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The Multicore Communications API (MCAPI) is a new message passing API that was released by the 

Multicore Association. MCAPI provides an interface designed for closely distributed embedded systems 

with multiple cores on a chip and/or chips on a board. Similar to parallel programs in other domains, 

debugging MCAPI programs is a challenging task due to their non-deterministic behavior. In this paper 

we present a tool that is capable of deterministically replaying MCAPI programs executions, which 

provides valuable insight for MCAPI developers in case of failure.  
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(1) presenting two new techniques for replaying MCAPI programs: data-replay in Section ‎3.2 and sender-

based order-replay in Section ‎3.3.1, (2) differentiating our work from comprehensive related work in 

Section 6.   
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1. INTRODUCTION 

If two executions of a program exhibit the same set of instructions with each instruction 

computing the same results and producing the same final values in memory, then these two 

executions are said to be logically equivalent [17]. A deterministic replay of a program is a 

controlled execution that is logically equivalent to a previous execution of interest. Deterministic 

replay has various applications such as cyclic debugging, fault tolerance and intrusion analysis 

[26]. 

In cyclic debugging, a program is repeatedly executed under the control of a debugger to 

allow the user to obtain more information about the program states and intermediate results [22]. 

Cyclic debugging assumes that different executions of the same program with the same input will 

be equivalent. Different executions of a concurrent program are not guaranteed to be equivalent as 

concurrent programs suffer from the irreproducibility effect [27] due to their intrinsic non-

determinism. The fact that two subsequent runs of the same program with the same input are not 

guaranteed to behave the same or produce the same output, makes cyclic debugging of concurrent 
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programs a challenging task. Cyclic debugging is the most prominent application of deterministic 

replay and is called Deterministic Replay Debugging (DRD) [17]. 

Within the context of fault-tolerance, deterministic replay has been used to detect 

hardware design faults by scrutinizing the variances between a replayed execution on a machine 

and an original execution on another machine [14]. Also, in the case of a program failure, a 

replayed execution can be used to reconstruct the most recent program state [25]. The ReVirt 

system [5] shows that deterministic replay is useful for intrusion analysis. ReVirt allows replaying 

the execution of a whole computer system before, during, and after a system has been 

compromised facilitating post-attack analysis. 

As depicted in Fig. 1, the deterministic replay process consists of two phases: recording 

and replay. During the recording phase, a program execution is monitored by a recording 

environment to record information about the execution in a trace file. When a replay is needed, the 

data in the trace file is used to replay the program within a replay environment such that the 

behavior of the program during the replay phase is logically equivalent to the behavior observed in 

the recording phase.  

Recording Environment

Program Output

Trace

Input

Replay Environment

Program Output

Trace

Input

Recording:

Replay:

 
Fig. 1. The two phases of deterministic replay 

 

In 2008, the Multicore Association [2], a consortium of major corporations and leading research 

centers, published the first version of the Multicore Communications API (MCAPI) [3]. MCAPI is 

a new message-passing API that is intended for systems with multiple cores on a chip and/or chips 

on a board. MCAPI can be installed on top of an operating system or an extremely thin run-time 

environment such as a hypervisor. A major design goal of MCAPI is to function as a low-latency 

interface benefiting from efficient on-chip interconnects in a multi-core chip. Thus, MCAPI is a 

light weight API that delivers high performance and needs a tiny memory footprint that is 

significantly lower than that of MPI [1]. Currently, there are two implementations of the MCAPI 

specification; the standard implementation provided by the MCA and a relatively newer 

implementation provided by Mentor Graphics [13]. Both implementations are C libraries. 

An MCAPI program execution is inherently nondeterministic, thus repeatedly executing 

the same program on the same input may yield different results, making debugging extremely 

difficult. Providing a deterministic replay capability allows developers to observe the same 

execution making finding failure source an easier task. In this paper, we present DR-MCAPI, the 

first tool for deterministically replaying MCAPI programs executions. DR-MCAPI works by 

monitoring a program execution to generate a trace. If the program fails, the trace can be used to 

produce an execution that is logically equivalent to the one that had failed.  DR-MCAPI 

implements two replay approaches: data-replay and order-replay. Each approach has its own 

particular strengths and weaknesses. Section ‎2 provides an overview of the MCAPI specification 

and the sources of non-determinism in MCAPI programs. Section ‎3 describes the workflow of 

DR-MCAPI and the data-replay and order-replay approaches. Section 4 shows the results of 

experiments conducted using four benchmarks and compares our MCAPI programs replay 

techniques in terms of memory and time overheads. Section ‎5 discusses the features of DR-

MCAPI in terms of usability, portability and scalability. In Section ‎6 we present a comprehensive 

overview of related work and we conclude and present future directions in Section ‎7. 



2. NON-DETERMINISM IN MCAPI PROGRAMS 

In MCAPI programs, a CPU core is referred to as a node. Communication between nodes occurs 

through endpoints. A node may have one or more endpoints and an endpoint is uniquely defined 

by a node identifier and a port number. The MCAPI specification supplies APIs for initializing 

nodes, creating and deleting endpoints, obtaining addresses of remote endpoints, and sending and 

receiving messages. The functions used for sending and receiving messages are: mcapi_msg_send, 

mcapi_msg_send_i, mcapi_msg_recv, and mcapi_msg_recv_i. 

The functions mcapi_msg_send and mcapi_msg_send_i send messages, asynchronously, 

between two endpoints. While mcapi_msg_send blocks until the message has been copied from a 

program buffer to the MCAPI runtime buffers, mcapi_msg_send_i is non-blocking and returns 

immediately after initiating the copying process. The functions mcapi_msg_recv and 

mcapi_msg_recv_i retrieve messages from the MCAPI runtime buffers. The function 

mcapi_msg_recv blocks until a message has been retrieved from the runtime buffer, while 

mcapi_msg_recv_i is non-blocking and returns immediately even if there are no messages in the 

buffer. MCAPI receive calls are called promiscuous receives as they permit receiving messages 

from any source endpoint. 

The MCAPI specification provides request variables and the mcapi_wait, 

mcapi_wait_any and mcapi_test functions to track the status of a non-blocking function call. A 

non-blocking function (e.g. mcapi_msg_recv_i) takes a request variable as an extra input 

parameter and initializes it by setting its value to pending. Calling mcapi_wait with a request 

variable R blocks execution util the non-blocking operation that initialized R has completed. 

Invoking mcapi_wait_any with an array of request variables Rs blocks execution until any of the 

operations in Rs has completed. The mcapi_wait_any returns the index of the completed request. 

The mcapi_test function succeeds (i.e. returns true) if its input request has completed, and fails 

(i.e. returns false) otherwise. 

There are two rules that govern the order of messages arrivals at a destination endpoint: 

1) messages sent from the same source endpoint to the same destination endpoint are guaranteed 

to arrive at their destination according to their transmission order and 2) messages sent from 

different source endpoints will arrive at their destination in any order, even if these source 

endpoints belong to the same node. The second rule combined with the fact that mcapi_msg_recv 

and mcapi_msg_recv_i calls‎ don’t‎ specify‎ the‎ source‎ endpoint,‎ make‎ it‎ possible‎ for‎ message 

races to take place. Two or more messages are said to be racing if their order of arrival at a 

destination (i.e. an endpoint) is non-deterministic [19]. Fig. 2 shows an MCAPI program with 

message races. A node creates a single endpoint and sends messages to all other nodes (lines 1-8) 

and is expecting to receive a message from all other nodes (lines 9-10). Assuming there are N 

nodes, any node should receive N-1 messages that are racing with each other. The orders of 

messages arrivals can change across consecutive executions of the program leading to the 

irreproducibility effect (i.e. the final values in the Buffer array will not be the same with different 

executions). It should be noted that, in contrast to multithreaded programs data races, the mere 

existence of a message race is not an error condition by itself, but a message race may lead to an 

error condition. This fact makes debugging message passing programs even harder, as one need 

not only to detect message races, but also to examine the consequences of a message race.  

   
1 N=NodesCount(); 
2 mcapi_init_node(ThisNode); 
3 LocalEP=mcapi_create_ep(ThisNode,1); 
4 for (Index=0;Index<N;Index++){ 
5   if (Index==ThisNode) continue; 
6   RemoteEP=mcapi_get_ep(Index,1); 
7  mcapi_msg_send(LocalEP,RemoteEP,&Data[Index]); 
8 } 
9 for (Index=0;Index<N-1;Index++) 
10   mcapi_msg_recv(LocalEP,&Buffer[Index]); 
11 mcapi_delete_ep(LocalEP); 
12 mcapi_finalize_node(ThisNode); 

Fig. 2. An MCAPI program with message races 
 



Another source of non-determinism in MCAPI programs is the mcapi_wait_any call. In Fig. 3, a 

node has two endpoints and is expecting to receive a message at each endpoint (lines 4-5). 

mcapi_wait_any blocks execution until either one of the two messages is received. Depending on 

which endpoint receives a message first, the value of ReqIndex may not be the same across 

consecutive executions of the program, which results in varying branches of the switch being 

selected in different executions. 

 
1 mcapi_init_node(ThisNode); 
2 LocalEP1=mcapi_create_ep(ThisNode,1); 
3 LocalEP2=mcapi_create_ep(ThisNode,2); 
4 mcapi_msg_recv_i(LocalEP1,&Buffer1,Requests[0]); 
5 mcapi_msg_recv_i(LocalEP2,&Buffer2,Requests[1]); 
6 ReqIndex=mcapi_wait_any(Requests,2); 
7 switch (ReqIndex) { 
8   case 0: … 
9   case 1: … 
10 } 
11 mcapi_delete_ep(LocalEP1); 
12 mcapi_delete_ep(LocalEP2); 
13 mcapi_finalize_node(ThisNode); 

Fig. 3. An MCAPI program with mcapi_wait_any 

 

Using the non-blocking mcapi_test introduces non-determinism as well. In Fig. 4, a node is 

expecting a message at a local endpoint. The function mcapi_test is used to determine whether 

the expected message has arrived. The number of times mcapi_test returns false, and 

consequently the value of variable A at line 5, is dependent on uncontrollable factors such as the 

current core workload and the inter-core communication latency. 

 
1 mcapi_init_node(ThisNode); 
2 LocalEP=mcapi_create_ep(ThisNode,1); 
3 mcapi_msg_recv_i(LocalEP,&Buffer,Request); 
4 while (!mcapi_test(Request)) A++; 
5 func_call(A); 
6 mcapi_delete_ep(LocalEP); 
7 mcapi_finalize_node(ThisNode); 

Fig. 4. An MCAPI program with mcapi_test 

 

In summary, besides user inputs and random numbers generators, there are three additional 

sources of non-determinism in MCAPI programs: 1) mcapi_msg_recv and mcapi_msg_recv_i 

calls, 2) mcapi_wait_any calls and 3) mcapi_test calls. Such inherent non-deterministic behavior 

does not permit repeated execution as a reliable mean of debugging MCAPI programs. Hence, 

introducing the ability to replay an observed MCAPI program execution can significantly help an 

MCAPI program developer. 

3. DR-MCAPI: DETERMINISTIC REPLAY FOR MCAPI PROGRAMS 

Fig. 5 depicts the workflow of our tool for deterministic replay of MCAPI programs. DR-MCAPI 

consists of two parts: a source code instrumenter and an MCAPI library wrapper (DR-MCAPI 

Library). 

The instrumenter replaces calls to the MCAPI library routines in an input program with 

calls to the DR-MCAPI‎library‎by‎replacing‎the‎prefix‎“mcapi”‎with‎“dr”.‎Also,‎the‎instrumenter‎

adds code that initializes and tears down the DR-MCAPI library.   
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Fig. 5. DR-MCAPI Workflow 

 

Fig. 6 shows the result of instrumenting the program in Fig. 2. We use the ROSE compiler [21] to 

automate the instrumentation process. It is possible to avoid the instrumentation process by 

modifying the MCAPI library itself. However, such approach reduces the portability of DR-

MCAPI and makes it implementation-specific. That defeats one of the goals of MCAPI of being 

an API standard with different implementations for different platforms. For example, DR-MCAPI, 

without any changes, is compatible with the new OpenMCAPI implementation [13]. 

 
1 N=NodesCount(); 
2 dr_init_node(ThisNode); 
3 LocalEP= dr_create_ep(ThisNode,1); 
4 for (Index=0;Index<N;Index++){ 
5   if (Index== ThisNode) continue; 
6   RemoteEP= dr_get_ep(Index,1); 
7   dr_msg_send(LocalEP,RemoteEP,&Data[Index]); 
8 } 
9 for (Index=0;Index<N-1; Index++) 
10   dr_msg_recv(LocalEP,&Buffer[Index]); 
11 dr_delete_ep(LocalEP); 
12 dr_finalize_node(ThisNode); 

Fig. 6. An instrumented MCAPI program 

 

The DR-MCAPI library acts as a layer between the program and the MCAPI library as shown in 

Fig. 7. When an instrumented program is run, the program invokes the DR-MACAPI routines 

which will carry out some processing and call the original MCAPI routine. For example, a call to 

dr_create_ep will add a new endpoint to a list of endpoints maintained for every node by DR-

MCAPI and then mcapi_create_ep will be invoked. 
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Fig. 7. DR-MCAPI is a layer between the MCAPI library and the instrumented program 



3.1 Operating Modes 

An instrumented program can run in one of two possible operating modes: recording mode or 

replay mode. While a program is running in the recording mode, calls to the DR-MCAPI library 

routines record certain information in addition to invoking MCAPI library routines. When the 

program execution ends (either normally or by a failure), the recorded information is stored to the 

disk as a trace. During the recording mode, DR-MCAPI‎ doesn’t‎ affect‎ the‎ outcomes‎ of‎ non-

deterministic operations.  

When run in the replay mode, the trace information is loaded into memory and is used by 

DR-MCAPI library to force an execution that is equivalent to the one observed when the program 

was running in the recording mode. 

Replay tools for message-passing programs typically fall into two categories: data-replay 

and order-replay. In data-replay, the contents of all received messages at all nodes are stored 

during the recording phase, while in order-replay, only the outcomes of non-deterministic 

operations are recorded. DR-MCAPI supports both data-replay and order-replay. Section ‎3.2 

describes how DR-MCAPI implements data-replay and section 3.3 shows how DR-MCAPI 

implements order-replay. 

Fig. 8 depicts the pseudocode of an instrumented MCAPI program with five nodes. 

Nodes 1 and 3 send three messages to nodes 2, 4 and 5, each. Node 2 uses the data in the two 

received messages to calculate a new value and send it to nodes 4 and 5. Hence, nodes 4 and 5 are 

expecting to receive three messages, each. We will be using this program as an ongoing example 

throughout this article. 

 
Node 1  Node 3 
1 dr_initialize(1);  12 dr_initialize(3); 
2 X=1;  13 Y=10; 
3 EP=dr_create_endpoint(1);  14 EP=dr_create_endpoint(1); 
4 N2EP=dr_get_endpoint(2,1);  15 N2EP=dr_get_endpoint(2,1); 
5 N4EP=dr_get_endpoint(4,1);  16 N4EP=dr_get_endpoint(4,1); 
6 N5EP=dr_get_endpoint(5,1);  17 N5EP=dr_get_endpoint(5,1); 
7 dr_msg_send(EP,N2EP,X);  18 dr_msg_send(EP,N2EP,Y); 
8 dr_msg_send(EP,N4EP,X);  19 dr_msg_send(EP,N4EP,Y); 
9 dr_msg_send(EP,N5EP,X);  20 dr_msg_send(EP,N5EP,Y); 
10 dr_delete_endpoint(EP);  21 dr_delete_endpoint(EP); 
11 dr_finalize();  22 dr_finalize(); 
     
Node 2  Node 4 
23 dr_initialize(2);  39 dr_initialize(4); 
24 EP=dr_create_endpoint(1);  40 EP=dr_create_endpoint(1); 
25 N4EP=dr_get_endpoint(4,1);  41 dr_msg_recv_i(EP,&D,&R1); 
26 N5EP=dr_get_endpoint(5,1);  42 dr_msg_recv_i(EP,&E,&R2); 
27 dr_msg_recv_i(EP,&A,Rs[0]);  43 dr_msg_recv(EP,&F); 
28 dr_msg_recv_i(EP,&B,Rs[1]);  44 while(!dr_test(R1)); 
29 if(dr_wait_any(Rs,2)==0)  45 dr_wait(R2); 
30  dr_wait(Rs[1]);  46 dr_delete_endpoint(EP); 
31 else  47 dr_finalize(); 
32  dr_wait(Rs[0]);    
33 dr_assert(A>B)  Node 5 
34 C=Func(A,B);  48 dr_initialize(5); 
35 dr_msg_send(EP,N4EP,C);  49 EP=dr_create_endpoint(1); 
36 dr_msg_send(EP,N5EP,C);  50 dr_msg_recv(EP,&G); 
37 dr_delete_endpoint(EP);  51 dr_msg_recv(EP,&H); 
38 dr_finalize();  52 dr_msg_recv(EP,&I); 
   53 dr_delete_endpoint(EP); 
   54 dr_finalize(); 

Fig. 8. Pseudocode of an MCAPI Program 



3.2 DR-MCAPI Data-replay 

During a recording execution, the contents of all received messages at all nodes are stored. During 

a replay execution, it is possible that some nodes are run while others are simulated. The messages 

sent by the simulated processes originate from the trace and not from the program execution. The 

data-replay approach generates a huge trace. However, it allows replaying one or more specific 

nodes. First, we describe the data-relay trace structure in section ‎3.2.1 and then the data-replay 

replay mechanism in section ‎3.2.2. 

3.2.1 The Trace Structure 

When an instrumented program   is run in the recording mode, a separate trace is generated for 

each MCAPI node: 

                        , where   is the number of nodes in program  . 

A‎node’s‎trace‎contains‎a‎list‎of‎records: 

                                 , where   is a node identifier. 

A trace record may be any of six types: 

                                                                 

 

A      record originates from a dr_msg_recv call and is defined as a tuple:           
              .      is the port number of the receiving endpoint.           is the 

invocation order of this particular dr_msg_recv call among other dr_msg_recv calls at this node. 

     is the payload of the received message.  

A      record originates from a dr_wait call whose input request variable was 

initialized by a dr_msg_recv_i call and is defined as tuple:                       . 

             is the initialization order of the input request variable at the current node.  

A          record comes from a dr_wait_any call that returned the index of a request 

variable that was initialized by a dr_msg_recv_i call and is defined as tuple:          
                    .           is the invocation order of this particular 

dr_wait_any call among other dr_wait_any calls at this node.       is the index returned by the 

dr_wait_any call. 

The record             is defined as tuple:                       
      and indicates that a dr_wait_any call returned the index of a request variable that was 

initialized by a non-blocking function other than dr_msg_recv_i. 

An             originates from a sequence (one or more) of dr_test calls whose input 

request variable was initialized by a dr_msg_recv_i call and does retrieve a message from the 

runtime buffers. It is defined as tuple                                     , such that 

             is the initialization order of the input request variable at the current node and 

      is the number of times the dr_test call had failed, before succeeding and retrieving a 

message.  

Similarly,                                   record stems from a sequence of 

dr_test calls. However, the                record indicates that no messages were retrieved 

from the runtime buffers. That occurs when the input request variable was initialized by a non-

blocking function other than dr_msg_recv_i or when the input request variable was initialized by 

a dr_msg_recv_i call and the sequence of dr_test calls‎ doesn’t‎ retrieve‎ a‎ message‎ from‎ the‎

runtime buffers. Table 1 shows a trace of the example program in Fig. 8:  
 

Table 1. Data-replay trace of the program in Fig. 8 

Node 2 Node 4 Node 5 

A:1/0/D1 R:1/1/D1 R:1/1/D1 

W:2/D2 T:1/10/D2 R:1/2/D2 

 W:2/D3 R:1/3/D3 

 

Since‎ nodes‎ 1‎ and‎ 3‎ don’t‎ receive‎ any‎ messages,‎ they‎ don’t‎ produce‎ traces.‎ The‎ trace‎ record‎

(A:1/0/D1) is described as follows:‎‘A’‎indicates‎a‎         record. Number 1 is the invocation 

order of the dr_wait_any call that generated          record. Number 0 is the value that 



dr_wait_any returned. D1 signifies the payload of the retrieved message. The fields of the trace 

record (W:2/D1) are described as follows:‎ ‘W’‎ indicates‎ a‎      record. Number 2 is the 

initialization order of the dr_wait input request variable. D2 signifies the payload of the retrieved 

message.  

The fields of the trace record (R:1/1/D1) are described as follows:‎ ‘R’‎indicates‎a‎     

record. The first number 1 is the port number of the receiving endpoint. The second number 1 is 

the invocation order of the dr_msg_recv call that generated this      record. D1 signifies the 

payload of the received message.  

The fields of the trace record (T:1/10/D2) are described as follows: ‘T’‎ indicates‎ an‎

            record. Number 1 is the initialization order of the dr_test input request variable. 

Number 10 is the number of failed dr_test calls. D2 signifies the payload of retrieved message. 

3.2.2 The Replay Mechanism 

We now describe how a trace is used to replay an execution. To achieve a correct and 

deterministic replay of a program, it is necessary to associate endpoints, request variables and 

certain calls that were observed during the recording mode with their counterparts in the replay 

mode. An endpoint that is observed in the replay mode is associated with an endpoint that is 

observed in the recording mode via the node identifier and the port number; both remain the same 

across executions.  

Request variables are tracked across an execution in the recording mode and an execution 

in the replay mode using their order of initialization in a node. Similarly, dr_msg_recv and 

dr_wait_any calls are tracked by their invocation order with respect to other dr_msg_recv and 

dr_wait_any calls, respectively, in the same node. 

During replay, DR-MCAPI maintains two data structures for each node: 1)        : a 

list of trace records (i.e.     ,     ,         ,         ,            ,                

and            ). This list is constructed directly from the trace. 2)                 : a list 

of request variables per node. This list combines data from the trace and data that are obtained on-

the-fly. When a request variable is initialized (by being passed to a non-blocking call), a new item 

is appended to this list. If the request variable was initialized by a non-blocking receive call, then 

we keep track of the receiving endpoint and the destination buffer pointer. If the trace indicates 

that dr_test calls were used to check the status of this request in the recording mode, then the 

number of failed tests is retrieved from the trace and associated with that request. All newly 

initialized requests are flagged as incomplete. All MCAPI routine calls that introduce non-

determinism are handled by the DR-MCAPI library, rather than the MCAPI library. 

The algorithm in Fig. 9 shows how dr_msg_recv calls are handled during replay. First, 

RecvCalls is incremented. RecvCalls keeps track of the number of dr_msg_recv function 

invocations at the node. Second, the GetRecvRecord procedure looks up the         list to fetch 

the      record with          =RecvCalls. Finally, the message payload in the      record is 

copied to the program buffer (lines 4-5). The fact that the GetRecvRecord call determines which 

message will be delivered next is what allows dr_msg_recv to be deterministic.  

 
dr_msg_recv(Endpoint, &Buffer){ 
1 RecvCalls++; 
2 PortNum=GetPortNumber(Endpoint); 
3 RecvRecord=GetRecvRecord(RecvCalls); 
4 Data=RecvRecord.Data; 
5 copy(Buffer,&Data); 
6 return; 
}  

Fig. 9. Handling dr_msg_recv calls 

 

The algorithm in Fig. 10 shows how DR-MCAPI handles dr_wait calls. If the input request was 

not initialized by a dr_msg_recv_i call, then it is forwarded to the MCAPI library (lines 1-3). 

Otherwise, the initialization order and a pointer to the program buffer of this request are retrieved 

(lines 4-5).  



Next, the GetWaitRecord procedure looks up the         list to fetch the      record 

with             =Order. Finally, the message payload in the      record is copied to the 

program buffer (lines 7-8). 

 
dr_wait(Request) { 
1 if not IsRecvRequest(Request) then 
2   return mcapi_wait(Request); 
3 end-if 
4 Order=GetOrder(Request); 
5 DataPtr=GetDataPtr(Request); 
6 WaitRecord=GetWaitRecord(Order); 
7 Data=WaitRecord.Data; 
8 copy(DataPtr,&Data); 
9 return; 
}  

Fig. 10. Handling dr_wait calls 

 

Fig. 11 describes how DR-MCAPI handles dr_wait_any calls. First, WaitanyCalls is 

incremented (line 1). WaitanyCalls keeps track of the number of dr_wait_any function 

invocations at the node. If the current dr_want_any call‎ doesn’t‎ retrieve‎ a‎ message,‎ then‎ the‎

GetNonRecvWaitanyRecord procedure looks up the         list to fetch the             

record with          =WaitanyCalls (line 3). In line 4, the       in the             is 

retrieved and the request in the Requests array at       will be forwarded to the MCAPI library 

(line 5). Finally,       is returned to the program (line 6). 

 If the current dr_want_any call does retrieve a message, then the 

GetRecvWaitanyRecord procedure looks up the         list to fetch the          record 

with          =WaitanyCalls (line 8). In line 9, the       in the          is used to 

retrieve the program data pointer associated with the request in the Requests array at      . 

Finally, the message data in the          record is copied to the program buffer (lines 11-12) 

and       is returned to the program (line 13). 

 
dr_wait_any(Requests,RsCount){ 
1 WaitanyCalls++; 
2 if not RecvWany(WaitanyCalls) then 
3  NonRecvWanyRecord=GetNonRecvWaitanyRecord(WaitanyCalls); 
4  Index=NonRecvWanyRecord.Index; 
5  mcapi_wait(Requests[Index]); 
6  return Index; 
7 else 
8  RecvWanyRecord=GetRecvWaitanyRecord(WaitanyCalls); 
9  Index=RecvWanyRecord.Index; 
10  DataPtr=GetDataPtr(Requests[Index]); 
11  Data=RecvWanyRecord.Data; 
12  copy(DataPtr,&Data); 
13  return Index; 
14 end-if 
}  

Fig. 11. Handling dr_wait_any calls 

 

A dr_test call is handled by the algorithm in Fig. 12. First, the initialization order of the input 

request variable (Request) is retrieved (line 1). If that request variable is associated with a 

               record, then the       of this record is reduced by one (line 4). If       

reaches zero, the request is forwarded to the MCAPI runtime and true is returned to the program 

(lines 8-9). If that request variable is associated with a             record, then the       of this 

record is reduced by one (line 13). If       reaches zero, the request is passed to dr_wait and 

true is returned to the program (lines 17-18). As long as the value of       is greater than zero, 

false is returned.  

 



bool dr_test(Request){ 
1 Order=GetOrder(Request); 
2 if not ArrivalTest(Order) then 
3  NonArrivalTest=GetNonArrivalTest(Order); 
4  NonArrivalTest.Count--; 
5  if NonArrivalTest.Count>0 then 
6   return false; 
7  else 
8   mcapi_wait(Request); 
9   return true; 
10  end-if 
11 else 
12  ArrivalTest=GetArrivalTest(Order); 
13  ArrivalTest.Count--; 
14  if ArrivalTest.Count>0 then  
15    return false; 
16  else 
17   dr_wait(Request); 
18   return true; 
19  end-if 
20 end-if 
}  

Fig. 12. Handling dr_test calls 

3.3 DR-MCAPI Order-replay 

In order-replay, the outcomes of non-deterministic operations are recorded during a recording 

execution and are enforced during the replay execution. All nodes must be running during replay. 

Since in order-replay only the outcomes of non-deterministic operations are recorded, far less data 

than data-replay is recorded. We have developed two techniques for realizing order-replay: 

sender-based order-replay (described in section ‎3.3.1) and receiver-based order-replay (described 

in section ‎3.3.2).   

3.3.1 Sender-based Order-replay 

Sender-based order-replay works by capturing the total order of messages arrival during the 

recorded execution and enforcing this order during the replay execution by changing the order of 

dispatching dr_msg_send (and dr_msg_send_i) calls to the MCAPI runtime. First, we describe 

the sender-based order-replay trace structure in section ‎3.3.1.1 and then its replay mechanism in 

section ‎3.3.1.2.  

3.3.1.1 The Trace Structure 

In the sender-based order-replay technique, a single trace is generated for the whole program: 

                                and there are three record types in the trace: 

                      
A      record represents sending a message between two endpoints and is defined as tuple: 

                            .      is the identifier of the sending node.      is 

the port number of the sending endpoint.           is the invocation order of the particular 

dr_msg_send (or dr_msg_send_i) call among other dr_msg_send (and dr_msg_send_i) calls at 

the same node.     stands for Unique Order of Arrival which is a global number assigned to 

every received message and it establishes a total order of arrivals among all received messages in a 

program. A      record is constructed in two steps: 

1) When a dr_msg_send (or a dr_msg_send_i) is invoked, the message payload is 

augmented with the triple {    ,     ,          }.  

2) When a message is retrieved from the runtime buffers (by dr_msg_recv, dr_wait, 

dr_wait_any or dr_test call), it is assigned the     number.     is monotonically 

increasing with every received message throughout the program.  



A      record stems from a dr_wait_any call and is defined as                 
     .      is the identifier of the current node.       is the invocation order of this particular 

dr_wait_any call among other dr_wait_any calls at the same node.       is the index returned 

by the dr_wait_any call.  

A      record originates from a sequence (one or more) of dr_test calls and is defined 

as                              , such that      is the identifier of the current node, 

             is the initialization order of the input request variable at the current node and 

      is the number of times the dr_test call had failed. Table 2 shows a trace of the example 

program in Fig. 8. 

 

Table 2. Sender-based order-replay trace of the program in Fig. 8 

Node 1 Node 2 Node 3 Node 4 

S:1/1/1/1 A:2/1/0 S:3/1/1/2 T:4/1/10 

S:1/1/2/3 S:2/1/1/5 S:3/1/2/4  

S:1/1/3/7 S:2/1/2/6 S:3/1/3/8  

 

Since node 5 neither sends messages, nor has dr_test or dr_wait_any calls, it doesn’t contribute 

to the trace. The trace record (S:1/1/1/1) was generated by the dr_msg_send call in line 7 and the 

dr_wait_any call‎at‎line‎29.‎Its‎fields‎are‎described‎as‎follows:‎‘S’‎indicates‎a‎     record. The 

first number 1 is the node identifier. The second number 1 is the port number of the sending 

endpoint. The third number 1 is the invocation order of the dr_msg_send call. The fourth number 

1 is the UAO which indicates that the message sent by this dr_msg_send call was the first to be 

received in the recorded execution.  

The trace record (A:2/1/0) was generated by the dr_wait_any call at line 29. Its fields are 

described‎as‎follows:‎‘A’‎indicates‎a‎     record. Number 2 is the node identifier. Number 1 is 

the invocation order of this dr_wait_any call. Number 0 is the value returned by the dr_wait_any 

call.  

The trace record (T:4/1/10) was generated by the dr_test call in line 44 and its fields are 

described‎as‎follows:‎‘T’‎indicates‎a‎     record. Number 4 is the node identifier. Number 1 is the 

dr_test call input request variable initialization order. Number 10 is the number of times the 

dr_test call was invoked. 

3.3.1.2 The Replay Mechanism 

We now describe how a trace is used to replay an execution. When a program is run in the replay 

mode, four data structures are created:  

1)            : a list of all      records from the trace.  

2)                 : a list of request variables per node. This list combines data from the 

trace and data that are obtained on-the-fly.  

3)            : a list of      records that are obtained from the trace  

4)            : a list of      records that are retrieved from the trace.  

 

In the replay mode, sending a message is a three step process as depicted in Fig. 13: 

DR-MCAPIDR-MCAPIApplicationApplication

Posted

PendingDelivered

New dr_msg_send

SendCallsScheduler 

dr_msg_recv

dr_wait

...

 
Fig. 13. The three steps of sending a message 



1) When a dr_msg_send (or a dr_msg_send_i) is invoked by the program, the 

corresponding      record in the             list is set to Posted. 

2) The algorithm                    in Fig. 14 continuously monitors the             

list. If                    finds a      record whose state is Posted and whose     

equals to LatestUAO, this record state is set to Pending and a corresponding 

dr_msg_send (or dr_msg_send_i) is invoked to actually send a message.  

3) When a message is received (via a call to dr_msg_recv, dr_wait, dr_test, or a 

dr_wait_any), its state is set to Delivered.   

 
SendCallsScheduler(){ 
1 LatestUAO=0; 
2 Max=Size(SendRecords); 
3 while(LatestUAO<Max) do 
4   if (there are no pending send calls) then 
5       = SendRecords.GetRecord(UAO); 
6     if (  is posted) 
7       LatestUAO++; 
8       Set   state to pending; 
9       Forward   to the MCAPI runtime; 
10     end-if 
11   end-if 
12 end-while 
}  

Fig. 14. The SendCallsScheduler Algorithm 

 

Fig. 15 shows how dr_wait_any calls are handled during replay. First, WaitanyCalls is 

incremented. WaitanyCalls keeps track of the number of dr_wait_any function invocations at 

the node. Second, the GetWaitanyRecord procedure looks up the             list to fetch the 

     record with      =WaitanyCalls (line 2). In line 3, the       in the      is retrieved 

and the request in the Requests array at       will be forwarded to the MCAPI library (line 4). 

Finally,       is returned to the program. 

 
dr_wait_any(Requests,RsCount){ 
1 WaitanyCalls++; 
2 WanyRecord=GetWaitanyRecord(WaitanyCalls); 
3 Index=WanyRecord.Index; 
4 mcapi_wait(Requests[Index]); 
5 return Index; 
}  

Fig. 15. Handling dr_wait_any calls 

 

A dr_test call is handled by the algorithm in Fig. 16. First, the initialization order of the input 

request variable (Request) is retrieved (line 1). Then, the Test record associated with this 

initialization order is retrieved from the             list (line 2). Next, the       of this record 

is reduced by one (line 3). When       reaches zero, the request is passed to mcapi_wait and 

true is returned to the program (lines 7-8).  
bool dr_test(Request){ 
1 Order=GetOrder(Request); 
2 Test=GetTest(Order); 
3 Test.Count--; 
4 if Test.Count>0 then 
5  return false; 
6 else 
7  mcapi_wait(Request); 
8  return true; 
9 end-if 
}  

Fig. 16. Handling dr_test calls 



We use Table 3 and Table 4 to illustrate how the sender-based order-replay works. Table 3 shows 

a list of the dr_msg_send calls that appear in the example program and has three columns. The 

Line column shows the line numbers of the dr_msg_send calls. The Name column assigns names 

to the dr_msg_send calls. We use these names for brevity. The UAO column lists the UAO 

associated with the dr_msg_send calls according to the trace in Table 2.  

 

Table 3. Sender-based order-replay example 

Line Name UAO 

7 S1 1 

8 S2 3 

9 S3 7 

18 S4 2 

19 S5 4 

20 S6 8 

34 S7 5 

35 S8 6 

 

Now, it is possible that in an execution the dr_msg_send calls are invoked according to this order: 

S4, S5, S1, S2, S3, S6, S7, and finally S8. Table 4 describes how the DR-MCAPI library will 

handle the dr_msg_send calls such that the messages order of arrival that was observed in the 

recording mode will be exhibited during the replay mode.  

 

Table 4. Handling dr_msg_send example 

Program Event DR-MCAPI Library Action 

S4 is invoked 1) S4      record is set to Posted. 

2) S4 will be blocked by the SendCallsScheduler procedure, since there 

are other dr_msg_send calls with smaller UAO (S1) that were not 

delivered yet. 

S5 is invoked 1) S5      record is set to Posted. 

2) S5 will be blocked by the SendCallsScheduler procedure, since there 

are other dr_msg_send calls with smaller UAO (S1, S2, and S4) that 

were not delivered yet. 

S1 is invoked 1) S1      record is set to Pending. 

2) S1 message is forwarded to the MCAPI runtime. 

S1 message is received 1) S1      record is set to Delivered. 

2) S4      record is set to Pending. 

3) S4 message is forwarded to the MCAPI runtime. 

S4 message is received 1) S4      record is set to Delivered. 

2) S5 is still blocked since S2 (which has a smaller UAO) is not delivered yet. 

S2 is invoked 1) S2      record is set to Posted. 

2) S2 message is forwarded to the MCAPI runtime. 

S2 message is received 1) S2      record is set to Delivered. 

2) S5      record is set to Pending. 

3) S5 message is forwarded to the MCAPI runtime. 

S5 message is received. 1) S5      record is set to Delivered. 

S3 is invoked 1) S3      record is set to Posted. 

2) S3 will be blocked by the SendCallsScheduler procedure, since there 

are other dr_msg_send calls with smaller UAO (S7 and S8) that were 

not delivered yet. 

S6 is invoked 1) S6      record is set to Posted. 

2) S6 will be blocked by the SendCallsScheduler procedure, since there 

are other dr_msg_send calls with smaller UAO (S3 and S8) that were 

not delivered yet. 



S7 is invoked 1) S7      record is set to Pending. 

2) S7 message is forwarded to the MCAPI runtime. 

S7 message is received 1) S7      record is set to Delivered. 

S8 is invoked 1) S8      record is set to Posted. 

2) S8 message is forwarded to the MCAPI runtime. 

S8 message is received 1) S8      record is set to Delivered. 

2) S8      record is set to Pending. 

3) S3 message is forwarded to the MCAPI runtime. 

S3 message is received 1) S3      record is set to Delivered. 

2) S6      record is set to Pending. 

3) S6 message is forwarded to the MCAPI runtime. 

S6 message is received 1) S6      record is set to Delivered. 

 

Table 4 shows that regardless to the order of dr_msg_send invocations observed in the replay 

executions, messages will be delivered according to the order observed in the recorded execution. 

3.3.2 Receiver-based Order-replay 

Maintaining the UAO variable and the             list requires shared-memory and 

synchronizing access to it via the MRAPI API [10]. This leads to excessive time overhead as 

shown by the experiments in section 4.3. The receive-based order-replay described in this section 

requires less time overhead than sender-based order-replay. Receiver-based order-replay works by 

capturing the order of messages arrival at a specific node during the recording phase and enforcing 

this order during the replay phase by manipulating the order of the messages retrieved from the 

runtime buffers. The order of messages arrival is established using a hash-code of the message’s 

payload.  

First, we describe the receiver-based order-replay trace structure in section ‎3.3.2.1 and 

then its replay mechanism in section ‎3.3.2.2. 

3.3.2.1 The Trace Structure 

When an instrumented program   is run in the recording mode, a separate trace is generated for 

each MCAPI node: 

                        , where   is the number of nodes in program  . 

A‎node’s‎trace‎contains‎a‎list‎of‎records: 

                                 , where   is a node identifier. 

There are six types of records: 

                                                                 
 

A      record originates from a dr_msg_recv call and is defined as tuple           
              .      is the port number of the receiving endpoint.           is the 

invocation order of this particular dr_msg_recv call among other dr_msg_recv calls with the 

same endpoint.      is a hash-code of the received message data and is calculated using the 

CRC-32 algorithm [23]. 

A      record originates from a dr_wait call whose input request variable was 

initialized by a dr_msg_recv_i call and is defined as                       . 

             is the initialization order of the input request variable at the current node.  

A          record comes from a dr_wait_any call that returned the index of a request 

variable that was initialized by a dr_msg_recv_i call and is defined as:          
                    .           is the invocation order of this particular 

dr_wait_any call among other dr_wait_any calls at this node.       is the index returned by the 

dr_wait_any call.      is a hash-code of the received message data.  

The record             is defined as:                             and 

indicates that a dr_wait_any call returned the index of a request variable that was initialized by a 

non-blocking function other than dr_msg_recv_i. 



An             record originates from a sequence (one or more) of test calls whose input request 

variable was initialized by a dr_msg_recv_i call and does retrieve a message from the runtime 

buffers. It is defined as                                     , such that 

             is the initialization order of the input request variable at the current node,      is 

a hash-code of the received message data and       is the number of times the dr_test call had 

failed, before succeeding and retrieving a message.  

Similarly,                record stems from a sequence of dr_test calls. However, 

the                record indicates that no messages were retrieved from the runtime buffers. 

That occurs when the input request variable was initialized by a non-blocking function other than 

dr_msg_recv_i or when the input request variable was initialized by a dr_msg_recv_i call and 

the sequence of dr_test calls‎doesn’t‎retrieve‎a‎message‎from‎the‎runtime‎buffers. 

 

Table 5. Receive-based order-replay trace 

Node 2 Node 4 Node 5 

A:1/0/C1 R:1/1/C1 R:1/1/C1 

W:2/C2 T:1/10/C2 R:1/2/C2 

 W:2/C3 R:1/3/C3 

 

Since‎ nodes‎ 1‎ and‎ 3‎ don’t‎ receive‎ any‎ messages,‎ they‎ don’t‎ produce‎ traces.‎ The‎ trace‎ record‎

(A:1/0/C1) is described as follows:‎‘A’‎indicates‎a‎         record. Number 1 is the invocation 

order of the dr_wait_any call that generated          record. Number 0 is the value that 

dr_wait_any returned. C1 signifies the hash-code of the payload of the retrieved message. 

The fields of the trace record (W:2/C1) are described as follows:‎ ‘W’‎ indicates‎a‎     

record. Number 2 is the initialization order of the dr_wait input request variable. C2 signifies the 

hash-code of the payload of the retrieved message.  

The fields of the trace record (R:1/1/C1) are described as follows:‎ ‘R’‎indicates‎a‎     

record. The first number 1 is the port number of the receiving endpoint. The second number 1 is 

the invocation order of the dr_msg_recv call that generated this      record. C1 signifies the 

hash-code of the payload of the retrieved message. 

The fields of the trace record (T:1/10/C2) are described as follows:‎ ‘T’‎ indicates‎ an‎

            record. Number 1 is the initialization order of the dr_test input request variable. 

Number 10 is the number of failed dr_test calls. C2 signifies the hash-code of the payload of the 

retrieved message. 

3.3.2.2 The Replay Mechanism 

We now describe how a trace is used to replay an execution. To support the replay mode, we 

maintain three data structures: 

  

1)        : a list of records (e.g.     ,     …)‎that‎are‎retrieved‎from‎the‎trace. 

2)                 : a list of request variables per node. This list combines data from the 

trace and data that are obtained on-the-fly.  

3)                 : messages that arrive earlier than expected are stored in this list 

along with their hash-codes. 

 

The algorithm in Fig. 17 handles dr_msg_recv calls. First RecvCalls is incremented (line 1). 

RecvCalls keeps track of the number of dr_msg_recv function invocations at the node. Second, 

the GetRecvRecord procedure looks up the         list to fetch the      record with 

         =RecvCalls (line 2). Third, the hash-code of the expected message is retrieved (line 

3).  Next,                  is looked up for a message whose hash-code matches the expected 

hash-code. If such a message is found, then its data is copied to the program buffer (line 7). 

Otherwise, the mcapi_msg_recv is repeatedly invoked until it retrieves a message whose hash-

code matches the expected hash-code (lines 10-20). When the excepted message arrives, it is 

copied to the program buffer (line 15). All other messages and their hash-codes are appended to 

                 (line 19). 

 



dr_msg_recv(Endpoint, &Buffer) { 
1 RecvCalls++; 
2 RecvRecord=GetRecvRecord(RecvCalls); 
3 ExpectedCRC=RecvRecord.Hash; 
4 for Index=0 to RecievedMessages.size do 
5   if (RecievedMessages[Index].CRC==ExpectedCRC) 
6    then 
7     copy(Buffer, RecievedMessages[Index]); 
8     return; 
9   end-if 
10 while(true) do 
11   mcapi_msg_recv(Endpoint,&TempBuffer); 
12   ArrivedCRC=CalculateCRC(TempBuffer); 
13   if (ArrivedCRC==ExpectedCRC)  
14    then 
15     copy(Buffer, TempBuffer); 
16     return; 
17    end-if 
18   else 
19    RecievedMessages.Append(TempBuffer, ArrivedCRC); 
20 end-while 
}  

Fig. 17. Handling dr_msg_recv calls 

 

In the program in Fig. 8,‎ node‎ 5‎ receives‎ two‎messages.‎ Let’s‎ assume‎ that‎ when‎ running‎ that‎

program in the recording mode, it generates the trace in Table 5 (i.e. the order of messages arrival 

is C1, C2, and then C3) and that during running the program in the replay mode, the messages 

arrive with a different order: C2, C3, and then C1.  

When dr_msg_recv is invoked for the first time, the                  list will be 

empty. Hence, the while loop (lines 10-20) will iterate thrice. In the first iteration, the 

mcapi_msg_recv call will retrieve the message with hash-code C2. Since the retrieved message is 

not the excepted one, it will be added to the                  list (line 19).  

In the second iteration, the mcapi_msg_recv call will retrieve the message with hash-

code C3 and, it will be added to the                  list as well. In the third iteration, the 

message with hash-code C1 will be retrieved. So, this message will be delivered to the program 

(line 15). When dr_msg_recv is invoked for the second and third times, the                  

list will contain the expected messages and they will be returned to the program in the correct 

order (lines 4-9). 

Fig. 18 shows the algorithm that handles a dr_wait call whose input request variable was 

initialized by a msg_recv_i call. This algorithm depends on the                  list that links 

a request variable with the endpoint and the program buffer pointer that were passed to the 

msg_recv_i call.  

First, if the input request was not initialized by a dr_msg_recv_i call, then it is 

forwarded to the MCAPI library (lines 1-3). Otherwise, the hash-code of the expected message, 

the endpoint and the program buffer pointer associated with the input request variable are retrieved 

(lines 4-8). Second, mcapi_wait is invoked for all initialized (but not completed) requests at that 

node and retrieved messages and their hash-codes are appended to                  (lines 9-

17). Finally,                  is looked up for a message whose hash-code matches the 

expected hash-code. When such message is found, it is copied to the buffer associated with the 

input request variable (line 21). 

Fig. 19 describes how DR-MCAPI handles dr_wait_any calls. First, WaitanyCalls is 

incremented (line 1). WaitanyCalls keeps track of the number of dr_wait_any function 

invocations at the node. If the current dr_want_any call retrieves a message, then the 

GetRecvWanyRecord procedure looks up the         list to fetch the          record 

with          =WaitanyCalls (line 3). In line 4, the       in the          record is 

retrieved and the request in the Requests array at       will be forwarded to  dr_wait (line 5). 

 



dr_wait(Request) { 
1 if not IsRecvRequest(Request) then 
2   return mcapi_wait(Request); 
3 end-if 
4 InitOrder=GetInitOrder(Request); 
5 WaitRecord=GetWaitRecord(InitOrder); 
6 ExpectedCRC=WaitRecord.Hash; 
7 BufferPtr=GetBufferPtr(Request); 
8 Endpoint=GetEndpoint(Request); 
9 Requests=GetRequests(CurrentNode); 
10 for Index=0 to Requests.size() do 
11  if (Requests[Index].isComplete) then continue; 
12  mcapi_wait(Requests[Index]); 
13  ArrivedData=GetData(Requests[Index]); 
14  ArrivedCRC=CalculateCRC(ArrivedData); 
15  RecievedMessages.Append(ArrivedData,ArrivedCRC); 
16  Requests[Index].setComplete(); 
17  end-for 
18 for Index=0 to RecievedData.size() do 
19   if (RecievedMessages[Index].CRC==ExpectedCRC)  
20     then 
21     copy(BufferPtr, RecievedMessages[Index]); 
22     return; 
23   end-if 
24 end-for 
}  

Fig. 18. Handling dr_wait calls 

 

 If the current dr_want_any call‎ doesn’t‎ retrieve‎ a‎ message,‎ then‎ the‎ GetNRecvWanyRecord 

procedure looks up the         list to fetch the             record 

with          =WaitanyCalls (line 7). In line 8, the       in the             record is 

retrieved and the request in the Requests array at       will be forwarded to mcapi_wait (line 

9). Finally,       is returned to the program (line 11). 

 
dr_wait_any(Requests,RsCount) { 
1 WaitanyCalls++; 
2 if RecvWany(WaitanyCalls) then 
3  RecvWanyRecrd=GetRecvWanyRecord(WaitanyCalls); 
4  Index=RecvWanyRecord.Index; 
5  dr_wait(Requests[Index]); 
6 else 
7  NRecvWanyRecrd=GetNRecvWanyRecord(WaitanyCalls); 
8  Index=NRecvWanyRecrd.Index; 
9  mcapi_wait(Requests[Index]); 
10 end-if 
11 return Index; 
}  

Fig. 19. Handling dr_wait_any calls 

 

In the program in Fig. 8 ,‎ node‎ 2‎ receives‎ two‎messages.‎ Let’s‎ assume‎ that‎when‎ running‎ that‎

program in the recording mode, it generates the trace in the Table 5 (i.e. the order of messages 

arrival is C1 then C2 and that wait_any call returns 0) and that during running the program in the 

replay mode, the messages arrive with a different order: C2 then C1. When dr_wait_any is 

invoked, it is going to determine that the request at index 0 of the array          was initialized 

by a dr_msg_recv call and will forward this request to dr_wait. In dr_wait, the first loop (lines 

10-17) will retrieve the two messages via three calls to mcapi_wait (line 12) and they will be 

added to the                  list (line 15). The second loop (lines 18-24) will iterate through 

the                  list and will return the message with hash-code C1 to the program. When 



dr_wait is invoked to handle the wait call at line 30 in Figure 10, the message with hash-code C2 

will be already in the                  list and will be returned to the program. 

A dr_test call is handled by the algorithm in Fig. 20. First, the initialization order of the 

input request variable (Request) is retrieved (line 1). If that request variable is associated with an 

            record, then the       of this record is reduced by one (line 4). If       reaches 

zero, the request is forwarded to dr_wait and true is returned to the program (lines 8-9). If that 

request variable is associated with a                record, then the       of this record is 

reduced by one (line 13). If       reaches zero, the request is passed to mcapi_wait and true is 

returned to the program (lines 17-18). 

 
bool dr_test(Request){ 
1 InitOrder=GetInitOrder(Request); 
2 if ArrivalTest(InitOrder) then 
3  ArrivalTestRecord=GetArrivalTestRecord(Order); 
4  ArrivalTestRecord.Count--; 
5  if ArrivalTestRecord.Count>0 then  
6   return false; 
7  else 
8   dr_wait(Request); 
9   return true; 
10  end-if 
11 else 
12  NArrivalTestRecord=GetNArrivalTestRecord(Order); 
13  NArrivalTestRecord.Count--; 
14  if NArrivalTestRecord.Count>0 then  
15   return false; 
16  else 
17   mcapi_wait(Request); 
18   return true; 
19  end-if 
20 end-if 
}  

Fig. 20. Handling dr_test calls 

 

In the program in Fig. 8,‎ node‎ 4‎ receives‎ three‎ messages.‎ Let’s‎ assume‎ that‎ when‎ run‎ in‎ the‎

recording mode, this program generates the trace in Table 5 (i.e. three messages are retrieved with 

order: C1, C2, and then C3 and that the dr_test call at line 44 retrieves the messages with hash-

code C2 at the 11
th

 invocation)‎ .‎ Let’s‎ assume‎ that‎ during‎ replay,‎ the‎ messages‎ arrive‎ with‎ a‎

different order (C2, C1, and then C3).  When the dr_msg_recv call at line 43 is invoked, 

messages with hash-codes C1 and C2 will be retrieved from the runtime buffers and C1 will be 

returned to the program. When the dr_test call at line 43 is invoked, it will return false for 10 

times and at the 11
th

 invocation, it will invoke dr_wait. dr_wait will find the message with hash-

code C2 in the                  list. When the dr_wait call at line 45 is invoked, it will 

retrieve the message with hash-code C3. 

4. EXPERIMENTAL RESULTS 

In this section we analyze the performance of the replay approaches in terms of trace size, memory 

usage and runtime overheads. 

4.1 Methodology 

We performed experiments on three sets of MCAPI programs developed by ourselves (BT, CG 

and TN) and a set of programs (Bully) obtained from an external source [16]. Our experiments 

were conducted on a machine with Core 2 Duo 1.4 GHz CPU and 4GB RAM using MCAPI 

runtime V1.063. We evaluate DR-MCAPI using the following set of programs: 

1) Binary Tree benchmark (BT): This is a set of 10 programs that create networks of nodes 

with sizes from 3 nodes to 21 nodes. Each two nodes send a message to the same parent 

node forming a binary tree in which messages travel from the leaves to the root node. The 



smallest tree has 3 nodes and exchanges 20 messages. The largest one has 21 nodes and 

exchanges 155 messages. This benchmark has a master/slave communication pattern. 

2) Complete Graph benchmark (CG): This is a set of 10 programs that create networks of 

nodes with increasing sizes from 2 nodes to 11 nodes. All nodes send and receive 

messages to/from each other forming a complete graph. The number of exchanged 

messages is between 20 message (for a 2 nodes graph) and 1100 messages (for a 11 

nodes graph). This benchmark has an all-to-all communication pattern. 

3) 10-nodes benchmark (TN): This is a set of 10 programs that create networks of nodes 

with a fixed size of 10 nodes. However, the number of messages exchanged among the 

nodes increases monotonically. The number of messages exchanged is between 90 and 

900. This benchmark allows us to isolate the effect of the number of messages on 

performance. 

4) Bully benchmark (Bully): This is a set of 10 programs that create of networks of nodes 

with different sizes and use the Bully leader selection algorithm [9] to select a leader 

node. The number of exchanged messages is between 35 messages (for a 3 nodes 

network) and 314 messages (for a 12 nodes network).  This benchmark was provided by 

the V&V research group at Brigham Young University. 

In all benchmarks, except the Bully benchmark, the message size is 50 bytes. The Bully 

benchmark message size is 4 bytes. 

To analyze the runtime and memory usage, a given program is executed three times: 1) 

without the DR-Library, 2) with the DR-MCAPI library in recording mode and 3) with the DR-

MCAPI library in replay mode. These three executions are repeated forty times and the results are 

averaged. We use a pair of gettimeofday function calls; when a program starts execution and 

when it ends execution to calculate total runtime and use the Massif [18] heap profiler to measure 

the heap memory used by a given execution. For the sake for brevity, we refer to data-replay as D-

Replay, sender-based order-replay as S-Replay, and receiver-based order-replay as R-Replay. 

4.2 Log size  

Our first analysis is for the trace size. Fig. 21 shows the trace size relative to the number of 

exchanged messages using the D-Replay, S-Replay and R-Replay techniques. The x-axis is the 

number of messages and the y-axis is the trace size in kilobytes. 

 

  

(a) BT benchmark results (b) CG benchmark results 

  

(c) TN benchmark results (d) Bully benchmark results 

Fig. 21. Comparing the trace size among replay techniques 

  



D-Replay produces a large trace compared to R-Replay and S-Replay in the benchmarks BT, CG, 

and TN. However, it is the opposite with the Bully benchmark. This is due to the small size of the 

messages exchanged in the Bully benchmark (4 bytes) compared to the other benchmarks (50 

bytes). Table 6  shows the typical record size in the three replay techniques.  

 

Table 6. Records structures and sizes in D-Replay, S-Replay and R-Replay 

Technique Typical Record Structure Record Size 

(Bytes) 

D-Replay                           1+4+sizeof(    ) 

S-Replay                               1+1+4+4 

R-Replay                           1+4+8 

 

In D-Replay, the record size is 5 bytes plus the size of the message payload. Hence, in the Bully 

benchmark, the size of a trace record is 9 bytes, which is less than 13 bytes and 10 bytes for the S-

Replay and R-Replay, respectively. 

4.3 Runtime Overhead 

Fig. 22, Fig. 23 and Fig. 24 compare the running times of a baseline execution, a recorded 

execution and a replay execution for the four benchmarks when using the D-Replay, S-Replay and 

R-Replay techniques, respectively. The x-axis shows the program name and y-axis shows the time 

in milliseconds.  

 

  
(a) BT benchmark results (b) CG benchmark results 

  
(c) TN benchmark results (d) Bully benchmark results 

Fig. 22. The runtime overhead in D-Replay 

 

In D-Replay (Fig. 22), runtime overhead during recorded executions are 1.8x, 1.5x, 1.5x and 1.9x 

in the BT, CG, TN and Bully benchmarks, respectively. The average runtime overhead is 1.7x. 

However, replay executions runtime is less than baseline executions. This is due to two reasons: 1) 

during a replay execution, only one node is being replayed; 2) messages are not actually being sent 

but their arrival is being simulated. Hence, messages transfer time is eliminated.  

In S-Replay (Fig. 23), runtime overhead during recorded executions are 2.6x, 3.3x, 4.2x 

and 2.0x in the BT, CG, TN and Bully benchmarks, respectively. The average runtime overhead is 

3.0x. Runtime overhead during replay executions are 5.6x, 4.6x, 5.4x and 3.5x in the BT, CG, TN 

and Bully benchmarks, respectively. The average runtime overhead is 4.7x. 



  
(a) BT benchmark results (b) CG benchmark results 

  
(c) TN benchmark results (d) Bully benchmark results 

Fig. 23. The runtime overhead in S-Replay 

 

In R-Replay (Fig. 24), runtime overhead during recorded executions are 1.5x, 1.3x, 1.3x and 1.4x 

in the BT, CG, TN and Bully benchmarks, respectively. The average runtime overhead is 1.4x. 

Runtime overhead during replay executions are 2.3x, 1.9x, 1.8x and 1.6x in the BT, CG, TN and 

Bully benchmarks, respectively. The average runtime overhead is 1.9x. 

 

  
(a) BT benchmark results (b) CG benchmark results 

  
(c) TN benchmark results (d) Bully benchmark results 

Fig. 24. The runtime overhead in R-Replay 

4.4 Memory Usage Overhead 

Fig. 25, Fig. 26 and Fig. 27 compare the memory usage of a baseline execution, a recorded 

execution and a replay execution for the four benchmarks when using the D-Replay, S-Replay and 

R-Replay techniques, respectively. The x-axis shows the program name and y-axis shows the 

memory usage in milliseconds.  



 

  
(a) BT benchmark results (b) CG benchmark results 

  
(c) TN benchmark results (d) Bully benchmark results 

Fig. 25. The memory usage overhead in D-Replay 

 

In D-Replay (Fig. 25), memory usage overhead during recorded executions are 2.6x, 8.0x, 7.5x 

and 6.0x in the BT, CG, TN and Bully benchmarks, respectively. The average runtime overhead is 

6.0x. Memory usage overhead during replay executions are 1.3x, 2.7x, 2.3x and 2.7x in the BT, 

CG, TN and Bully benchmarks, respectively. The average runtime overhead is 2.2x.  

In S-Replay (Fig. 26), memory usage overhead during recorded executions are 2.1x, 2.8x, 

2.6x and 2.0x in the BT, CG, TN and Bully benchmarks, respectively. The average runtime 

overhead is 2.4x. Memory usage overhead during replay executions are 3.0x, 2.8x, 2.6x and 2.6x 

in the BT, CG, TN and Bully benchmarks, respectively. The average runtime overhead is 2.7x. 

 

  
(a) BT benchmark results (b) CG benchmark results 

  
(c) TN benchmark results (d) Bully benchmark results 

Fig. 26. The memory usage overhead in S-Replay 

 



 

In R-Replay (Fig. 27), Memory usage overhead during recorded executions are 2.7x, 2.9x, 3.0x 

and 2.8x in the BT, CG, TN and Bully benchmarks, respectively. The average runtime overhead is 

2.8x. Memory usage overhead during replay executions are 2.7x, 3.1x, 3.2x and 2.9x in the BT, 

CG, TN and Bully benchmarks, respectively. The average runtime overhead is 3.0x. 

 

  
(a) BT benchmark results (b) CG benchmark results 

  
(c) TN benchmark results (d) Bully benchmark results 

Fig. 27. The memory usage overhead in R-Replay 

5. DISCUSSION 

In this section we discuss the features of DR-MCAPI such as usability, portability and scalability.  

5.1 Usability 

DR-MCAPI is a push-button solution.‎The‎user‎needn’t‎to‎change‎the‎source‎code‎or‎change/re-

compile the MCAPI library. Using DR-MCAPI involves three steps: 1) instrumenting the source 

code, 2) compiling the instrumented program, and 3) running the generated executable. These 

steps are easily automated using a batch script or could be incorporated into the MCAPI 

compilation chain. DR-MCAPI handles program crashes arising from assertion failures. Assert 

calls are instrumented such that when the assertion expression evaluates to false during the 

recording phase, the logged trace is dumped to the disk before allowing the program to crash. 

5.2 Portability 

DR-MCAPI‎doesn’t‎require‎hardware‎amendments‎and‎since‎it‎sits‎as‎layer‎between‎the‎program‎

and the MCAPI library, it is portable across different implementations of the MCAPI 

specification. For example, DR-MCAPI is usable with the OpenMCAPI [13] implementation 

without any changes.  

5.3 Scalability  

Now, we discuss the scalability of DR-MCAPI in terms of the trace size, runtime and memory 

overheads. The trace size scales linearly with the number of messages exchanged. However, since 

in D-Replay the message payload itself is stored in the trace, the sizes of the messages affect the 

trace size resulting in larger traces. The S-Replay and R-Replay trace record sizes are independent 

of the message payload size.  

A major factor affecting the scalability of DR-MCAPI is the time overhead, especially 

during a recorded execution. A replay execution is only needed when a failure takes place and the 



developer needs to scrutinize the details. S-Replay encounters high runtime overhead during a 

recorded execution since all messages payloads are modified before being sent and are unpacked 

and processed after being received. On the other side, R-Replay has the least runtime overhead 

during recording since messages are accessed once (at the receiving node) to calculate the hash-

code. S-Replay exhibits a very high runtime overhead during a replay execution since it 

manipulates the orders of executing dr_msg_send (and dr_msg_send_i) calls across the whole 

program and not within a node similar to R-Replay.  D-Replay incurs the least replay time 

overhead because message transfer time is eliminated since messages are not actually being sent 

but their arrival is being simulated. 

The memory overhead is due to the DR-MCAPI data structures. D-Replay memory 

overhead in the recording mode is the largest, since it buffers the contents of all messages 

exchanged until the trace is written to the disk. R-Replay requires more memory than S-Replay in 

the replay mode since it buffers messages received out of expected order. 

5.4 Equivalent vs. Identical Replay 

R-Replay guarantees an equivalent replay of the recorded execution; however S-Replay produces 

an identical replay. We use the program in Fig. 28  to demonstrate the difference.  

 
Node 1  Node 3 
1 dr_initialize(1);  10 dr_initialize(3); 
2 X=1;  11 Y=10; 
3 EP=dr_create_endpoint(1);  12 EP=dr_create_endpoint(1); 
4 N2EP=dr_get_endpoint(2,1);  13 N2EP=dr_get_endpoint(2,1); 
5 N4EP=dr_get_endpoint(4,1);  14 N4EP=dr_get_endpoint(4,1); 
6 dr_msg_send(EP,N2EP,X);  15 dr_msg_send(EP,N2EP,Y); 
7 dr_msg_send(EP,N4EP,X);  16 dr_msg_send(EP,N4EP,Y); 
8 dr_delete_endpoint(EP);  17 dr_delete_endpoint(EP); 
9 dr_finalize();  18 dr_finalize(); 
     
Node 2  Node 4 
19 dr_initialize(2);  25 dr_initialize(4); 
20 EP=dr_create_endpoint(1);  26 EP=dr_create_endpoint(1); 
21 dr_msg_recv(EP,&A);  27 dr_msg_recv(EP,&C); 
22 dr_msg_recv(EP,&B);  28 dr_msg_recv(EP,&D); 
23 dr_delete_endpoint(EP);  29 dr_delete_endpoint(EP); 
24 dr_finalize();  30 dr_finalize(); 

Fig. 28. Equivalent replay vs. identical replay 

 

Let’s‎ assume‎ that‎ in‎ a‎ recording‎ session‎ of‎ the‎ program‎ in‎ Fig. 28, the order of arrival of the 

message was as in Table 7. 

 

Table 7. An order of arrival in a recorded execution 

Message Destination 
Node 

Arrival Order at 
destination node 

Total 
Arrival 

Order 

Sent at line 6 2 1 1 

Sent at line 7 4 1 2 

Sent at line 15 2 2 3 

Sent at line 16 4 2 4 

 

When using R-Replay, the local order of messages arrival at a given node during a replay 

execution is guaranteed to be the same as in the recorded execution. However, the total order of 

arrival of messages is not guaranteed to be the same. During an R-Replay replay session, it is 

possible to have the order of message arrival as in Table 8 which is equivalent to the one in Table 

7, but not identical to it.  

It is worth mentioning that D-Replay also produces an identical replay execution. S-

Replay guarantees a replay session that adheres to both the local and total orders of messages 

arrival.  



Table 8. Equivalent but not identical order of arrival 

Message Destination 
Node 

Arrival Order at 
destination node 

Total 
Arrival 

Order 

Sent at line 6 2 1 2 

Sent at line 7 4 1 1 

Sent at line 15 2 2 4 

Sent at line 16 4 2 3 

5.5 D-Replay vs. S-Replay vs. R-Replay  

In this section we compare the three replay techniques. As shown in Table 9, R-Replay exhibits 

better performance than S-Replay and D-Replay. D-Replay allows replaying some nodes (rather 

than all nodes) and in this case other nodes are simulated. This is useful as it speeds up the replay 

process, in case of many nodes. In order-replay, all processes must be replayed. The developer 

using DR-MCAPI should decide which nodes to replay. For example, if s/he suspects that a 

specific node is buggy. S-Replay is useful when identical replay is needed.  

 

Table 9 D-Replay vs. S-Replay vs. R-Replay 

Criteria D-Replay S-Replay R-Replay 

Trace Size Worst Good Best 

Recording time overhead Good Worst Best 

Replay time overhead Best Worst Good 

Recording memory overhead Worst Good Good 

Replay memory overhead Best Good Worst 

Replay specific nodes Yes No No 

Identical replay Identical Identical Equivalent 

5.6 The probe-effect 

Due to logging, recorded executions may suffer from the probe effect [8] leading to changes in the 

relative timing of events. The probe effect may hide bugs that will otherwise be apparent. The 

probe‎ effect‎ can’t‎ be‎ entirely‎ avoided‎ but‎ it‎ could‎ be‎ reduced‎ by‎ lessening‎ the‎ amount‎ of‎ data‎

collected. DR-MCAPI is engineered to collect the minimum amount of data during the recording 

mode. 

6. RELATED WORK 

MPI [1] has been dominating message-passing software development for a long time. Hence, the 

current literature on replaying message-passing software is almost limited to MPI programs. In 

[11], Kranzlmuller et al. present a record and replay mechanism for MPI that adopts the order-

replay approach and handles both promiscuous receive calls and test operations. Their approach is 

based on modifying the MPICH library source code.  

Different than MCAPI, not all MPI receive calls are promiscuous. MPI receive calls have 

a source parameter that can be used to state a specific sender process. If the source parameter is set 

to MPI_ANY_SOURCE, then the receive call may receive a message from any process, allowing 

message races. Otherwise, no message races can take place. Receive calls with 

MPI_ANY_SOURCE are handled by storing the identifier of the source process of the message 

that was received during the record phase. During replay, when the source parameter of a receive 

call is MPI_ANY_SOURCE, it is replaced with the source process identifier obtained during the 

record phase. This approach is not applicable to MCAPI programs since their receive calls 

(msg_recv and msg_recv_i) do not specify a source parameter.  Thus unlike MPI applications it is 

not possible to identify the source of a received message.  Test operations are handled by counting 

the number of consecutive failing test operations associated with the same request variable during 

the record phase. In the replay phase, test operations are forced to fail (i.e. return false) until the 

recorded number of failed tests has reached. They report a 200% time increase during the record 

phase. Also, this approach is library-dependent (based on the MPICH library) which limits its 

portability. 



In [15], the authors disabuse the impracticality of data-replay and argue that the ability to replay 

one process justifies the excessive logging overhead. They implement their data-replay mechanism 

as a layer between the program and the MPI library. Recorded data includes: MPI function calls 

return values and the contents and the source processes identifiers of received messages. During 

replay, when the program posts a receive call; the data-replay layer returns the data recorded at the 

corresponding receive call during the record phase. In other words, receive calls are simulated 

rather‎ than‎being‎ executed.‎As‎ expected,‎ the‎ log‎ size‎ is‎ 100’s‎of‎ times‎ larger‎ than‎when‎order-

replay is used. In one experiment, the data log was 907MB while an order-replay would produce 

0.84MB for the same program. The disk space requirement of this approach is prohibitively large 

for long-running applications. Unfortunately the approaches described in [15] and [11] don’t‎

capture all forms of non-determinism in MPI programs, making it difficult to ensure a completely 

faithful replay. 

The authors of [28] propose subgroup-reproducible replay (SRR) which combines order-

replay and data-replay. During the record phase, disjoint groups of processes are formed and the 

contents of messages crossing group boundaries are recorded. The contents of the messages that 

are sent and received within a group are not recorded, but the order of arrival of such messages is 

recorded. This approach allows replaying a specific group of processes independently of other 

groups. During replay of a group, messages coming from outside that group are reproduced from 

the log; inter-group messages are produced through direct execution. Setting the size and the 

membership of groups can be done manually by the user or automated based on communication 

locality. Performance evaluation of the SRR approach shows that it increases the runtime by an 

average of 120% during the recording phase and generates a log that is half the size of the log 

generated by a pure data-replay approach. Also this work handles all non-determinism sources in 

MPI programs.  

Another related tool is MCC [24] which implements an automated approach for verifying 

MCAPI programs. MCC creates a scheduling layer above the MCAPI runtime layer that allows 

intercepting MCAPI calls and discovering potentially matching send/receive ones. This allows 

MCC‎ to‎ explore‎ all‎ possible‎ execution‎ scenarios‎ resulting‎ from‎ different‎ orders‎ of‎ messages’‎

arrival. MCC uses Dynamic Partial Order Reduction (DPOR) [7] technique to reduce the number 

of examined execution scenarios. MCC handles only promiscuous receive calls making it 

unsuitable for any programs using mcapi_test and mcapi_wait_any calls. 

7. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

With the current trend of increasing a processor performance by adding more cores rather than 

increasing the clock speed, we may have processors with 10s or 100s cores in the near future. 

Currently, only a handful of applications can exploit the potentials of these multicore processors 

since only the very skilled programmers can develop applications for these processors. This must 

change. Every programmer should be able to write programs that take advantage of the multicore 

era processors. Hence, it is important to develop programming practices and tools that support 

multicore development. Providing a deterministic replay capability to multicore-specific standards 

such as MCAPI will greatly improve the debugging process. This is both an important and 

challenging problem. Any replay tool must be easy to use, scale well and handles all non-

determinism sources in a program.  

In this article, we presented DR-MCAPI. To the best of our knowledge, DR-MCAPI is 

the first replay tool that considers all non-determinism sources in MCAPI programs. The 

deterministic replay ability provided by DR-MCAPI allows a programmer to repeatedly execute 

the program under supervision of a debugger to catch flaws.  

Currently, the trace scales linearly with the number of messages exchanged during the 

runtime of a program. Reducing the trace size will decrease both the time overhead and memory 

usage, hence improving the scalability our tool. We plan to investigate trace compression methods 

similar to the ones in [20] and [12] for DR-MCAPI traces. Check-pointing is a technique that 

allows recovery of a failed program to its state prior to failing [6]. Check-pointing works by 

periodically saving the state of a program to a stable storage during execution; when a failure takes 

place, the program is restarted form the last checkpoint [4]. We are exploring how to modify DR-

MCAPI to support check-pointing for non-terminating MCAPI programs. Usability is of prime 



importance to any tool. That is why are developing an Eclipse plugin that uses DR-MCAPI as a 

back-end to allow the user to perform interactive debugging. 

 
APPENDIX 

We summarize the trace records notations introduced in section 3 in Table 10.  

 

Table 10 Trace records 

Record Structure Source Call Replay Technique 

                         dr_msg_recv  D-Replay 

R-Replay 

                       dr_wait D-Replay 

R-Replay 

                             . dr_wait_any  D-Replay 

R-Replay 

                            dr_wait_any  D-Replay 

R-Replay 

                                    dr_test  D-Replay 

R-Replay 

                                  dr_test  D-Replay 

R-Replay 

                             dr_msg_send  

dr_msg_send_i 
S-Replay 

                      dr_wait_any  S-Replay 

                             dr_test  S-Replay 
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