columns 5-6), while F-
SOFT with Mix performs fixpoint reachability computation using the approach illustrated
in this paper (Columns 7-8). If a property is proved to be correct within the time limit,
we find a proof. Note that although in general a proof cannot be obtained by analyzing
under-approximated models, we can prove properties in this group of experiments because
no pre-set bound is needed for the embedded software benchmarks that do not have re-
cursive function calls. On the other hand, if a counter-example is reported within the time
limit, we find a witness to show that the property does not hold in the program. If it
cannot prove or find a witness within the one-hour time limit, F-SOFT cannot solve the
current property in time and moves on to verify the others. Columns 5 and 7 reports the
number of properties that can be proved, and Columns 6 and 8 the number of properties
with witnesses found. Columns 9-10 show the improvement (additional number of prop-
erties that can be solved within the time limit) gained by mixed symbolic analysis. Finally
the last row in Table IV summarizes the comparison.

F-SOFT with Mix outperforms SAT-based F-SOFT in most benchmarks. The one case
where F-SOFT with Mix is worse ( benchmark 1 with string related properties) is due to the
large number of branches in the benchmark, which causes large symbolic representations.
In total, F-SOFT with Mix solves 206 more properties. In addition, the total run time of
F-SOFT with Mix is 8.1 hours, compared with 16.2 hours used by F-SOFT without Mix.

9. CONCLUSION

We have presented a symbolic model checking algorithm that combines multiple decision
procedures for verifying sequential programs. We apply mixed symbolic representations
to programs with rich data types and complex expressions, and develop optimizations and
new symbolic search strategies to improve the scalability of model checking algorithms.
Based on the algorithm, we are able to statically detect software bugs such as assertion fail-
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ure, buffer overruns, use of uninitialized variables, memory leaks, locking rule violations,
and division by zero, thus makes software more secure against malicious applications. Our
experimental results show that these proposed techniques can significantly reduce the run
time and peak memory usage required in fixpoint computation. It also compares favorably
to pure Boolean level decision procedures using BDDs and SAT.

For future work, we want to explore various approximate state space traversal algo-
rithms and guided search algorithms to further improve the performance. So far the mixed
symbolic approach is not suitable for numerical computation software. For example, our
treatment of floating point arithmetic cannot handle underflow or overflow. In the future
work we will develop modeling and analysis heuristics for such applications. We also plan
to extend our method to handle concurrent software programs.
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ZAKS, A., YANG, Z., SHLYAKHTER, I., IVANČIĆ, F., CADAMBI, S., GANAI, M. K., GUPTA, A., AND ASHAR,
P. 2008. Bitwidth reduction via symbolic interval analysis for software model checking. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD). To Appear.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, August 2008.


