
DETERMINISTIC REPLAY FOR MESSAGE-PASSING BASED CONCURRENT

PROGRAMS


MOHAMED ELWAKIL, Western Michigan University

ZIJIANG YANG, Western Michigan University

The Multicore Communications API (MCAPI) is a new message passing API that was released by the

Multicore Association. MCAPI provides an interface designed for closely distributed embedded systems

with multiple cores on a chip and/or chips on a board. Similar to parallel programs in other domains,

debugging MCAPI programs is a challenging task due to their non-deterministic behavior. In this paper

we present a tool that is capable of deterministically replaying MCAPI programs executions, which

provides valuable insight for MCAPI developers in case of failure.

This is an expanded version of a paper accepted at the Workshop on Parallel and Distributed Systems:

Testing, Analysis, and Debugging (PADTAD-IX) 2011. The current article extends the previous paper by

(1) presenting two new techniques for replaying MCAPI programs: data-replay in Section ‎3.2 and sender-

based order-replay in Section ‎3.3.1, (2) differentiating our work from comprehensive related work in

Section 6.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging

General Terms: Reliability

Additional Key Words and Phrases: MCAPI, message race, multicore programs, debugging, deterministic

replay

ACM Reference Format:

Elwakil, M., and Zijiang, Yang. 2011. Deterministic Replay for MCAPI Programs. ACM Trans. on Design

Automation of Electronic Syst. 9,4, Article 00 (September 2011), 30 pages.

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

If two executions of a program exhibit the same set of instructions with each instruction

computing the same results and producing the same final values in memory, then these two

executions are said to be logically equivalent [17]. A deterministic replay of a program is a

controlled execution that is logically equivalent to a previous execution of interest. Deterministic

replay has various applications such as cyclic debugging, fault tolerance and intrusion analysis

[26].

In cyclic debugging, a program is repeatedly executed under the control of a debugger to

allow the user to obtain more information about the program states and intermediate results [22].

Cyclic debugging assumes that different executions of the same program with the same input will

be equivalent. Different executions of a concurrent program are not guaranteed to be equivalent as

concurrent programs suffer from the irreproducibility effect [27] due to their intrinsic non-

determinism. The fact that two subsequent runs of the same program with the same input are not

guaranteed to behave the same or produce the same output, makes cyclic debugging of concurrent

This work is supported by the National Science Foundation, contract CCF-0811287. We would like to

thank Dr. Eric Mercer and his group for providing us the Bully benchmark

Author’s addresses: M. Elwakil, Department of Computer Science, Western Michigan University; Z. Yang

Department of Computer Science, Western Michigan University.

Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies show this notice on the first page or initial screen of a display along with the full citation.

Copyrights for components of this work owned by others than ACM must be honored. Abstracting with

credits permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any

component of this work in other works requires prior specific permission and/or a fee. Permissions may be

requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,

fax +1 (212) 869-0481, or permissions@acm.org.

@2011 ACM 1539-9087/2010/03-ART39 $10.00

DOI10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

00

http://doi.acm.org/10.1145/0000000.0000000
mailto:permissions@acm.org

programs a challenging task. Cyclic debugging is the most prominent application of deterministic

replay and is called Deterministic Replay Debugging (DRD) [17].

Within the context of fault-tolerance, deterministic replay has been used to detect

hardware design faults by scrutinizing the variances between a replayed execution on a machine

and an original execution on another machine [14]. Also, in the case of a program failure, a

replayed execution can be used to reconstruct the most recent program state [25]. The ReVirt

system [5] shows that deterministic replay is useful for intrusion analysis. ReVirt allows replaying

the execution of a whole computer system before, during, and after a system has been

compromised facilitating post-attack analysis.

As depicted in Fig. 1, the deterministic replay process consists of two phases: recording

and replay. During the recording phase, a program execution is monitored by a recording

environment to record information about the execution in a trace file. When a replay is needed, the

data in the trace file is used to replay the program within a replay environment such that the

behavior of the program during the replay phase is logically equivalent to the behavior observed in

the recording phase.

Recording Environment

Program Output

Trace

Input

Replay Environment

Program Output

Trace

Input

Recording:

Replay:

Fig. 1. The two phases of deterministic replay

In 2008, the Multicore Association [2], a consortium of major corporations and leading research

centers, published the first version of the Multicore Communications API (MCAPI) [3]. MCAPI is

a new message-passing API that is intended for systems with multiple cores on a chip and/or chips

on a board. MCAPI can be installed on top of an operating system or an extremely thin run-time

environment such as a hypervisor. A major design goal of MCAPI is to function as a low-latency

interface benefiting from efficient on-chip interconnects in a multi-core chip. Thus, MCAPI is a

light weight API that delivers high performance and needs a tiny memory footprint that is

significantly lower than that of MPI [1]. Currently, there are two implementations of the MCAPI

specification; the standard implementation provided by the MCA and a relatively newer

implementation provided by Mentor Graphics [13]. Both implementations are C libraries.

An MCAPI program execution is inherently nondeterministic, thus repeatedly executing

the same program on the same input may yield different results, making debugging extremely

difficult. Providing a deterministic replay capability allows developers to observe the same

execution making finding failure source an easier task. In this paper, we present DR-MCAPI, the

first tool for deterministically replaying MCAPI programs executions. DR-MCAPI works by

monitoring a program execution to generate a trace. If the program fails, the trace can be used to

produce an execution that is logically equivalent to the one that had failed. DR-MCAPI

implements two replay approaches: data-replay and order-replay. Each approach has its own

particular strengths and weaknesses. Section ‎2 provides an overview of the MCAPI specification

and the sources of non-determinism in MCAPI programs. Section ‎3 describes the workflow of

DR-MCAPI and the data-replay and order-replay approaches. Section 4 shows the results of

experiments conducted using four benchmarks and compares our MCAPI programs replay

techniques in terms of memory and time overheads. Section ‎5 discusses the features of DR-

MCAPI in terms of usability, portability and scalability. In Section ‎6 we present a comprehensive

overview of related work and we conclude and present future directions in Section ‎7.

2. NON-DETERMINISM IN MCAPI PROGRAMS

In MCAPI programs, a CPU core is referred to as a node. Communication between nodes occurs

through endpoints. A node may have one or more endpoints and an endpoint is uniquely defined

by a node identifier and a port number. The MCAPI specification supplies APIs for initializing

nodes, creating and deleting endpoints, obtaining addresses of remote endpoints, and sending and

receiving messages. The functions used for sending and receiving messages are: mcapi_msg_send,

mcapi_msg_send_i, mcapi_msg_recv, and mcapi_msg_recv_i.

The functions mcapi_msg_send and mcapi_msg_send_i send messages, asynchronously,

between two endpoints. While mcapi_msg_send blocks until the message has been copied from a

program buffer to the MCAPI runtime buffers, mcapi_msg_send_i is non-blocking and returns

immediately after initiating the copying process. The functions mcapi_msg_recv and

mcapi_msg_recv_i retrieve messages from the MCAPI runtime buffers. The function

mcapi_msg_recv blocks until a message has been retrieved from the runtime buffer, while

mcapi_msg_recv_i is non-blocking and returns immediately even if there are no messages in the

buffer. MCAPI receive calls are called promiscuous receives as they permit receiving messages

from any source endpoint.

The MCAPI specification provides request variables and the mcapi_wait,

mcapi_wait_any and mcapi_test functions to track the status of a non-blocking function call. A

non-blocking function (e.g. mcapi_msg_recv_i) takes a request variable as an extra input

parameter and initializes it by setting its value to pending. Calling mcapi_wait with a request

variable R blocks execution util the non-blocking operation that initialized R has completed.

Invoking mcapi_wait_any with an array of request variables Rs blocks execution until any of the

operations in Rs has completed. The mcapi_wait_any returns the index of the completed request.

The mcapi_test function succeeds (i.e. returns true) if its input request has completed, and fails

(i.e. returns false) otherwise.

There are two rules that govern the order of messages arrivals at a destination endpoint:

1) messages sent from the same source endpoint to the same destination endpoint are guaranteed

to arrive at their destination according to their transmission order and 2) messages sent from

different source endpoints will arrive at their destination in any order, even if these source

endpoints belong to the same node. The second rule combined with the fact that mcapi_msg_recv

and mcapi_msg_recv_i calls‎ don’t‎ specify‎ the‎ source‎ endpoint,‎ make‎ it‎ possible‎ for‎ message

races to take place. Two or more messages are said to be racing if their order of arrival at a

destination (i.e. an endpoint) is non-deterministic [19]. Fig. 2 shows an MCAPI program with

message races. A node creates a single endpoint and sends messages to all other nodes (lines 1-8)

and is expecting to receive a message from all other nodes (lines 9-10). Assuming there are N

nodes, any node should receive N-1 messages that are racing with each other. The orders of

messages arrivals can change across consecutive executions of the program leading to the

irreproducibility effect (i.e. the final values in the Buffer array will not be the same with different

executions). It should be noted that, in contrast to multithreaded programs data races, the mere

existence of a message race is not an error condition by itself, but a message race may lead to an

error condition. This fact makes debugging message passing programs even harder, as one need

not only to detect message races, but also to examine the consequences of a message race.

1 N=NodesCount();
2 mcapi_init_node(ThisNode);
3 LocalEP=mcapi_create_ep(ThisNode,1);
4 for (Index=0;Index<N;Index++){
5 if (Index==ThisNode) continue;
6 RemoteEP=mcapi_get_ep(Index,1);
7 mcapi_msg_send(LocalEP,RemoteEP,&Data[Index]);
8 }
9 for (Index=0;Index<N-1;Index++)
10 mcapi_msg_recv(LocalEP,&Buffer[Index]);
11 mcapi_delete_ep(LocalEP);
12 mcapi_finalize_node(ThisNode);

Fig. 2. An MCAPI program with message races

Another source of non-determinism in MCAPI programs is the mcapi_wait_any call. In Fig. 3, a

node has two endpoints and is expecting to receive a message at each endpoint (lines 4-5).

mcapi_wait_any blocks execution until either one of the two messages is received. Depending on

which endpoint receives a message first, the value of ReqIndex may not be the same across

consecutive executions of the program, which results in varying branches of the switch being

selected in different executions.

1 mcapi_init_node(ThisNode);
2 LocalEP1=mcapi_create_ep(ThisNode,1);
3 LocalEP2=mcapi_create_ep(ThisNode,2);
4 mcapi_msg_recv_i(LocalEP1,&Buffer1,Requests[0]);
5 mcapi_msg_recv_i(LocalEP2,&Buffer2,Requests[1]);
6 ReqIndex=mcapi_wait_any(Requests,2);
7 switch (ReqIndex) {
8 case 0: …
9 case 1: …
10 }
11 mcapi_delete_ep(LocalEP1);
12 mcapi_delete_ep(LocalEP2);
13 mcapi_finalize_node(ThisNode);

Fig. 3. An MCAPI program with mcapi_wait_any

Using the non-blocking mcapi_test introduces non-determinism as well. In Fig. 4, a node is

expecting a message at a local endpoint. The function mcapi_test is used to determine whether

the expected message has arrived. The number of times mcapi_test returns false, and

consequently the value of variable A at line 5, is dependent on uncontrollable factors such as the

current core workload and the inter-core communication latency.

1 mcapi_init_node(ThisNode);
2 LocalEP=mcapi_create_ep(ThisNode,1);
3 mcapi_msg_recv_i(LocalEP,&Buffer,Request);
4 while (!mcapi_test(Request)) A++;
5 func_call(A);
6 mcapi_delete_ep(LocalEP);
7 mcapi_finalize_node(ThisNode);

Fig. 4. An MCAPI program with mcapi_test

In summary, besides user inputs and random numbers generators, there are three additional

sources of non-determinism in MCAPI programs: 1) mcapi_msg_recv and mcapi_msg_recv_i

calls, 2) mcapi_wait_any calls and 3) mcapi_test calls. Such inherent non-deterministic behavior

does not permit repeated execution as a reliable mean of debugging MCAPI programs. Hence,

introducing the ability to replay an observed MCAPI program execution can significantly help an

MCAPI program developer.

3. DR-MCAPI: DETERMINISTIC REPLAY FOR MCAPI PROGRAMS

Fig. 5 depicts the workflow of our tool for deterministic replay of MCAPI programs. DR-MCAPI

consists of two parts: a source code instrumenter and an MCAPI library wrapper (DR-MCAPI

Library).

The instrumenter replaces calls to the MCAPI library routines in an input program with

calls to the DR-MCAPI‎library‎by‎replacing‎the‎prefix‎“mcapi”‎with‎“dr”.‎Also,‎the‎instrumenter‎

adds code that initializes and tears down the DR-MCAPI library.

MCAPI
Program

MCAPI
Program

Instrumented
Program

Instrumented
Program

DR-MCAPI
Library

DR-MCAPI
Library

ExecutableExecutable
CompileInstrument

Run in Record Mode

Run in Replay Mode

TraceTrace

Deterministic
Replay

MCAPI
Library &
Runtime

MCAPI
Library &
Runtime

Fig. 5. DR-MCAPI Workflow

Fig. 6 shows the result of instrumenting the program in Fig. 2. We use the ROSE compiler [21] to

automate the instrumentation process. It is possible to avoid the instrumentation process by

modifying the MCAPI library itself. However, such approach reduces the portability of DR-

MCAPI and makes it implementation-specific. That defeats one of the goals of MCAPI of being

an API standard with different implementations for different platforms. For example, DR-MCAPI,

without any changes, is compatible with the new OpenMCAPI implementation [13].

1 N=NodesCount();
2 dr_init_node(ThisNode);
3 LocalEP= dr_create_ep(ThisNode,1);
4 for (Index=0;Index<N;Index++){
5 if (Index== ThisNode) continue;
6 RemoteEP= dr_get_ep(Index,1);
7 dr_msg_send(LocalEP,RemoteEP,&Data[Index]);
8 }
9 for (Index=0;Index<N-1; Index++)
10 dr_msg_recv(LocalEP,&Buffer[Index]);
11 dr_delete_ep(LocalEP);
12 dr_finalize_node(ThisNode);

Fig. 6. An instrumented MCAPI program

The DR-MCAPI library acts as a layer between the program and the MCAPI library as shown in

Fig. 7. When an instrumented program is run, the program invokes the DR-MACAPI routines

which will carry out some processing and call the original MCAPI routine. For example, a call to

dr_create_ep will add a new endpoint to a list of endpoints maintained for every node by DR-

MCAPI and then mcapi_create_ep will be invoked.

DR-MCAPI

Instrumented Program

dr_XXX() {
...
mcapi_XXX();
...
}

dr_XXX

MCAPI

mcapi_XXX(){
...
...
}

mcapi_XXX

Fig. 7. DR-MCAPI is a layer between the MCAPI library and the instrumented program

3.1 Operating Modes

An instrumented program can run in one of two possible operating modes: recording mode or

replay mode. While a program is running in the recording mode, calls to the DR-MCAPI library

routines record certain information in addition to invoking MCAPI library routines. When the

program execution ends (either normally or by a failure), the recorded information is stored to the

disk as a trace. During the recording mode, DR-MCAPI‎ doesn’t‎ affect‎ the‎ outcomes‎ of‎ non-

deterministic operations.

When run in the replay mode, the trace information is loaded into memory and is used by

DR-MCAPI library to force an execution that is equivalent to the one observed when the program

was running in the recording mode.

Replay tools for message-passing programs typically fall into two categories: data-replay

and order-replay. In data-replay, the contents of all received messages at all nodes are stored

during the recording phase, while in order-replay, only the outcomes of non-deterministic

operations are recorded. DR-MCAPI supports both data-replay and order-replay. Section ‎3.2

describes how DR-MCAPI implements data-replay and section 3.3 shows how DR-MCAPI

implements order-replay.

Fig. 8 depicts the pseudocode of an instrumented MCAPI program with five nodes.

Nodes 1 and 3 send three messages to nodes 2, 4 and 5, each. Node 2 uses the data in the two

received messages to calculate a new value and send it to nodes 4 and 5. Hence, nodes 4 and 5 are

expecting to receive three messages, each. We will be using this program as an ongoing example

throughout this article.

Node 1 Node 3
1 dr_initialize(1); 12 dr_initialize(3);
2 X=1; 13 Y=10;
3 EP=dr_create_endpoint(1); 14 EP=dr_create_endpoint(1);
4 N2EP=dr_get_endpoint(2,1); 15 N2EP=dr_get_endpoint(2,1);
5 N4EP=dr_get_endpoint(4,1); 16 N4EP=dr_get_endpoint(4,1);
6 N5EP=dr_get_endpoint(5,1); 17 N5EP=dr_get_endpoint(5,1);
7 dr_msg_send(EP,N2EP,X); 18 dr_msg_send(EP,N2EP,Y);
8 dr_msg_send(EP,N4EP,X); 19 dr_msg_send(EP,N4EP,Y);
9 dr_msg_send(EP,N5EP,X); 20 dr_msg_send(EP,N5EP,Y);
10 dr_delete_endpoint(EP); 21 dr_delete_endpoint(EP);
11 dr_finalize(); 22 dr_finalize();

Node 2 Node 4
23 dr_initialize(2); 39 dr_initialize(4);
24 EP=dr_create_endpoint(1); 40 EP=dr_create_endpoint(1);
25 N4EP=dr_get_endpoint(4,1); 41 dr_msg_recv_i(EP,&D,&R1);
26 N5EP=dr_get_endpoint(5,1); 42 dr_msg_recv_i(EP,&E,&R2);
27 dr_msg_recv_i(EP,&A,Rs[0]); 43 dr_msg_recv(EP,&F);
28 dr_msg_recv_i(EP,&B,Rs[1]); 44 while(!dr_test(R1));
29 if(dr_wait_any(Rs,2)==0) 45 dr_wait(R2);
30 dr_wait(Rs[1]); 46 dr_delete_endpoint(EP);
31 else 47 dr_finalize();
32 dr_wait(Rs[0]);
33 dr_assert(A>B) Node 5
34 C=Func(A,B); 48 dr_initialize(5);
35 dr_msg_send(EP,N4EP,C); 49 EP=dr_create_endpoint(1);
36 dr_msg_send(EP,N5EP,C); 50 dr_msg_recv(EP,&G);
37 dr_delete_endpoint(EP); 51 dr_msg_recv(EP,&H);
38 dr_finalize(); 52 dr_msg_recv(EP,&I);
 53 dr_delete_endpoint(EP);
 54 dr_finalize();

Fig. 8. Pseudocode of an MCAPI Program

3.2 DR-MCAPI Data-replay

During a recording execution, the contents of all received messages at all nodes are stored. During

a replay execution, it is possible that some nodes are run while others are simulated. The messages

sent by the simulated processes originate from the trace and not from the program execution. The

data-replay approach generates a huge trace. However, it allows replaying one or more specific

nodes. First, we describe the data-relay trace structure in section ‎3.2.1 and then the data-replay

replay mechanism in section ‎3.2.2.

3.2.1 The Trace Structure

When an instrumented program is run in the recording mode, a separate trace is generated for

each MCAPI node:

 , where is the number of nodes in program .

A‎node’s‎trace‎contains‎a‎list‎of‎records:

 , where is a node identifier.

A trace record may be any of six types:

A record originates from a dr_msg_recv call and is defined as a tuple:
 . is the port number of the receiving endpoint. is the

invocation order of this particular dr_msg_recv call among other dr_msg_recv calls at this node.

 is the payload of the received message.

A record originates from a dr_wait call whose input request variable was

initialized by a dr_msg_recv_i call and is defined as tuple: .

 is the initialization order of the input request variable at the current node.

A record comes from a dr_wait_any call that returned the index of a request

variable that was initialized by a dr_msg_recv_i call and is defined as tuple:
 . is the invocation order of this particular

dr_wait_any call among other dr_wait_any calls at this node. is the index returned by the

dr_wait_any call.

The record is defined as tuple:
 and indicates that a dr_wait_any call returned the index of a request variable that was

initialized by a non-blocking function other than dr_msg_recv_i.

An originates from a sequence (one or more) of dr_test calls whose input

request variable was initialized by a dr_msg_recv_i call and does retrieve a message from the

runtime buffers. It is defined as tuple , such that

 is the initialization order of the input request variable at the current node and

 is the number of times the dr_test call had failed, before succeeding and retrieving a

message.

Similarly, record stems from a sequence of

dr_test calls. However, the record indicates that no messages were retrieved

from the runtime buffers. That occurs when the input request variable was initialized by a non-

blocking function other than dr_msg_recv_i or when the input request variable was initialized by

a dr_msg_recv_i call and the sequence of dr_test calls‎ doesn’t‎ retrieve‎ a‎ message‎ from‎ the‎

runtime buffers. Table 1 shows a trace of the example program in Fig. 8:

Table 1. Data-replay trace of the program in Fig. 8

Node 2 Node 4 Node 5

A:1/0/D1 R:1/1/D1 R:1/1/D1

W:2/D2 T:1/10/D2 R:1/2/D2

 W:2/D3 R:1/3/D3

Since‎ nodes‎ 1‎ and‎ 3‎ don’t‎ receive‎ any‎ messages,‎ they‎ don’t‎ produce‎ traces.‎ The‎ trace‎ record‎

(A:1/0/D1) is described as follows:‎‘A’‎indicates‎a‎ record. Number 1 is the invocation

order of the dr_wait_any call that generated record. Number 0 is the value that

dr_wait_any returned. D1 signifies the payload of the retrieved message. The fields of the trace

record (W:2/D1) are described as follows:‎ ‘W’‎ indicates‎ a‎ record. Number 2 is the

initialization order of the dr_wait input request variable. D2 signifies the payload of the retrieved

message.

The fields of the trace record (R:1/1/D1) are described as follows:‎ ‘R’‎indicates‎a‎

record. The first number 1 is the port number of the receiving endpoint. The second number 1 is

the invocation order of the dr_msg_recv call that generated this record. D1 signifies the

payload of the received message.

The fields of the trace record (T:1/10/D2) are described as follows: ‘T’‎ indicates‎ an‎

 record. Number 1 is the initialization order of the dr_test input request variable.

Number 10 is the number of failed dr_test calls. D2 signifies the payload of retrieved message.

3.2.2 The Replay Mechanism

We now describe how a trace is used to replay an execution. To achieve a correct and

deterministic replay of a program, it is necessary to associate endpoints, request variables and

certain calls that were observed during the recording mode with their counterparts in the replay

mode. An endpoint that is observed in the replay mode is associated with an endpoint that is

observed in the recording mode via the node identifier and the port number; both remain the same

across executions.

Request variables are tracked across an execution in the recording mode and an execution

in the replay mode using their order of initialization in a node. Similarly, dr_msg_recv and

dr_wait_any calls are tracked by their invocation order with respect to other dr_msg_recv and

dr_wait_any calls, respectively, in the same node.

During replay, DR-MCAPI maintains two data structures for each node: 1) : a

list of trace records (i.e. , , , , ,

and). This list is constructed directly from the trace. 2) : a list

of request variables per node. This list combines data from the trace and data that are obtained on-

the-fly. When a request variable is initialized (by being passed to a non-blocking call), a new item

is appended to this list. If the request variable was initialized by a non-blocking receive call, then

we keep track of the receiving endpoint and the destination buffer pointer. If the trace indicates

that dr_test calls were used to check the status of this request in the recording mode, then the

number of failed tests is retrieved from the trace and associated with that request. All newly

initialized requests are flagged as incomplete. All MCAPI routine calls that introduce non-

determinism are handled by the DR-MCAPI library, rather than the MCAPI library.

The algorithm in Fig. 9 shows how dr_msg_recv calls are handled during replay. First,

RecvCalls is incremented. RecvCalls keeps track of the number of dr_msg_recv function

invocations at the node. Second, the GetRecvRecord procedure looks up the list to fetch

the record with =RecvCalls. Finally, the message payload in the record is

copied to the program buffer (lines 4-5). The fact that the GetRecvRecord call determines which

message will be delivered next is what allows dr_msg_recv to be deterministic.

dr_msg_recv(Endpoint, &Buffer){
1 RecvCalls++;
2 PortNum=GetPortNumber(Endpoint);
3 RecvRecord=GetRecvRecord(RecvCalls);
4 Data=RecvRecord.Data;
5 copy(Buffer,&Data);
6 return;
}

Fig. 9. Handling dr_msg_recv calls

The algorithm in Fig. 10 shows how DR-MCAPI handles dr_wait calls. If the input request was

not initialized by a dr_msg_recv_i call, then it is forwarded to the MCAPI library (lines 1-3).

Otherwise, the initialization order and a pointer to the program buffer of this request are retrieved

(lines 4-5).

Next, the GetWaitRecord procedure looks up the list to fetch the record

with =Order. Finally, the message payload in the record is copied to the

program buffer (lines 7-8).

dr_wait(Request) {
1 if not IsRecvRequest(Request) then
2 return mcapi_wait(Request);
3 end-if
4 Order=GetOrder(Request);
5 DataPtr=GetDataPtr(Request);
6 WaitRecord=GetWaitRecord(Order);
7 Data=WaitRecord.Data;
8 copy(DataPtr,&Data);
9 return;
}

Fig. 10. Handling dr_wait calls

Fig. 11 describes how DR-MCAPI handles dr_wait_any calls. First, WaitanyCalls is

incremented (line 1). WaitanyCalls keeps track of the number of dr_wait_any function

invocations at the node. If the current dr_want_any call‎ doesn’t‎ retrieve‎ a‎ message,‎ then‎ the‎

GetNonRecvWaitanyRecord procedure looks up the list to fetch the

record with =WaitanyCalls (line 3). In line 4, the in the is

retrieved and the request in the Requests array at will be forwarded to the MCAPI library

(line 5). Finally, is returned to the program (line 6).

 If the current dr_want_any call does retrieve a message, then the

GetRecvWaitanyRecord procedure looks up the list to fetch the record

with =WaitanyCalls (line 8). In line 9, the in the is used to

retrieve the program data pointer associated with the request in the Requests array at .

Finally, the message data in the record is copied to the program buffer (lines 11-12)

and is returned to the program (line 13).

dr_wait_any(Requests,RsCount){
1 WaitanyCalls++;
2 if not RecvWany(WaitanyCalls) then
3 NonRecvWanyRecord=GetNonRecvWaitanyRecord(WaitanyCalls);
4 Index=NonRecvWanyRecord.Index;
5 mcapi_wait(Requests[Index]);
6 return Index;
7 else
8 RecvWanyRecord=GetRecvWaitanyRecord(WaitanyCalls);
9 Index=RecvWanyRecord.Index;
10 DataPtr=GetDataPtr(Requests[Index]);
11 Data=RecvWanyRecord.Data;
12 copy(DataPtr,&Data);
13 return Index;
14 end-if
}

Fig. 11. Handling dr_wait_any calls

A dr_test call is handled by the algorithm in Fig. 12. First, the initialization order of the input

request variable (Request) is retrieved (line 1). If that request variable is associated with a

 record, then the of this record is reduced by one (line 4). If

reaches zero, the request is forwarded to the MCAPI runtime and true is returned to the program

(lines 8-9). If that request variable is associated with a record, then the of this

record is reduced by one (line 13). If reaches zero, the request is passed to dr_wait and

true is returned to the program (lines 17-18). As long as the value of is greater than zero,

false is returned.

bool dr_test(Request){
1 Order=GetOrder(Request);
2 if not ArrivalTest(Order) then
3 NonArrivalTest=GetNonArrivalTest(Order);
4 NonArrivalTest.Count--;
5 if NonArrivalTest.Count>0 then
6 return false;
7 else
8 mcapi_wait(Request);
9 return true;
10 end-if
11 else
12 ArrivalTest=GetArrivalTest(Order);
13 ArrivalTest.Count--;
14 if ArrivalTest.Count>0 then
15 return false;
16 else
17 dr_wait(Request);
18 return true;
19 end-if
20 end-if
}

Fig. 12. Handling dr_test calls

3.3 DR-MCAPI Order-replay

In order-replay, the outcomes of non-deterministic operations are recorded during a recording

execution and are enforced during the replay execution. All nodes must be running during replay.

Since in order-replay only the outcomes of non-deterministic operations are recorded, far less data

than data-replay is recorded. We have developed two techniques for realizing order-replay:

sender-based order-replay (described in section ‎3.3.1) and receiver-based order-replay (described

in section ‎3.3.2).

3.3.1 Sender-based Order-replay

Sender-based order-replay works by capturing the total order of messages arrival during the

recorded execution and enforcing this order during the replay execution by changing the order of

dispatching dr_msg_send (and dr_msg_send_i) calls to the MCAPI runtime. First, we describe

the sender-based order-replay trace structure in section ‎3.3.1.1 and then its replay mechanism in

section ‎3.3.1.2.

3.3.1.1 The Trace Structure

In the sender-based order-replay technique, a single trace is generated for the whole program:

 and there are three record types in the trace:

A record represents sending a message between two endpoints and is defined as tuple:

 . is the identifier of the sending node. is

the port number of the sending endpoint. is the invocation order of the particular

dr_msg_send (or dr_msg_send_i) call among other dr_msg_send (and dr_msg_send_i) calls at

the same node. stands for Unique Order of Arrival which is a global number assigned to

every received message and it establishes a total order of arrivals among all received messages in a

program. A record is constructed in two steps:

1) When a dr_msg_send (or a dr_msg_send_i) is invoked, the message payload is

augmented with the triple { , , }.

2) When a message is retrieved from the runtime buffers (by dr_msg_recv, dr_wait,

dr_wait_any or dr_test call), it is assigned the number. is monotonically

increasing with every received message throughout the program.

A record stems from a dr_wait_any call and is defined as
 . is the identifier of the current node. is the invocation order of this particular

dr_wait_any call among other dr_wait_any calls at the same node. is the index returned

by the dr_wait_any call.

A record originates from a sequence (one or more) of dr_test calls and is defined

as , such that is the identifier of the current node,

 is the initialization order of the input request variable at the current node and

 is the number of times the dr_test call had failed. Table 2 shows a trace of the example

program in Fig. 8.

Table 2. Sender-based order-replay trace of the program in Fig. 8

Node 1 Node 2 Node 3 Node 4

S:1/1/1/1 A:2/1/0 S:3/1/1/2 T:4/1/10

S:1/1/2/3 S:2/1/1/5 S:3/1/2/4

S:1/1/3/7 S:2/1/2/6 S:3/1/3/8

Since node 5 neither sends messages, nor has dr_test or dr_wait_any calls, it doesn’t contribute

to the trace. The trace record (S:1/1/1/1) was generated by the dr_msg_send call in line 7 and the

dr_wait_any call‎at‎line‎29.‎Its‎fields‎are‎described‎as‎follows:‎‘S’‎indicates‎a‎ record. The

first number 1 is the node identifier. The second number 1 is the port number of the sending

endpoint. The third number 1 is the invocation order of the dr_msg_send call. The fourth number

1 is the UAO which indicates that the message sent by this dr_msg_send call was the first to be

received in the recorded execution.

The trace record (A:2/1/0) was generated by the dr_wait_any call at line 29. Its fields are

described‎as‎follows:‎‘A’‎indicates‎a‎ record. Number 2 is the node identifier. Number 1 is

the invocation order of this dr_wait_any call. Number 0 is the value returned by the dr_wait_any

call.

The trace record (T:4/1/10) was generated by the dr_test call in line 44 and its fields are

described‎as‎follows:‎‘T’‎indicates‎a‎ record. Number 4 is the node identifier. Number 1 is the

dr_test call input request variable initialization order. Number 10 is the number of times the

dr_test call was invoked.

3.3.1.2 The Replay Mechanism

We now describe how a trace is used to replay an execution. When a program is run in the replay

mode, four data structures are created:

1) : a list of all records from the trace.

2) : a list of request variables per node. This list combines data from the

trace and data that are obtained on-the-fly.

3) : a list of records that are obtained from the trace

4) : a list of records that are retrieved from the trace.

In the replay mode, sending a message is a three step process as depicted in Fig. 13:

DR-MCAPIDR-MCAPIApplicationApplication

Posted

PendingDelivered

New dr_msg_send

SendCallsScheduler

dr_msg_recv

dr_wait

...

Fig. 13. The three steps of sending a message

1) When a dr_msg_send (or a dr_msg_send_i) is invoked by the program, the

corresponding record in the list is set to Posted.

2) The algorithm in Fig. 14 continuously monitors the

list. If finds a record whose state is Posted and whose

equals to LatestUAO, this record state is set to Pending and a corresponding

dr_msg_send (or dr_msg_send_i) is invoked to actually send a message.

3) When a message is received (via a call to dr_msg_recv, dr_wait, dr_test, or a

dr_wait_any), its state is set to Delivered.

SendCallsScheduler(){
1 LatestUAO=0;
2 Max=Size(SendRecords);
3 while(LatestUAO<Max) do
4 if (there are no pending send calls) then
5 = SendRecords.GetRecord(UAO);
6 if (is posted)
7 LatestUAO++;
8 Set state to pending;
9 Forward to the MCAPI runtime;
10 end-if
11 end-if
12 end-while
}

Fig. 14. The SendCallsScheduler Algorithm

Fig. 15 shows how dr_wait_any calls are handled during replay. First, WaitanyCalls is

incremented. WaitanyCalls keeps track of the number of dr_wait_any function invocations at

the node. Second, the GetWaitanyRecord procedure looks up the list to fetch the

 record with =WaitanyCalls (line 2). In line 3, the in the is retrieved

and the request in the Requests array at will be forwarded to the MCAPI library (line 4).

Finally, is returned to the program.

dr_wait_any(Requests,RsCount){
1 WaitanyCalls++;
2 WanyRecord=GetWaitanyRecord(WaitanyCalls);
3 Index=WanyRecord.Index;
4 mcapi_wait(Requests[Index]);
5 return Index;
}

Fig. 15. Handling dr_wait_any calls

A dr_test call is handled by the algorithm in Fig. 16. First, the initialization order of the input

request variable (Request) is retrieved (line 1). Then, the Test record associated with this

initialization order is retrieved from the list (line 2). Next, the of this record

is reduced by one (line 3). When reaches zero, the request is passed to mcapi_wait and

true is returned to the program (lines 7-8).
bool dr_test(Request){
1 Order=GetOrder(Request);
2 Test=GetTest(Order);
3 Test.Count--;
4 if Test.Count>0 then
5 return false;
6 else
7 mcapi_wait(Request);
8 return true;
9 end-if
}

Fig. 16. Handling dr_test calls

We use Table 3 and Table 4 to illustrate how the sender-based order-replay works. Table 3 shows

a list of the dr_msg_send calls that appear in the example program and has three columns. The

Line column shows the line numbers of the dr_msg_send calls. The Name column assigns names

to the dr_msg_send calls. We use these names for brevity. The UAO column lists the UAO

associated with the dr_msg_send calls according to the trace in Table 2.

Table 3. Sender-based order-replay example

Line Name UAO

7 S1 1

8 S2 3

9 S3 7

18 S4 2

19 S5 4

20 S6 8

34 S7 5

35 S8 6

Now, it is possible that in an execution the dr_msg_send calls are invoked according to this order:

S4, S5, S1, S2, S3, S6, S7, and finally S8. Table 4 describes how the DR-MCAPI library will

handle the dr_msg_send calls such that the messages order of arrival that was observed in the

recording mode will be exhibited during the replay mode.

Table 4. Handling dr_msg_send example

Program Event DR-MCAPI Library Action

S4 is invoked 1) S4 record is set to Posted.

2) S4 will be blocked by the SendCallsScheduler procedure, since there

are other dr_msg_send calls with smaller UAO (S1) that were not

delivered yet.

S5 is invoked 1) S5 record is set to Posted.

2) S5 will be blocked by the SendCallsScheduler procedure, since there

are other dr_msg_send calls with smaller UAO (S1, S2, and S4) that

were not delivered yet.

S1 is invoked 1) S1 record is set to Pending.

2) S1 message is forwarded to the MCAPI runtime.

S1 message is received 1) S1 record is set to Delivered.

2) S4 record is set to Pending.

3) S4 message is forwarded to the MCAPI runtime.

S4 message is received 1) S4 record is set to Delivered.

2) S5 is still blocked since S2 (which has a smaller UAO) is not delivered yet.

S2 is invoked 1) S2 record is set to Posted.

2) S2 message is forwarded to the MCAPI runtime.

S2 message is received 1) S2 record is set to Delivered.

2) S5 record is set to Pending.

3) S5 message is forwarded to the MCAPI runtime.

S5 message is received. 1) S5 record is set to Delivered.

S3 is invoked 1) S3 record is set to Posted.

2) S3 will be blocked by the SendCallsScheduler procedure, since there

are other dr_msg_send calls with smaller UAO (S7 and S8) that were

not delivered yet.

S6 is invoked 1) S6 record is set to Posted.

2) S6 will be blocked by the SendCallsScheduler procedure, since there

are other dr_msg_send calls with smaller UAO (S3 and S8) that were

not delivered yet.

S7 is invoked 1) S7 record is set to Pending.

2) S7 message is forwarded to the MCAPI runtime.

S7 message is received 1) S7 record is set to Delivered.

S8 is invoked 1) S8 record is set to Posted.

2) S8 message is forwarded to the MCAPI runtime.

S8 message is received 1) S8 record is set to Delivered.

2) S8 record is set to Pending.

3) S3 message is forwarded to the MCAPI runtime.

S3 message is received 1) S3 record is set to Delivered.

2) S6 record is set to Pending.

3) S6 message is forwarded to the MCAPI runtime.

S6 message is received 1) S6 record is set to Delivered.

Table 4 shows that regardless to the order of dr_msg_send invocations observed in the replay

executions, messages will be delivered according to the order observed in the recorded execution.

3.3.2 Receiver-based Order-replay

Maintaining the UAO variable and the list requires shared-memory and

synchronizing access to it via the MRAPI API [10]. This leads to excessive time overhead as

shown by the experiments in section 4.3. The receive-based order-replay described in this section

requires less time overhead than sender-based order-replay. Receiver-based order-replay works by

capturing the order of messages arrival at a specific node during the recording phase and enforcing

this order during the replay phase by manipulating the order of the messages retrieved from the

runtime buffers. The order of messages arrival is established using a hash-code of the message’s

payload.

First, we describe the receiver-based order-replay trace structure in section ‎3.3.2.1 and

then its replay mechanism in section ‎3.3.2.2.

3.3.2.1 The Trace Structure

When an instrumented program is run in the recording mode, a separate trace is generated for

each MCAPI node:

 , where is the number of nodes in program .

A‎node’s‎trace‎contains‎a‎list‎of‎records:

 , where is a node identifier.

There are six types of records:

A record originates from a dr_msg_recv call and is defined as tuple
 . is the port number of the receiving endpoint. is the

invocation order of this particular dr_msg_recv call among other dr_msg_recv calls with the

same endpoint. is a hash-code of the received message data and is calculated using the

CRC-32 algorithm [23].

A record originates from a dr_wait call whose input request variable was

initialized by a dr_msg_recv_i call and is defined as .

 is the initialization order of the input request variable at the current node.

A record comes from a dr_wait_any call that returned the index of a request

variable that was initialized by a dr_msg_recv_i call and is defined as:
 . is the invocation order of this particular

dr_wait_any call among other dr_wait_any calls at this node. is the index returned by the

dr_wait_any call. is a hash-code of the received message data.

The record is defined as: and

indicates that a dr_wait_any call returned the index of a request variable that was initialized by a

non-blocking function other than dr_msg_recv_i.

An record originates from a sequence (one or more) of test calls whose input request

variable was initialized by a dr_msg_recv_i call and does retrieve a message from the runtime

buffers. It is defined as , such that

 is the initialization order of the input request variable at the current node, is

a hash-code of the received message data and is the number of times the dr_test call had

failed, before succeeding and retrieving a message.

Similarly, record stems from a sequence of dr_test calls. However,

the record indicates that no messages were retrieved from the runtime buffers.

That occurs when the input request variable was initialized by a non-blocking function other than

dr_msg_recv_i or when the input request variable was initialized by a dr_msg_recv_i call and

the sequence of dr_test calls‎doesn’t‎retrieve‎a‎message‎from‎the‎runtime‎buffers.

Table 5. Receive-based order-replay trace

Node 2 Node 4 Node 5

A:1/0/C1 R:1/1/C1 R:1/1/C1

W:2/C2 T:1/10/C2 R:1/2/C2

 W:2/C3 R:1/3/C3

Since‎ nodes‎ 1‎ and‎ 3‎ don’t‎ receive‎ any‎ messages,‎ they‎ don’t‎ produce‎ traces.‎ The‎ trace‎ record‎

(A:1/0/C1) is described as follows:‎‘A’‎indicates‎a‎ record. Number 1 is the invocation

order of the dr_wait_any call that generated record. Number 0 is the value that

dr_wait_any returned. C1 signifies the hash-code of the payload of the retrieved message.

The fields of the trace record (W:2/C1) are described as follows:‎ ‘W’‎ indicates‎a‎

record. Number 2 is the initialization order of the dr_wait input request variable. C2 signifies the

hash-code of the payload of the retrieved message.

The fields of the trace record (R:1/1/C1) are described as follows:‎ ‘R’‎indicates‎a‎

record. The first number 1 is the port number of the receiving endpoint. The second number 1 is

the invocation order of the dr_msg_recv call that generated this record. C1 signifies the

hash-code of the payload of the retrieved message.

The fields of the trace record (T:1/10/C2) are described as follows:‎ ‘T’‎ indicates‎ an‎

 record. Number 1 is the initialization order of the dr_test input request variable.

Number 10 is the number of failed dr_test calls. C2 signifies the hash-code of the payload of the

retrieved message.

3.3.2.2 The Replay Mechanism

We now describe how a trace is used to replay an execution. To support the replay mode, we

maintain three data structures:

1) : a list of records (e.g. , …)‎that‎are‎retrieved‎from‎the‎trace.

2) : a list of request variables per node. This list combines data from the

trace and data that are obtained on-the-fly.

3) : messages that arrive earlier than expected are stored in this list

along with their hash-codes.

The algorithm in Fig. 17 handles dr_msg_recv calls. First RecvCalls is incremented (line 1).

RecvCalls keeps track of the number of dr_msg_recv function invocations at the node. Second,

the GetRecvRecord procedure looks up the list to fetch the record with

 =RecvCalls (line 2). Third, the hash-code of the expected message is retrieved (line

3). Next, is looked up for a message whose hash-code matches the expected

hash-code. If such a message is found, then its data is copied to the program buffer (line 7).

Otherwise, the mcapi_msg_recv is repeatedly invoked until it retrieves a message whose hash-

code matches the expected hash-code (lines 10-20). When the excepted message arrives, it is

copied to the program buffer (line 15). All other messages and their hash-codes are appended to

 (line 19).

dr_msg_recv(Endpoint, &Buffer) {
1 RecvCalls++;
2 RecvRecord=GetRecvRecord(RecvCalls);
3 ExpectedCRC=RecvRecord.Hash;
4 for Index=0 to RecievedMessages.size do
5 if (RecievedMessages[Index].CRC==ExpectedCRC)
6 then
7 copy(Buffer, RecievedMessages[Index]);
8 return;
9 end-if
10 while(true) do
11 mcapi_msg_recv(Endpoint,&TempBuffer);
12 ArrivedCRC=CalculateCRC(TempBuffer);
13 if (ArrivedCRC==ExpectedCRC)
14 then
15 copy(Buffer, TempBuffer);
16 return;
17 end-if
18 else
19 RecievedMessages.Append(TempBuffer, ArrivedCRC);
20 end-while
}

Fig. 17. Handling dr_msg_recv calls

In the program in Fig. 8,‎ node‎ 5‎ receives‎ two‎messages.‎ Let’s‎ assume‎ that‎ when‎ running‎ that‎

program in the recording mode, it generates the trace in Table 5 (i.e. the order of messages arrival

is C1, C2, and then C3) and that during running the program in the replay mode, the messages

arrive with a different order: C2, C3, and then C1.

When dr_msg_recv is invoked for the first time, the list will be

empty. Hence, the while loop (lines 10-20) will iterate thrice. In the first iteration, the

mcapi_msg_recv call will retrieve the message with hash-code C2. Since the retrieved message is

not the excepted one, it will be added to the list (line 19).

In the second iteration, the mcapi_msg_recv call will retrieve the message with hash-

code C3 and, it will be added to the list as well. In the third iteration, the

message with hash-code C1 will be retrieved. So, this message will be delivered to the program

(line 15). When dr_msg_recv is invoked for the second and third times, the

list will contain the expected messages and they will be returned to the program in the correct

order (lines 4-9).

Fig. 18 shows the algorithm that handles a dr_wait call whose input request variable was

initialized by a msg_recv_i call. This algorithm depends on the list that links

a request variable with the endpoint and the program buffer pointer that were passed to the

msg_recv_i call.

First, if the input request was not initialized by a dr_msg_recv_i call, then it is

forwarded to the MCAPI library (lines 1-3). Otherwise, the hash-code of the expected message,

the endpoint and the program buffer pointer associated with the input request variable are retrieved

(lines 4-8). Second, mcapi_wait is invoked for all initialized (but not completed) requests at that

node and retrieved messages and their hash-codes are appended to (lines 9-

17). Finally, is looked up for a message whose hash-code matches the

expected hash-code. When such message is found, it is copied to the buffer associated with the

input request variable (line 21).

Fig. 19 describes how DR-MCAPI handles dr_wait_any calls. First, WaitanyCalls is

incremented (line 1). WaitanyCalls keeps track of the number of dr_wait_any function

invocations at the node. If the current dr_want_any call retrieves a message, then the

GetRecvWanyRecord procedure looks up the list to fetch the record

with =WaitanyCalls (line 3). In line 4, the in the record is

retrieved and the request in the Requests array at will be forwarded to dr_wait (line 5).

dr_wait(Request) {
1 if not IsRecvRequest(Request) then
2 return mcapi_wait(Request);
3 end-if
4 InitOrder=GetInitOrder(Request);
5 WaitRecord=GetWaitRecord(InitOrder);
6 ExpectedCRC=WaitRecord.Hash;
7 BufferPtr=GetBufferPtr(Request);
8 Endpoint=GetEndpoint(Request);
9 Requests=GetRequests(CurrentNode);
10 for Index=0 to Requests.size() do
11 if (Requests[Index].isComplete) then continue;
12 mcapi_wait(Requests[Index]);
13 ArrivedData=GetData(Requests[Index]);
14 ArrivedCRC=CalculateCRC(ArrivedData);
15 RecievedMessages.Append(ArrivedData,ArrivedCRC);
16 Requests[Index].setComplete();
17 end-for
18 for Index=0 to RecievedData.size() do
19 if (RecievedMessages[Index].CRC==ExpectedCRC)
20 then
21 copy(BufferPtr, RecievedMessages[Index]);
22 return;
23 end-if
24 end-for
}

Fig. 18. Handling dr_wait calls

 If the current dr_want_any call‎ doesn’t‎ retrieve‎ a‎ message,‎ then‎ the‎ GetNRecvWanyRecord

procedure looks up the list to fetch the record

with =WaitanyCalls (line 7). In line 8, the in the record is

retrieved and the request in the Requests array at will be forwarded to mcapi_wait (line

9). Finally, is returned to the program (line 11).

dr_wait_any(Requests,RsCount) {
1 WaitanyCalls++;
2 if RecvWany(WaitanyCalls) then
3 RecvWanyRecrd=GetRecvWanyRecord(WaitanyCalls);
4 Index=RecvWanyRecord.Index;
5 dr_wait(Requests[Index]);
6 else
7 NRecvWanyRecrd=GetNRecvWanyRecord(WaitanyCalls);
8 Index=NRecvWanyRecrd.Index;
9 mcapi_wait(Requests[Index]);
10 end-if
11 return Index;
}

Fig. 19. Handling dr_wait_any calls

In the program in Fig. 8 ,‎ node‎ 2‎ receives‎ two‎messages.‎ Let’s‎ assume‎ that‎when‎ running‎ that‎

program in the recording mode, it generates the trace in the Table 5 (i.e. the order of messages

arrival is C1 then C2 and that wait_any call returns 0) and that during running the program in the

replay mode, the messages arrive with a different order: C2 then C1. When dr_wait_any is

invoked, it is going to determine that the request at index 0 of the array was initialized

by a dr_msg_recv call and will forward this request to dr_wait. In dr_wait, the first loop (lines

10-17) will retrieve the two messages via three calls to mcapi_wait (line 12) and they will be

added to the list (line 15). The second loop (lines 18-24) will iterate through

the list and will return the message with hash-code C1 to the program. When

dr_wait is invoked to handle the wait call at line 30 in Figure 10, the message with hash-code C2

will be already in the list and will be returned to the program.

A dr_test call is handled by the algorithm in Fig. 20. First, the initialization order of the

input request variable (Request) is retrieved (line 1). If that request variable is associated with an

 record, then the of this record is reduced by one (line 4). If reaches

zero, the request is forwarded to dr_wait and true is returned to the program (lines 8-9). If that

request variable is associated with a record, then the of this record is

reduced by one (line 13). If reaches zero, the request is passed to mcapi_wait and true is

returned to the program (lines 17-18).

bool dr_test(Request){
1 InitOrder=GetInitOrder(Request);
2 if ArrivalTest(InitOrder) then
3 ArrivalTestRecord=GetArrivalTestRecord(Order);
4 ArrivalTestRecord.Count--;
5 if ArrivalTestRecord.Count>0 then
6 return false;
7 else
8 dr_wait(Request);
9 return true;
10 end-if
11 else
12 NArrivalTestRecord=GetNArrivalTestRecord(Order);
13 NArrivalTestRecord.Count--;
14 if NArrivalTestRecord.Count>0 then
15 return false;
16 else
17 mcapi_wait(Request);
18 return true;
19 end-if
20 end-if
}

Fig. 20. Handling dr_test calls

In the program in Fig. 8,‎ node‎ 4‎ receives‎ three‎ messages.‎ Let’s‎ assume‎ that‎ when‎ run‎ in‎ the‎

recording mode, this program generates the trace in Table 5 (i.e. three messages are retrieved with

order: C1, C2, and then C3 and that the dr_test call at line 44 retrieves the messages with hash-

code C2 at the 11
th

 invocation)‎ .‎ Let’s‎ assume‎ that‎ during‎ replay,‎ the‎ messages‎ arrive‎ with‎ a‎

different order (C2, C1, and then C3). When the dr_msg_recv call at line 43 is invoked,

messages with hash-codes C1 and C2 will be retrieved from the runtime buffers and C1 will be

returned to the program. When the dr_test call at line 43 is invoked, it will return false for 10

times and at the 11
th

 invocation, it will invoke dr_wait. dr_wait will find the message with hash-

code C2 in the list. When the dr_wait call at line 45 is invoked, it will

retrieve the message with hash-code C3.

4. EXPERIMENTAL RESULTS

In this section we analyze the performance of the replay approaches in terms of trace size, memory

usage and runtime overheads.

4.1 Methodology

We performed experiments on three sets of MCAPI programs developed by ourselves (BT, CG

and TN) and a set of programs (Bully) obtained from an external source [16]. Our experiments

were conducted on a machine with Core 2 Duo 1.4 GHz CPU and 4GB RAM using MCAPI

runtime V1.063. We evaluate DR-MCAPI using the following set of programs:

1) Binary Tree benchmark (BT): This is a set of 10 programs that create networks of nodes

with sizes from 3 nodes to 21 nodes. Each two nodes send a message to the same parent

node forming a binary tree in which messages travel from the leaves to the root node. The

smallest tree has 3 nodes and exchanges 20 messages. The largest one has 21 nodes and

exchanges 155 messages. This benchmark has a master/slave communication pattern.

2) Complete Graph benchmark (CG): This is a set of 10 programs that create networks of

nodes with increasing sizes from 2 nodes to 11 nodes. All nodes send and receive

messages to/from each other forming a complete graph. The number of exchanged

messages is between 20 message (for a 2 nodes graph) and 1100 messages (for a 11

nodes graph). This benchmark has an all-to-all communication pattern.

3) 10-nodes benchmark (TN): This is a set of 10 programs that create networks of nodes

with a fixed size of 10 nodes. However, the number of messages exchanged among the

nodes increases monotonically. The number of messages exchanged is between 90 and

900. This benchmark allows us to isolate the effect of the number of messages on

performance.

4) Bully benchmark (Bully): This is a set of 10 programs that create of networks of nodes

with different sizes and use the Bully leader selection algorithm [9] to select a leader

node. The number of exchanged messages is between 35 messages (for a 3 nodes

network) and 314 messages (for a 12 nodes network). This benchmark was provided by

the V&V research group at Brigham Young University.

In all benchmarks, except the Bully benchmark, the message size is 50 bytes. The Bully

benchmark message size is 4 bytes.

To analyze the runtime and memory usage, a given program is executed three times: 1)

without the DR-Library, 2) with the DR-MCAPI library in recording mode and 3) with the DR-

MCAPI library in replay mode. These three executions are repeated forty times and the results are

averaged. We use a pair of gettimeofday function calls; when a program starts execution and

when it ends execution to calculate total runtime and use the Massif [18] heap profiler to measure

the heap memory used by a given execution. For the sake for brevity, we refer to data-replay as D-

Replay, sender-based order-replay as S-Replay, and receiver-based order-replay as R-Replay.

4.2 Log size

Our first analysis is for the trace size. Fig. 21 shows the trace size relative to the number of

exchanged messages using the D-Replay, S-Replay and R-Replay techniques. The x-axis is the

number of messages and the y-axis is the trace size in kilobytes.

(a) BT benchmark results (b) CG benchmark results

(c) TN benchmark results (d) Bully benchmark results

Fig. 21. Comparing the trace size among replay techniques

D-Replay produces a large trace compared to R-Replay and S-Replay in the benchmarks BT, CG,

and TN. However, it is the opposite with the Bully benchmark. This is due to the small size of the

messages exchanged in the Bully benchmark (4 bytes) compared to the other benchmarks (50

bytes). Table 6 shows the typical record size in the three replay techniques.

Table 6. Records structures and sizes in D-Replay, S-Replay and R-Replay

Technique Typical Record Structure Record Size

(Bytes)

D-Replay 1+4+sizeof()

S-Replay 1+1+4+4

R-Replay 1+4+8

In D-Replay, the record size is 5 bytes plus the size of the message payload. Hence, in the Bully

benchmark, the size of a trace record is 9 bytes, which is less than 13 bytes and 10 bytes for the S-

Replay and R-Replay, respectively.

4.3 Runtime Overhead

Fig. 22, Fig. 23 and Fig. 24 compare the running times of a baseline execution, a recorded

execution and a replay execution for the four benchmarks when using the D-Replay, S-Replay and

R-Replay techniques, respectively. The x-axis shows the program name and y-axis shows the time

in milliseconds.

(a) BT benchmark results (b) CG benchmark results

(c) TN benchmark results (d) Bully benchmark results

Fig. 22. The runtime overhead in D-Replay

In D-Replay (Fig. 22), runtime overhead during recorded executions are 1.8x, 1.5x, 1.5x and 1.9x

in the BT, CG, TN and Bully benchmarks, respectively. The average runtime overhead is 1.7x.

However, replay executions runtime is less than baseline executions. This is due to two reasons: 1)

during a replay execution, only one node is being replayed; 2) messages are not actually being sent

but their arrival is being simulated. Hence, messages transfer time is eliminated.

In S-Replay (Fig. 23), runtime overhead during recorded executions are 2.6x, 3.3x, 4.2x

and 2.0x in the BT, CG, TN and Bully benchmarks, respectively. The average runtime overhead is

3.0x. Runtime overhead during replay executions are 5.6x, 4.6x, 5.4x and 3.5x in the BT, CG, TN

and Bully benchmarks, respectively. The average runtime overhead is 4.7x.

(a) BT benchmark results (b) CG benchmark results

(c) TN benchmark results (d) Bully benchmark results

Fig. 23. The runtime overhead in S-Replay

In R-Replay (Fig. 24), runtime overhead during recorded executions are 1.5x, 1.3x, 1.3x and 1.4x

in the BT, CG, TN and Bully benchmarks, respectively. The average runtime overhead is 1.4x.

Runtime overhead during replay executions are 2.3x, 1.9x, 1.8x and 1.6x in the BT, CG, TN and

Bully benchmarks, respectively. The average runtime overhead is 1.9x.

(a) BT benchmark results (b) CG benchmark results

(c) TN benchmark results (d) Bully benchmark results

Fig. 24. The runtime overhead in R-Replay

4.4 Memory Usage Overhead

Fig. 25, Fig. 26 and Fig. 27 compare the memory usage of a baseline execution, a recorded

execution and a replay execution for the four benchmarks when using the D-Replay, S-Replay and

R-Replay techniques, respectively. The x-axis shows the program name and y-axis shows the

memory usage in milliseconds.

(a) BT benchmark results (b) CG benchmark results

(c) TN benchmark results (d) Bully benchmark results

Fig. 25. The memory usage overhead in D-Replay

In D-Replay (Fig. 25), memory usage overhead during recorded executions are 2.6x, 8.0x, 7.5x

and 6.0x in the BT, CG, TN and Bully benchmarks, respectively. The average runtime overhead is

6.0x. Memory usage overhead during replay executions are 1.3x, 2.7x, 2.3x and 2.7x in the BT,

CG, TN and Bully benchmarks, respectively. The average runtime overhead is 2.2x.

In S-Replay (Fig. 26), memory usage overhead during recorded executions are 2.1x, 2.8x,

2.6x and 2.0x in the BT, CG, TN and Bully benchmarks, respectively. The average runtime

overhead is 2.4x. Memory usage overhead during replay executions are 3.0x, 2.8x, 2.6x and 2.6x

in the BT, CG, TN and Bully benchmarks, respectively. The average runtime overhead is 2.7x.

(a) BT benchmark results (b) CG benchmark results

(c) TN benchmark results (d) Bully benchmark results

Fig. 26. The memory usage overhead in S-Replay

In R-Replay (Fig. 27), Memory usage overhead during recorded executions are 2.7x, 2.9x, 3.0x

and 2.8x in the BT, CG, TN and Bully benchmarks, respectively. The average runtime overhead is

2.8x. Memory usage overhead during replay executions are 2.7x, 3.1x, 3.2x and 2.9x in the BT,

CG, TN and Bully benchmarks, respectively. The average runtime overhead is 3.0x.

(a) BT benchmark results (b) CG benchmark results

(c) TN benchmark results (d) Bully benchmark results

Fig. 27. The memory usage overhead in R-Replay

5. DISCUSSION

In this section we discuss the features of DR-MCAPI such as usability, portability and scalability.

5.1 Usability

DR-MCAPI is a push-button solution.‎The‎user‎needn’t‎to‎change‎the‎source‎code‎or‎change/re-

compile the MCAPI library. Using DR-MCAPI involves three steps: 1) instrumenting the source

code, 2) compiling the instrumented program, and 3) running the generated executable. These

steps are easily automated using a batch script or could be incorporated into the MCAPI

compilation chain. DR-MCAPI handles program crashes arising from assertion failures. Assert

calls are instrumented such that when the assertion expression evaluates to false during the

recording phase, the logged trace is dumped to the disk before allowing the program to crash.

5.2 Portability

DR-MCAPI‎doesn’t‎require‎hardware‎amendments‎and‎since‎it‎sits‎as‎layer‎between‎the‎program‎

and the MCAPI library, it is portable across different implementations of the MCAPI

specification. For example, DR-MCAPI is usable with the OpenMCAPI [13] implementation

without any changes.

5.3 Scalability

Now, we discuss the scalability of DR-MCAPI in terms of the trace size, runtime and memory

overheads. The trace size scales linearly with the number of messages exchanged. However, since

in D-Replay the message payload itself is stored in the trace, the sizes of the messages affect the

trace size resulting in larger traces. The S-Replay and R-Replay trace record sizes are independent

of the message payload size.

A major factor affecting the scalability of DR-MCAPI is the time overhead, especially

during a recorded execution. A replay execution is only needed when a failure takes place and the

developer needs to scrutinize the details. S-Replay encounters high runtime overhead during a

recorded execution since all messages payloads are modified before being sent and are unpacked

and processed after being received. On the other side, R-Replay has the least runtime overhead

during recording since messages are accessed once (at the receiving node) to calculate the hash-

code. S-Replay exhibits a very high runtime overhead during a replay execution since it

manipulates the orders of executing dr_msg_send (and dr_msg_send_i) calls across the whole

program and not within a node similar to R-Replay. D-Replay incurs the least replay time

overhead because message transfer time is eliminated since messages are not actually being sent

but their arrival is being simulated.

The memory overhead is due to the DR-MCAPI data structures. D-Replay memory

overhead in the recording mode is the largest, since it buffers the contents of all messages

exchanged until the trace is written to the disk. R-Replay requires more memory than S-Replay in

the replay mode since it buffers messages received out of expected order.

5.4 Equivalent vs. Identical Replay

R-Replay guarantees an equivalent replay of the recorded execution; however S-Replay produces

an identical replay. We use the program in Fig. 28 to demonstrate the difference.

Node 1 Node 3
1 dr_initialize(1); 10 dr_initialize(3);
2 X=1; 11 Y=10;
3 EP=dr_create_endpoint(1); 12 EP=dr_create_endpoint(1);
4 N2EP=dr_get_endpoint(2,1); 13 N2EP=dr_get_endpoint(2,1);
5 N4EP=dr_get_endpoint(4,1); 14 N4EP=dr_get_endpoint(4,1);
6 dr_msg_send(EP,N2EP,X); 15 dr_msg_send(EP,N2EP,Y);
7 dr_msg_send(EP,N4EP,X); 16 dr_msg_send(EP,N4EP,Y);
8 dr_delete_endpoint(EP); 17 dr_delete_endpoint(EP);
9 dr_finalize(); 18 dr_finalize();

Node 2 Node 4
19 dr_initialize(2); 25 dr_initialize(4);
20 EP=dr_create_endpoint(1); 26 EP=dr_create_endpoint(1);
21 dr_msg_recv(EP,&A); 27 dr_msg_recv(EP,&C);
22 dr_msg_recv(EP,&B); 28 dr_msg_recv(EP,&D);
23 dr_delete_endpoint(EP); 29 dr_delete_endpoint(EP);
24 dr_finalize(); 30 dr_finalize();

Fig. 28. Equivalent replay vs. identical replay

Let’s‎ assume‎ that‎ in‎ a‎ recording‎ session‎ of‎ the‎ program‎ in‎ Fig. 28, the order of arrival of the

message was as in Table 7.

Table 7. An order of arrival in a recorded execution

Message Destination
Node

Arrival Order at
destination node

Total
Arrival

Order

Sent at line 6 2 1 1

Sent at line 7 4 1 2

Sent at line 15 2 2 3

Sent at line 16 4 2 4

When using R-Replay, the local order of messages arrival at a given node during a replay

execution is guaranteed to be the same as in the recorded execution. However, the total order of

arrival of messages is not guaranteed to be the same. During an R-Replay replay session, it is

possible to have the order of message arrival as in Table 8 which is equivalent to the one in Table

7, but not identical to it.

It is worth mentioning that D-Replay also produces an identical replay execution. S-

Replay guarantees a replay session that adheres to both the local and total orders of messages

arrival.

Table 8. Equivalent but not identical order of arrival

Message Destination
Node

Arrival Order at
destination node

Total
Arrival

Order

Sent at line 6 2 1 2

Sent at line 7 4 1 1

Sent at line 15 2 2 4

Sent at line 16 4 2 3

5.5 D-Replay vs. S-Replay vs. R-Replay

In this section we compare the three replay techniques. As shown in Table 9, R-Replay exhibits

better performance than S-Replay and D-Replay. D-Replay allows replaying some nodes (rather

than all nodes) and in this case other nodes are simulated. This is useful as it speeds up the replay

process, in case of many nodes. In order-replay, all processes must be replayed. The developer

using DR-MCAPI should decide which nodes to replay. For example, if s/he suspects that a

specific node is buggy. S-Replay is useful when identical replay is needed.

Table 9 D-Replay vs. S-Replay vs. R-Replay

Criteria D-Replay S-Replay R-Replay

Trace Size Worst Good Best

Recording time overhead Good Worst Best

Replay time overhead Best Worst Good

Recording memory overhead Worst Good Good

Replay memory overhead Best Good Worst

Replay specific nodes Yes No No

Identical replay Identical Identical Equivalent

5.6 The probe-effect

Due to logging, recorded executions may suffer from the probe effect [8] leading to changes in the

relative timing of events. The probe effect may hide bugs that will otherwise be apparent. The

probe‎ effect‎ can’t‎ be‎ entirely‎ avoided‎ but‎ it‎ could‎ be‎ reduced‎ by‎ lessening‎ the‎ amount‎ of‎ data‎

collected. DR-MCAPI is engineered to collect the minimum amount of data during the recording

mode.

6. RELATED WORK

MPI [1] has been dominating message-passing software development for a long time. Hence, the

current literature on replaying message-passing software is almost limited to MPI programs. In

[11], Kranzlmuller et al. present a record and replay mechanism for MPI that adopts the order-

replay approach and handles both promiscuous receive calls and test operations. Their approach is

based on modifying the MPICH library source code.

Different than MCAPI, not all MPI receive calls are promiscuous. MPI receive calls have

a source parameter that can be used to state a specific sender process. If the source parameter is set

to MPI_ANY_SOURCE, then the receive call may receive a message from any process, allowing

message races. Otherwise, no message races can take place. Receive calls with

MPI_ANY_SOURCE are handled by storing the identifier of the source process of the message

that was received during the record phase. During replay, when the source parameter of a receive

call is MPI_ANY_SOURCE, it is replaced with the source process identifier obtained during the

record phase. This approach is not applicable to MCAPI programs since their receive calls

(msg_recv and msg_recv_i) do not specify a source parameter. Thus unlike MPI applications it is

not possible to identify the source of a received message. Test operations are handled by counting

the number of consecutive failing test operations associated with the same request variable during

the record phase. In the replay phase, test operations are forced to fail (i.e. return false) until the

recorded number of failed tests has reached. They report a 200% time increase during the record

phase. Also, this approach is library-dependent (based on the MPICH library) which limits its

portability.

In [15], the authors disabuse the impracticality of data-replay and argue that the ability to replay

one process justifies the excessive logging overhead. They implement their data-replay mechanism

as a layer between the program and the MPI library. Recorded data includes: MPI function calls

return values and the contents and the source processes identifiers of received messages. During

replay, when the program posts a receive call; the data-replay layer returns the data recorded at the

corresponding receive call during the record phase. In other words, receive calls are simulated

rather‎ than‎being‎ executed.‎As‎ expected,‎ the‎ log‎ size‎ is‎ 100’s‎of‎ times‎ larger‎ than‎when‎order-

replay is used. In one experiment, the data log was 907MB while an order-replay would produce

0.84MB for the same program. The disk space requirement of this approach is prohibitively large

for long-running applications. Unfortunately the approaches described in [15] and [11] don’t‎

capture all forms of non-determinism in MPI programs, making it difficult to ensure a completely

faithful replay.

The authors of [28] propose subgroup-reproducible replay (SRR) which combines order-

replay and data-replay. During the record phase, disjoint groups of processes are formed and the

contents of messages crossing group boundaries are recorded. The contents of the messages that

are sent and received within a group are not recorded, but the order of arrival of such messages is

recorded. This approach allows replaying a specific group of processes independently of other

groups. During replay of a group, messages coming from outside that group are reproduced from

the log; inter-group messages are produced through direct execution. Setting the size and the

membership of groups can be done manually by the user or automated based on communication

locality. Performance evaluation of the SRR approach shows that it increases the runtime by an

average of 120% during the recording phase and generates a log that is half the size of the log

generated by a pure data-replay approach. Also this work handles all non-determinism sources in

MPI programs.

Another related tool is MCC [24] which implements an automated approach for verifying

MCAPI programs. MCC creates a scheduling layer above the MCAPI runtime layer that allows

intercepting MCAPI calls and discovering potentially matching send/receive ones. This allows

MCC‎ to‎ explore‎ all‎ possible‎ execution‎ scenarios‎ resulting‎ from‎ different‎ orders‎ of‎ messages’‎

arrival. MCC uses Dynamic Partial Order Reduction (DPOR) [7] technique to reduce the number

of examined execution scenarios. MCC handles only promiscuous receive calls making it

unsuitable for any programs using mcapi_test and mcapi_wait_any calls.

7. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

With the current trend of increasing a processor performance by adding more cores rather than

increasing the clock speed, we may have processors with 10s or 100s cores in the near future.

Currently, only a handful of applications can exploit the potentials of these multicore processors

since only the very skilled programmers can develop applications for these processors. This must

change. Every programmer should be able to write programs that take advantage of the multicore

era processors. Hence, it is important to develop programming practices and tools that support

multicore development. Providing a deterministic replay capability to multicore-specific standards

such as MCAPI will greatly improve the debugging process. This is both an important and

challenging problem. Any replay tool must be easy to use, scale well and handles all non-

determinism sources in a program.

In this article, we presented DR-MCAPI. To the best of our knowledge, DR-MCAPI is

the first replay tool that considers all non-determinism sources in MCAPI programs. The

deterministic replay ability provided by DR-MCAPI allows a programmer to repeatedly execute

the program under supervision of a debugger to catch flaws.

Currently, the trace scales linearly with the number of messages exchanged during the

runtime of a program. Reducing the trace size will decrease both the time overhead and memory

usage, hence improving the scalability our tool. We plan to investigate trace compression methods

similar to the ones in [20] and [12] for DR-MCAPI traces. Check-pointing is a technique that

allows recovery of a failed program to its state prior to failing [6]. Check-pointing works by

periodically saving the state of a program to a stable storage during execution; when a failure takes

place, the program is restarted form the last checkpoint [4]. We are exploring how to modify DR-

MCAPI to support check-pointing for non-terminating MCAPI programs. Usability is of prime

importance to any tool. That is why are developing an Eclipse plugin that uses DR-MCAPI as a

back-end to allow the user to perform interactive debugging.

APPENDIX

We summarize the trace records notations introduced in section 3 in Table 10.

Table 10 Trace records

Record Structure Source Call Replay Technique

 dr_msg_recv D-Replay

R-Replay

 dr_wait D-Replay

R-Replay

 . dr_wait_any D-Replay

R-Replay

 dr_wait_any D-Replay

R-Replay

 dr_test D-Replay

R-Replay

 dr_test D-Replay

R-Replay

 dr_msg_send

dr_msg_send_i
S-Replay

 dr_wait_any S-Replay

 dr_test S-Replay

REFRENCES

[1] MPI: A Message-Passing Interface Standard. http://www.mpi-forum.org/docs/mpi-

2.2/index.htm. [Online; accessed 28-April-2011].

[2] The Multicore Association. http://www.multicore-association.org. [Online; accessed 28-

April-2011].

[3] BREHMER, S. The Multicore Association Communications API. http://www.multicore-

association.org/workgroup/mcapi.php, March 2010. [Online; accessed 28-April-2011].

[4] CHEN, Y., PLANK, J. S., AND LI, K. CLIP: a checkpointing tool for message-passing parallel

programs. In Proceedings of the 1997 ACM/IEEE conference on Supercomputing (CDROM) (New

York,‎NY,‎USA,‎1997),‎Supercomputing‎’97,‎ACM,‎pp. 1–11.

[5] DUNLAP, G. W., KING, S. T., CINAR, S., BASRAI, M. A., AND CHEN, P. M. Revirt: enabling

intrusion analysis through virtual-machine logging and replay. In Proceedings of the 5th

symposium on Operating systems design and implementation (New York, NY, USA, 2002), OSDI

’02,‎ACM,‎pp. 211–224.

[6] FERTRÉ, M., AND MORIN, C. Transparent Message-Passing Parallel Applications

Checkpointing in Kerrighed. Research Report RR-5755, INRIA, 2005.

[7] FLANAGAN, C., AND GODEFROID, P. Dynamic partial-order reduction for model checking

software. SIGPLAN Not. 40 (January 2005), 110–121.

[8] GAIT, J. A probe effect in concurrent programs. Softw. Pract. Exper. 16 (March 1986), 225–

233.

[9] GARCIA-MOLINA, H. Elections in a distributed computing system. IEEE Trans. Comput. 31

(January 1982), 48–59.

[10] HOLT, J., AND BREHMER, S. The Multicore Association Resource Management API.

http://www.multicore-association.org/workgroup/mrapi.php, March 2011. [Online; accessed 28-

April-2011].

[11] KRANZLMÜLLER, D., SCHAUBSCHLÄGER, C., AND VOLKERT, J. An integrated record&replay

mechanism for nondeterministic message passing programs. In Proceedings of the 8th European

PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message

Passing Interface (London, UK, 2001), Springer-Verlag, pp. 192–200.

[12] KRISHNAMOORTHY, S., AND AGARWAL, K. Scalable communication trace compression. In

Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing (Washington,‎DC,‎USA,‎2010),‎CCGRID‎’10,‎IEEE‎Computer‎Society,‎pp. 408–417.

[13] LEVY, M. Mentor Releases Open Source of MCAPI for Multicore. http://www.multicore-

association.org/press/030211.html, March 2011. [Online; accessed 28-April-2011].

[14] LUCCHETTI, D., REINHARDT, S. K., AND CHEN, P. M. Extravirt: detecting and recovering from

transient processor faults. In Proceedings of the twentieth ACM symposium on Operating systems

principles (New‎York,‎NY,‎USA,‎2005),‎SOSP‎’05,‎ACM,‎pp. 1–8.

[15] MARUYAMA, M., TSUMURA, T., AND NAKASHIMA, H. Parallel program debugging based on

data-replay. In IASTED PDCS’05 (2005), pp. 151–156.

[16] MERCER, E. Verification and Validation Laboratory at Brigham Young University.

http://facwiki.cs.byu.edu/vv-lab/index.php, April 2011. [Online; accessed 28-April-2011].

[17] NARAYANASAMY, S., PEREIRA, C., AND CALDER, B. Software profiling for deterministic

replay debugging of user code. In Proceeding of the 2006 conference on New Trends in Software

Methodologies, Tools and Techniques: Proceedings of the fifth SoMeT 06 (Amsterdam, The

Netherlands, The Netherlands, 2006), IOS Press, pp. 211–230.

[18] NETHERCOTE, N., WALSH, R., AND FITZHARDINGE, J. Building workload characterization

tools with valgrind. In IISWC (2006), IEEE, p. 2.

[19] NETZER, R. H. B., BRENNAN, T. W., AND DAMODARAN-KAMAL, S. K. Debugging race

conditions in message-passing programs. In Proceedings of the SIGMETRICS symposium on

Parallel and distributed tools (New‎York,‎NY,‎USA,‎1996),‎SPDT‎’96,‎ACM,‎pp. 31–40.

[20] NOETH, M., MARATHE, J., MUELLER, F., SCHULZ, M., AND DE SUPINSKI, B. Scalable

compression and replay of communication traces in massively parallel environments. In

Proceedings of the 2006 ACM/IEEE conference on Supercomputing (New York, NY, USA, 2006),

SC‎’06,‎ACM.

[21] QUINLAN, D. J. ROSE: Compiler Support for Object-Oriented Frameworks. Parallel

Processing Letters 10, 2/3 (2000), 215–226.

[22] RONSSE, M., CHRISTIAENS, M., AND BOSSCHERE, K. D. Cyclic debugging using execution

replay. In Proceedings of the International Conference on Computational Science-Part II

(London,‎UK,‎UK,‎2001),‎ICCS‎’01,‎Springer-Verlag, pp. 851–860.

[23] ROSS WILLIAMS. A Painless Guide to CRC Error Detection Algorithms V3.00.

http://www.ross.net/crc/crcpaper.html, April 2010. [Online; accessed 28-April-2011].

[24] SHARMA, S., GOPALAKRISHNAN, G., MERCER, E., AND HOLT, J. MCC: A runtime verification

tool for MCAPI user applications. In FMCAD (2009), IEEE, pp. 41–44.

[25] SHEGALOV, G. Integrated Data, Message, and Process Recovery for Failure Masking in Web

Services. PhD thesis, Universität des Saarlandes, July 2005.

[26] SMITH, DARRY, A. Efficient recording and replaying of non-deterministic instructions in a

virtual machine and CPU, 2010.

[27] SNELLING, D. F., AND HOFFMANN, G.-R. A comparative study of libraries for parallel

processing. Parallel Computing 8, 1-3 (1988), 255 – 266. Proceedings of the International

Conference on Vector and Parallel Processors in Computational Science III.

[28] XUE, R., LIU, X., WU, M., GUO, Z., CHEN, W., ZHENG, W., ZHANG, Z., AND VOELKER, G.

MPIWiz: subgroup reproducible replay of MPI applications. In Proceedings of the 14th ACM

SIGPLAN symposium on Principles and practice of parallel programming (New York, NY, USA,

2009),‎PPoPP‎’09,‎ACM,‎pp. 251–260.

