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Improving Linguistic Pairwise Comparison
Consistency via Linguistic Discrete Regions

Hengshan Zhang, Qinghua Zheng, Ting Liu, Zijiang Yang, Minnan Luo, Yu Qu

Abstract—Linguistic pairwise comparison matrices are widely
used in decision-making procedures. However, the matrices often
give conflicting results when there are multiple criteria under
consideration. Despite intensive research, achieving consistency
of such matrices remains a daunting task. In this paper, a
novel approach based on linguistic discrete region is proposed
to address the challenge. Unlike existing methods that require
a single value for each comparison, our approach allows a
comparison to be expressed by a discrete region with multiple
linguistic terms. Such front-end gives users more freedom to
express their opinions. In the back-end, we propose an iterative
searching algorithm that is able to achieve approximate optimal
consistency for the comparison matrices with discrete region
values. The final results are single-value matrices that not only
guarantee approximate optimal consistency but also comply with
evaluators’ intentions, as our approach does not modify any
linguistic values like many existing methods. We have conducted
extensive evaluations and our empirical study confirms that the
linguistic discrete region based approach significantly improves
the consistency of linguistic pairwise comparison matrices.

Index Terms—consistency, linguistic discrete region, pairwise
comparison matrix, linguistic term.

I. INTRODUCTION

THE linguistic pairwise comparison, which quantifies
comparison of two attributes with a linguistic term [1], is

widely used in Multiple Criteria Decision Making (MCDM )
procedures [2]. The linguistic pairwise comparison matrix
becomes inconsistent when the transitivity and reciprocity
rules are violated [3]. Formally, a positive reciprocal com-
parison matrix A = (aij)n×n is consistent, if aikakj = aij ,
1 ≤ i, j, k ≤ n [4]. Since in most cases it is too difficult
for evaluators to give a comparison matrix without any in-
consistency, Saaty et al proposed consistency ratio (CR) [4]
to measure the level of inconsistency. CR is defined as
CR = λmax−n

(n−1)RI , where λmax is the maximal eigenvalue, RI is
the average random index based on the matrix size, and n is the
order of matrix. It is believed that a matrix with inconsistency
is acceptable as long as CR < 0.1. Besides CR, other
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indexes have been proposed to measure the inconsistency[5–
18]. For example, Geometric Consistency Index (GCI) [9, 10],

GCI =
2
∑

i<j | log aij−log
Pi
Pj
|

(n−1)(n−2) , where Pi(1 ≤ i ≤ n) are the
calculated priorities. In our work we adopt CR as it is the
most widely used index.

Many approaches have been proposed to fix the incon-
sistent comparison matrices if the values of their CR are
greater than 0.1. These approaches fall into the following
categories. Approaches in the first category require manual
adjustments until the value of CR becomes less than the
threshold. Without automated aid, these approaches often leave
the evaluators clueless on how to improve the consistency. In
the second category, algorithms are developed to guide the
evaluations [19–22]. For example, Ishizaka and Lusti [19]
suggested an expert module to improve the consistency of
pairwise comparison matrices by detecting rule transgressions,
giving hints and suggesting alternatives for discrete values.
The problem with such approaches is that the newly suggested
values may contradict an evaluator’s intention. If this happens,
the approach cannot determine which previous decisions cause
the conflict and thus should be revised. Approaches in the third
category attempt to modify the values in a matrix automatically
so that its inconsistency level becomes less than the predefined
threshold [23–26]. An obvious issue with these approaches is
that the automatically adjusted matrix may no longer respect
an evaluator’s intention. The last category researchers have
extended the MCDM framework to accommodate decision
values expressed as intervals [27]. There are a number of
studies on interval pairwise comparison matrices[3, 27–35].
The problems of inconsistency of such matrices are discussed
in [36–39] and many methods have been proposed. Most of
which modify the original comparison matrix and thus may
contradict evaluators’ intentions. In addition, many methods
exploit non linear programming models, which are very diffi-
cult to solve.

In this paper, we propose an approach that does not require a
single linguistic term for a comparison. Instead, a comparison
can be quantified by a linguistic discrete region that consists
of multiple linguistic terms. Such approach results in a com-
parison matrix whose elements are linguistic discrete regions.
Based on the 2-tuple linguistic model [1, 40, 41], we translate
such comparison matrices into set-matrices whose elements
are finite sets of real numbers, which are then processed
by our iterative searching algorithm. The final results are
automatically generated matrices with approximate optimal
consistency and all the elements in the final matrices are
consistent with the original evaluations.
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A first version of the proposed approach has been previously
presented in [42, 43]. The main improvements of this study
are the discussions of relations between the comparison ma-
trices with linguistic discrete regions and interval comparison
matrices, the theoretical proofs and experimental verifications
of efficiencies of algorithms in the proposed approach.

The main contributions of the proposed approach are that:
1) It enables the evaluators express their fuzzy intentions with
discrete regions rather than specific linguistic term. 2) Coupled
with efficient algorithms, such approach leads to matrices that
are not only faithful representation of the evaluators’ opinions,
but also highly consistent. 3) The efficiencies of algorithms in
the proposed approach are theoretical proved and experimental
verified.

The rest of this paper is organized as follows. After review-
ing relevant concepts in Section II, we present our approach
in Section III. The empirical study is conducted in section IV.
Finally, Section V concludes this paper.

II. PRELIMINARIES

In this section, we review relevant concepts that include
the 2-tuple linguistic model and its extension, the hesitant
fuzzy linguistic term set, several different types of preference
relations and the interval pairwise comparison matrix.

A. 2-tuple Linguistic Model and Its Extension

Let S = {sk|k = 0, 1, . . . , g} be a linguistic term set with
the following characteristics:
• S is ordered: si > sj if and only if i > j;
• There is a negation operator: Neg (si) =sj , if j = g − i.
The 2-tuple linguistic model [1, 40, 41] represents the

linguistic information by pairs in the format of (si, αi), where
si ∈ S and αi ∈ [−0.5, 0.5). A procedure is defined to make
transformations between linguistic terms and numerical values.

Definition 1. [1] Let β ∈ [0, g] be a real number in
the granularity interval of the linguistic term set S. Let
i = round(β) and α = β−i be two values such that i ∈ [0, g]
and αi ∈ [−0.5, 0.5). Then, α is called a symbolic translation,
with round being the usual rounding operation.

For example, S = {sk|k = 0, 1 . . . , 8}. Let β = 5.6, i =
round(β) = 6, α = 5.6−6 = −0.4. The 2-tuple is (s6,−0.4).

Definition 2. [1] Let S be a linguistic term set and
β ∈ [0, g] be a value representing the result of a symbolic
aggregation operation. The 2-tuple that expresses the infor-
mation equivalent to β is obtained by the following function:
∆ : [0, g] → S × [−0.5, 0.5), ∆(β) = (si, αi), where
i = round(β) and α = β − i.

Clearly, ∆ is a one-to-one function with type [0, g]→ S ×
[−0.5, 0.5). Let S̄ denote the range of ∆. ∆ has an inverse
function, ∆−1(si, x) = i+ x.

For example, let β = 4.5 ∈ [0, 8], i = round(β) =
round(4.5) = 5, α = 4.5 − 5 = −0.5, ∆(β) = (s5,−0.5).
∆−1(s5, 0.3) = 5 + 0.3 = 5.3.

By defining the concept of the numerical scale, Dong et
al. [44] proposed an extension of the 2-tuple linguistic model

to serve the linguistic term sets that are not uniformly and
symmetrically distributed.

Definition 3. [44] Let S = {si|i = 0, 1, ..., g} be a
linguistic term set, and R be a set of real numbers. The
function NS : S → R is defined as a numerical scale of
S, and NS(si) is called the numerical index of si.

Definition 4. [44] For any (si, α) ∈ S̄, the numerical scale
NS on S̄ is defined by

NS((si, α)) =

{
NS(si) + α× (NS(si+1)−NS(si)) α ≥ 0
NS(si) + α× (NS(si)−NS(si−1)) α < 0

Dong et al. [45] proposed an interval version to generalize
the existing 2-tuple linguistic models.

Definition 5. [45] Let M = {[AL, AR]|AL, AR ∈ R,AL ≤
AR} be a set of interval numbers. The function INS : S →M
is defined as an interval numerical scale of S, and INS(si)
is called the interval numerical index of si.

Based on the comparison operator presented in Ishibuchi
and Tanaka [46], the interval numerical scale is ordered if
INSL(si) < INSL(si+1) and INSR(si) < INSR(si+1),
for i = 0, 1, . . . , g−1. Where, INSL(si) = AiL, INSR(si) =
AiR.

Definition 6. [45] For any (si, α) ∈ S̄, the interval numer-
ical scale INS on S̄ is defined by INS((si, α)) = [AL, AR],
where

AL =

{
INSL(si) + α× (INSL(si+1)− INSL(si)) α ≥ 0
INSL(si) + α× (INSL(si)− INSL(si−1)) α < 0

AR =

{
INSR(si) + α× (INSR(si+1)− INSR(si)) α ≥ 0
INSR(si) + α× (INSR(si)− INSR(si−1)) α < 0

B. Hesitant Fuzzy Linguistic Term Set

Based on the fuzzy linguistic approach, the hesitant fuzzy
linguistic term set (HFLTS) will increase the flexibility of
the elicitation of linguistic information by means of linguistic
expressions.

Definition 7. [47] Let S be a linguistic term set. A hesitant
fuzzy linguistic term set (HFLTS) HS is an ordered finite
subset of the consecutive linguistic terms of S.
• Empty HFLTS : HS(ϑ) = ∅,
• Full HFLTS : HS(ϑ) = S.

A non-empty HFLTS contains at least one linguistic term
in S. As discussed in the following definition, a context-free
grammar GH provides a way to generate linguistic terms and
linguistic expressions.

Definition 8. [47] Let GH = (V N, V T, I, P ) be
a context-free grammar, and S = {s0, s1, . . . , sg}
be a linguistic term set. The elements of GH are
defined as follows: V N = {< primary term >
,< composite term >,< unary relation >,<
binary relation >,< conjunction >}, V T =
{lower than, greater than, between, s0, s1, . . . , sg}, I ∈
V N . P is the production rules that are defined in an extended
Backus-Naur form [48].
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Note that < unary relation > has some limitations. If the
nonterminal symbol is lower than, the primary term cannot
be s0. Similarly, if the nonterminal symbol is greater than,
the primary term cannot be sg .

Definition 9. [47] Let EGH : LE → HS be a function that
transforms linguistic expressions (LE) into HFLTS(HS). LE
is obtained by GH , and S is the linguistic term set that is used
by GH .

The linguistic expressions will be transformed into HFLTS
in different ways according to the following rules:
• EGH(si) = {si|si ∈ S};
• EGH(less than si) = {sj |sj ∈ S and sj ≤ si};
• EGH(greater than si) = {sj |sj ∈ S and sj ≥ si};
• EGH(between si and sj) = {sk|sk ∈ S and si ≤ sk ≤
sj}.

C. Linguistic Preference Relations and Numerical Preference
Relations

As discussed in previous researches, there are two types
of preference relations: linguistic preference relations [49–
52] and numerical preference relations [16, 53–61]. Let X =
{x1, x2, ..., xn}(n ≥ 2) be a finite set of attributes. When
an evaluator makes pairwise comparisons using the linguistic
term set S, she can construct a linguistic preference relation
L = (lij)n×n, in which lij estimates the preference degree of
attribute xi over xj .

Definition 10. [49, 50] The matrix L = (lij)n×n is called
a simple linguistic preference relation if lij ∈ S, and is
called a 2-tuple linguistic preference relation if lij ∈ S̄. L
is considered reciprocal if lij = Neg(lji) (1 ≤ i, j ≤ n). The
negation operator is defined as the following: Neg(lij) =
Neg((si, α)) = ∆(g −∆−1(si, α)).

Two widely used numerical preference relations are fuzzy
and multiplicative preference relations.

Definition 11. [16, 54, 55, 62–64] The matrix F =
(fij)n×n, where fij ∈ [0, 1] and fij + fji = 1 for i, j =
1, 2, . . . , n, is called a fuzzy preference relation.

Definition 12. [29] The matrix A = (aij)n×n, such that
aij > 0 and aij × aji = 1 for i, j = 1, 2, . . . , n, is called a
multiplicative preference relation.

Ramı́k and Vlach [8] prove that the multiplicative and
fuzzy preference relations can be transformed to each other
under different preference representation structures, and the
consistency indexes for them are equivalent.

D. Interval Pairwise Comparison Matrix

An interval pairwise comparison matrix can be represented
as Ā = ([alij , a

h
ij ])n×n, where 0 < alij 6 ahij , a

l
ji = 1

ahij
, and

ahji = 1
alij

.

Definition 13. [33]. Let Ā = ([alij , a
h
ij ])n×n be a com-

parison matrix. If the convex feasible region Sw = {w =
(w1, . . . , wn) |alij ≤ wi/wj ≤ ahij ,

∑n
i=1 wi = 1, wi > 0} is

TABLE I
LINGUISTIC SCALE

Linguistic term Linguistic scale

s0 Absolutely less important (AbL)
s1 Strongly less important (StL)
s2 Essentially less important (EsL)
s3 Weakly less important (WkL)
s4 Equally important (Eq)
s5 Weakly more important (Wk)
s6 Essentially more important (Es)
s7 Strongly more important (St)
s8 Absolutely more important (Ab)

non-empty, Ā is said to be a consistent interval comparison
matrix. Otherwise, Ā is said to be inconsistent.

Let w = (w1, . . . , wn) be a weight vector, on which
two different types of constraints may be imposed. One is
the additive constraint

∑n
i=1 wi = 1. The other is the mul-

tiplicative constraint
∏n
i=1 wi = 1 , which is equivalent to∑n

i=1 lnwi = 0.

III. LINGUISTIC DISCRETE REGION BASED EVALUATION
APPROACH

In the proposed linguistic discrete region based evaluation
approach, the evaluators use the linguistic discrete region (mul-
tiple continuous linguistic terms) instead of a single linguistic
term to quantify evaluations. The obtained comparison matrix
with linguistic discrete region is translated into a set-matrix
(subsection B) by using the numerical scale. We construct
an iterative searching algorithm (ISA) to find a comparison
matrix with approximate optimal consistency in a set-matrix.
The linguistic pairwise comparison matrix that corresponds to
the matrix found by ISA represents the evaluator’s final evalu-
ations. As a result, our approach can improve the consistency
of linguistic pairwise comparison matrix without changing the
evaluator’s intentions. Another iterative searching algorithm
is proposed to obtain the matrix with approximate optimal
consistency from the interval comparison matrix. The purpose
of this algorithm is to empirically study the relationships
between the comparison matrix with discrete values and the
interval comparison matrix.

A. Linguistic Discrete Region

Rodrı́guez et al. proposed the concept of hesitant fuzzy
linguistic term set (HFLTS) [47],which keeps the basis on
the fuzzy linguistic approach [65] and extends the idea of
HFS (hesitant fuzzy set) to linguistic context. This concept is
very useful in practice. We propose the concept of linguistic
discrete region for the evaluators to conveniently represent
their judgements based on HFLTS.

Definition 14. Let S = {sk|k = 0, 1, . . . , g} be a linguistic
term set. The linguistic discrete region D = [si, sj ](0 ≤
i < j ≤ g) represents a finite subset of S. That is, D =
{si, si+1, . . . , sj}.
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For example, a set of linguistic terms are defined as shown
in TABLE I [66], [s5, s7] denotes the linguistic scales between
weakly important and strongly important. In the traditional
pairwise comparison, an evaluator only needs to give the
values for the upper triangular matrix because the values in
the lower triangular matrix can be inferred. The inference can
be applied to matrices with linguistic discrete regions as well.
Such inference is based on the concept of symmetrical region
defined below.

Definition 15. Let D = [si, sj ](0 ≤ i < j ≤ g) be
a linguistic discrete region. The symmetrical region of D is
defined as D̃ = [sg−j , sg−i ] = {sg−j , . . . , sg−i−1, sg−i}.

We use software quality evaluation as a case study to illus-
trate the construction of pairwise comparison matrix using the
linguistic discrete regions. The three types of software qualities
are “efficiency” (C1), “reliability” (C2) and “functionality”
(C3). Assume that an evaluator feels certain that “reliabil-
ity” is “essentially less important” than “functionality”, and
the importance of “efficiency” sits between “reliability” and
“functionality”. However, she is uncertain about the relative
scale of “efficiency” compared with other two features.

P =

 [s4] [s5, s7] [s2, s3]
[s1, s3] [s4] [s2]
[s5, s6] [s6] [s4]


The evaluations can be summarized as a pairwise compar-

ison matrix P with linguistic discrete regions. The values
at (i, j) are the results of comparing Ci against Cj . For
example, value s2 at (2,3) indicates “reliability” is “essentially
less important” than “functionality”. The linguistic discrete
region [s5, s7] at (1, 2) states that “efficiency” is “weakly”,
“essentially” or “strongly” more important than “reliability”.
Similarly, linguistic discrete region [s2, s3] at (1, 3) states that
“efficiency” is “essentially” or “weakly” less important than
“functionality”. Finally, the lower triangular matrix is inferred
following Definition 15.

A consistent comparison matrix Pc can be computed based
on the linguistic discrete region comparison matrix P . Since
our algorithm does not add any additional values, Pc will
not violate the evaluator’s intention. We will represent our
algorithms in Sections III-D and III-E.

Pc =

 [s4] [s5] [s3]
[s3] [s4] [s2]
[s5] [s6] [s4]


B. Set-Matrix

The 2-tuple linguistic model [1, 40, 41] and its extension
[44] are the popular tools for computing with linguistic scales
in decision making. In this paper, we translate the linguistic
term set in Table I into the real numbers by using the
extension of the 2-tuple linguistic model. As a result, the
linguistic discrete region matrix in Section III-A is translated
into a multiplicative comparison matrix. In this subsection, we
present a new data structure called set-matrix (SM) to represent
the multiplicative comparison matrix that is translated from the
linguistic discrete region matrix.

Definition 16. Let S = {s0, s1, . . . , sg} be a linguistic term
set, D = [si, sj ](0 ≤ i ≤ j ≤ g) be a linguistic discrete
region, and f(D) be a scale function [66]. The range of
f(D), in the format of [f (si) , f (sj)] is a ordered set of real
number. We named this ordered set as real number discrete
region (RNDR).

A set-matrix is represented as U = (cnij :
[u1
ij , u

cnij

ij ])(n×n), where [u1
ij , u

cnij

ij ] is a RNDR, and cnij
is its size (i, j = 1, 2, . . . , n). In [66], the authors demonstrate
that the geometrical scale [67] and the LLM (Logarithmic
Least-squares Method) [9] are the best numerical scale and
the best prioritization method, respectively. In this paper,
the geometrical scale (f(s) = (

√
c)∆−1(s)−4 , c = 2) and

the LLM are selected; α = 0, NS(si, 0) = NS(si). Let
NS(si) = f(si) = (

√
c)(∆−1(si)−4)(c = 2), si ∈ S can be

translated into a real number.

Example 1. Let P be the pairwise comparison matrix
shown in Section III-A. Using the geometrical scale [67],
the linguistic discrete region can be translated into the corre-
sponding real number discrete region (RNDR). For example,
if a linguistic discrete region is D = [s5, s7] where f(s) =
(
√
c)∆−1(s)−4 and c = 2, the corresponding real number

set is {1.4142, 2.000, 2.8284}, which can be represented as
[1.4142, 2.8284]. The matrix P is translated into the following
set-matrix. 1 : [1.000] 3 : [1.414, 2.828] 2 : [0.500, 0.707]

3 : [0.354, 0.707] 1 : [1.000] 1 : [0.500]
2 : [1.414, 2.000] 1 : [2.000] 1 : [1.000]


C. Relations Between Comparison Matrix With Discrete Val-
ues and Interval Comparison Matrix

In this section, we discuss the relations between the compar-
ison matrix with discrete values and the interval comparison
matrix.

Let S = {si|i = 0, 1, . . . , g} be a linguistic term set,
and P = (pij)n×n be a comparison matrix that consists of
linguistic discrete regions. Dong et al. [37] proposed a model
to obtain the interval numerical index (INS(si) = [ali, a

h
i ])

based on the initial numerical index ai of si. The obtained
interval numerical index includes the initial numerical index,
ai ∈ [ali, a

h
i ](i = 0, 1, . . . , g). Let the set of initial numerical

indexes for S be IN(S) = {ai|i = 0, 1, . . . , g}, and the set of
obtained interval numerical indexes be IN(S) = {[ali, ahi ]|i =
0, 1, . . . , g}. The map F : IN(S)→ IN(S) is bijective.

The matrix P can be transformed to a set-matrix A =
(cnij : [a1

ij , a
cnij

ij ])n×n or an interval matrix Ā =

([alij , a
h
ij ])n×n by using the initial numerical indexes or the

interval numerical indexes [37]. If we find a comparison matrix
with the approximate optimal consistency in set-matrix A, it
corresponds to an interval comparison matrix in Ā.

If the linguistic discrete region pij is translated into a
RNDR [a1

ij , a
cnij

ij ] (cnij is the number of elements) by using
the numerical indexes, it can be considered as an interval
number. As a result, we can obtain an interval comparison
matrix Ã = ([a1

ij , a
cnij

ij ])n×n, where [a1
ij , a

cnij

ij ] is the interval
number. In this paper, we propose two iterative searching
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algorithms to find a matrix with the approximate optimal
consistency in the set-matrix A and the corresponding interval
comparison matrix Ã. Through extensive experiments that are
shown in Section IV-E, we confirm that the matrix based on
the set-matrix A is very close to the matrix based on the
corresponding interval matrix Ã. The approximate optimal
matrix obtained from the set-matrix matches the pairwise
comparison matrix in P, which does not change evaluators’
intentions.

D. Iterative Searching Algorithm

Assuming in a discrete region matrix there are n attributes
and the average size of elements is m, there can be as many
as m

(n−1)n
2 different combinations. Apparently, it is very

expensive to consider all the combinations. We build a model
as follow to mitigate this problem:

min 1
n

n∑
i=1

n∑
j=1

aij
a∗ij

s.t. A = (aij)n×n ∈MU

(a∗ij)n×n ∈Mn, i, j = 1, 2, · · · , n

(1)

Where n is the order of matrix, 1
n

n∑
i=1

n∑
j=1

aij
a∗ij

denotes the

principal eigenvalue of A (Lemma 2), MU represents the set
of the pairwise comparison matrices in the set-matrix U , and
Mn is the set of consistent pairwise comparison matrices.

Based on the model (4), we propose an Iterative Searching
Algorithm (ISA) to obtain pairwise comparison matrices with
approximate optimal consistency. Let U be a set-matrix, and
A

(k) ∈ U(k = 0, 1, · · ·m) be the matrix sequence gener-
ated by ISA. The prioritization method is the Logarithmic
Least-squares Method (LLM) [9] in this case study. Let
ωi(A

(k)) be the ith row geometrical mean of A(k), we have
ωi(A

(k)) = (
∏n
j=1 a

k
ij)

1/n, and a
(k)∗
ij = ωi(A

(k))
/
ωj(A

(k)).
A

(k)∗
= (a

(k)∗
ij )n×n is called as the weight follow matrix

of A(k). The consistency index of matrix A(k) is denoted as
CR(A(k)).

In the following, we describe the steps of ISA as depicted
in Fig. 1.

Step 1 Initially k = 0, M = A(k) = (a
(k)
ij )n×n is a matrix

whose elements in upper triangular matrix are randomly
selected from the corresponding RNDR in the upper
triangular of the set-matrix U .

Step 2 For matrix A(k)(k = 0, 1, 2, · · · ) , we calculate pa-
rameters: A(k)∗ = (a

(k)∗
ij )n×n , and CR(A(k)) =

λmax(A(k))−n
(n−1)×RI .

Setp 3 An element in the set-matrix U is a RNDR that is
represented as [u1

ij , u
cnij

ij ], where 1 ≤ i, j ≤ n, and
cnij is the number of elements in RNDR. If there is
only one element in RNDR, for instance uqij(q = 1),
then a

(k+1)
ij = uqij . Otherwise, for those elements in

the upper triangular of the set-matrix U , if utij ∈
[u1
ij , u

cnij

ij ], and | lnutij − ln a
(k)∗
ij | is the minimum in

RNDR [u1
ij , u

cnij

ij ], then a
(k+1)
ij = utij . In addition,

a
(k+1)
ji = 1

/
a

(k+1)
ij

, a
(k+1)
ii = 1.000;

k=0, A(k)=M

Compute A(k)*,CR(A(k))

A(k+1)=(aij
(k+1))nxn

CR(A(k+1))=CR(A(k)) A(k)=A(k+1)

NO

END

YES

( )* ( )*

{1,2, }

1 ( 1) ( 1)

(0, 1), ( , 1),

| ln ln | min {| ln ln |},  

1{ , , }. ,  .

∈

+ +

∈ + ∈ +

− = −

∈ = =

L

L

ij

ij

t k q k

ij ij ij ij
q cn

cnt t k t k
tij ij ij ij ij ij ji
ij

i n j i n

u a u a

u u u u a u a
u

Fig. 1. Flow chart of ISA

Step 4 If CR(A(k+1)) 6= CR(A(k)), then A(k) is assigned by
A(k+1). The algorithm goes back to step 2. Otherwise
CR(A(k+1)) = CR(A(k)), the algorithm terminates.

If A(k)(k = 0, 1, · · ·m) is the matrix sequence computed
by ISA, we prove that CR(A(k+1)) ≤ CR(A(k)) (Theorem 5
in Section III-F).

ISA returns an approximate optimal comparison matrix from
a set-matrix. Although there is computation overhead, our
experiments with large number of simulations show that the
average number of iterations is less than n (the matrix order).

Example 2. In this example we illustrate the procedure by
applying ISA to the the set-matrix shown in Example 1. An
initial matrix A0 is selected from the set-matrix.

A0 =

 1.000 2.000 0.500
0.500 1.000 0.500
2.000 2.000 1.000



A(0)∗ =

 1.000 1.587 0.630
0.630 1.000 0.400
1.587 2.500 1.000


The weight follow matrix (A(0)∗ = (ωA

0

i

/
ωA

0

j )n×n) of A0

is computed, and CR(A0)=0.05156. The next matrix A1 =
(a1
ij)n×n is obtained from the set-matrix.

For example, |ln 1.587− ln 1.414| is the minimum
in the set {|ln 1.587− ln 1.414|, |ln 1.587− ln 2.000|,
|ln 1.587− ln 2.828|}, we have a1

12 = 1.414. Since
|ln 0.500− ln 0.630| > |ln 0.707− ln 0.630|, we have
a1

13 = 0.707. The value at [2,3] in the set-matrix is 0.500,
thus a1

23 = 0.500.

Repeat this process until the fixed point, i.e. Ak+1 = Ak,
and Ak is the final matrix returned by ISA. In this example, the
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optimal matrix A1 is a consistency matrix, and CR(A1)=0.

A1 =

 1.000 1.414 0.707
0.707 1.000 0.500
1.414 2.000 1.000


E. Iterative Searching Algorithm for Interval Comparison
Matrix

Based on the concept of continuous linguistic term set
proposed in [68], a linguistic discrete region matrix can be
transformed into an interval comparison matrix. In this section,
we review the algorithm to compute a matrix with approximate
optimal consistency based on a reciprocal interval matrix [43].
We name this algorithm as Iterative Searching Algorithm for
Interval Comparison Matrix (ISAICM).

Let an interval matrix be Ā = ([alij , a
h
ij ])n×n, and the ma-

trix sequence generated by ISAICM be A
(k)

(k = 0, 1, · · · ,m).
The steps of ISAICM are as follows.

Step 1 Choose a comparison matrix A(0) = (a
(0)
ij )n×n from

the given reciprocal interval matrix Ā = ([alij , a
h
ij ])n×n.

The comparison matrix is randomly chosen in this step.
For example, a(0)

ij =
alij+ahij

2 , i ≤ j, (i, j = 1, 2, · · · , n),

and a(0)
ji = 1

/
a

(0)
ij .

Step 2 For matrix A(k)(k = 0, 1, 2, · · · ), we have: A(k)∗ =

(a
(k)∗
ij )n×n, and CR(A(k)) = λmax(A(k))−n

(n−1)×RI ;

Step 3 For 1 ≤ i ≤ j ≤ n, if a(k)∗
ij ∈ [alij , a

h
ij ], let a(k+1)

ij =

a
(k)∗
ij . If a(k)∗

ij < alij , let a(k+1)
ij = alij . If a(k)∗

ij > ahij ,

let a(k+1)
ij = ahij . Finally, let a(k+1)

ji = 1
/
a

(k+1)
ij (i > j),

and A(k+1) = (a
(k+1)
ij )n×n.

Step 4 Calculate the consistency ratio CR(A(k+1)). If
CR(A(k+1)) 6= CR(A(k)), then A(k) = A(k+1).
The procedure goes to step 2. Otherwise,
CR(A(k+1)) = CR(A(k)), and the algorithm
terminates.

If A(k)(k = 0, 1, 2, · · · ,m) is the matrix sequence gener-
ated by ISAICM, we have CR(A(k+1)) ≤ CR(A(k)). This
conclusion has been proved (Theorem 5 in Section III-F). In
the following example we illustrate the procedure to compute
approximate optimal comparison matrices using ISAICM.

Example 3. The set-matrix given in Example 1 can be
considered as an interval matrix:

Ā =

 [1.000, 1.000] [1.414, 2.828] [0.500, 0.707]
[0.354, 0.707] [1.000, 1.000] [0.500, 0.500]
[1.414, 2.000] [2.000, 2.000] [1.000, 1.000]


Following is the initial matrix A(0):

A(0) =

 1.000 2.121 0.604
0.472 1.000 0.500
1.656 2.000 1.000


The weight follow matrix (A(0)∗ = (ωA

0

i

/
ωA

0

j )n×n) of A0

is as the following:

A(0)∗ =

 1.000 1.758 0.729
0.569 1.000 0.415
1.372 2.413 1.000



The next matrix A1 = (a1
ij)n×n is computed from the inter-

val matrix. Since a(0)∗
12 = 1.758, and 1.758 ∈ [1.414, 2.828],

we have a1
12 = 1.758. In addition, a

(0)∗
13 = 0.729 /∈

[0.500, 0.707], and 0.729 > 0.707. As a result, a1
13 = 0.707.

al23 = ah23 = 0.500, and a1
23 = 0.500.

A1 =

 1.000 1.758 0.707
0.569 1.000 0.500
1.414 2.000 1.000


Repeat the procedure until the fixed point Ak+1 = Ak.

Following is the approximate optimal matrix Ak returned by
ISAICM.

Ak =

 1.000 1.414 0.707
0.707 1.000 0.500
1.414 2.000 1.000


In [36], Dong et al. have proposed a linear programming

(LP) model,
ICI(Ā) = min

A∈NĀ

CI (A) (2)

Where CI(A) = 1
n2

n∑
i=1

n∑
j=1

|log(aij)− log(ωi) + log(ωj)|,

ICI(Ā) is the consistency index of Ā, and NĀ denotes
the set of the pairwise comparison matrices in Ā. This
model can compute a comparison matrix with approximate
optimal consistency in the interval comparison matrix Ā.
This approximate optimal matrix is equivalent to the one
computed by ISAICM (see Theorem 8).

We use ISAICM and ISA to do a large number of random
experiments in this paper. In the experiments, it can be
observed that the approximate optimal consistency matrices
computed by ISAICM and ISA are very similar.

F. Efficiency of ISA and ISAICM

In this section, we analyse the efficiency of ISA and ISAICM.
Let RM(n) denote the set of the positive reciprocal matrix,
where n is the order of matrix. Let λAmax be the maximal
eigenvalue of matrix A. The eigenvector of the eigenvalue is
denoted as ωTA = (ω1(A), ω2(A), · · · , ωn(A)), which is also
called the prioritization vector. Let a∗ij = ωi(A)

ωj(A) , εij =
aij
a∗ij

,
A∗ = (a∗ij)n×n (1 ≤ i, j ≤ n).

Firstly, we prove that the consistencies (CR) of the positive
receptacle matrix sequences obtained by ISA and ISAICM
decrease. Secondly, we estimate the deviation between the
consistencies of approximate optimal matrices and the optimal
result.

1) Decreasing Consistencies.
Theorem 5 shows that the consistencies (CR) of the matrix

sequences obtained by ISA and ISAICM decrease. The proof
of the theorem 5 is based on theorems 3-4. Lemma 2 provides
a method for computing the maximal eigenvalue.

Lemma 1. Consider function f(x) = x+1/x. If x > 1, f(x)
is strictly monotonous increased. If 0 < x < 1, f(x)is strictly
monotonous decreased. x = 1 is the minimum point of function
f(x) on (0,1).
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Lemma 2. Given any matrix A = (aij)n×n ∈ RM(n) ,

λAmax = 1
n

n∑
i=1

n∑
j=1

εij is the maximal eigenvalue of matrix A.

Proof. If λAmax is the maximal eigenvalue of matrix A,
and ωTA = (ω1(A), ω2(A), · · · , ωn(A)) is its eigenvector,
we have ωi(A) > 0, i = 1, 2, · · · , n, based on Perron

theorem [69]. Furthermore, λAmaxωi(A) =
n∑
j=1

aijωj(A) =

n∑
j=1

ωi(A)
ωj(A) × εij × ωj(A)

= ωi(A)
n∑
j=1

εij , i = 1, 2, · · · , n.

By removing ωi(A) and computing the sum for i, we get

λAmax = 1
n

n∑
i=1

n∑
j=1

εij

Theorem 3. Let A = (aij)n×n ∈ RM(n), B = (bij)n×n ∈
RM(n) be two matrices, and µij =

bij
a∗ij

.
If | ln bij − ln a∗ij | ≤ | ln aij − ln a∗ij |, (i < j or i > j), we

have:
(1) 1

n

n∑
i=1

n∑
j=1

µij ≤ λAmax;

(2) 1
n

n∑
i=1

n∑
j=i

| ln bij − ln a∗ij | ≤ 1
n

n∑
i=1

n∑
j=i

| ln aij − ln a∗ij |.

If | ln bij − ln a∗ij | ≥ | ln aij − ln a∗ij |, (i < j or i > j), we
have:

(3) 1
n

n∑
i=1

n∑
j=1

µij ≥ λAmax;

(4) 1
n

n∑
i=1

n∑
j=i

| ln bij − ln a∗ij | ≥ 1
n

n∑
i=1

n∑
j=i

| ln aij − ln a∗ij |.

Proof. Let U = (µij)n×n and V = (εij)n×n, where µij =
bij/a

∗
ij , εij = aij/a

∗
ij , 1 ≤ i, j ≤ n. We have U ∈ RM(n)

and V ∈ RM(n). If | ln bij − ln a∗ij | ≤ | ln aij − ln a∗ij | (i < j
or i > j), there are four cases depending on the relationships
between the values of bij , aij , a∗ij .

1) bij ≥ a∗ij , aij ≥ a∗ij : Since | ln bij − ln a∗ij | ≤ | ln aij −
ln a∗ij |, we have bij

a∗ij
≤ aij

a∗ij
and aij ≥ bij ≥ a∗ij ⇒ 1 ≤

µij =
bij
a∗ij
≤ εij =

aij
a∗ij

. Based on lemma 1, µij + 1
µij
≤

εij + 1
εij

.
2) bij ≤ a∗ij , aij ≤ a∗ij : Based on the known conditions,

we have
a∗ij
bij
≤ a∗ij

aij
, and bij ≥ aij ⇒ aij ≤ bij ≤ a∗ij ⇒

1 ≥ µij =
bij
a∗ij
≥ εij =

aij
a∗ij

. According to Lemma 1,

µij + 1
µij
≤ εij + 1

εij
.

3) bij ≥ a∗ij , aij ≤ a∗ij : Based on the known conditions,

we have
bij
a∗ij
≤ a∗ij

aij
, and 1 ≤ µij =

bij
a∗ij
≤ 1

εij
=

a∗ij
aij

.

According to Lemma 1, µij + 1
µij
≤ εij + 1

εij
.

4) bij ≤ a∗ij , aij ≥ a∗ij : Based on the known conditions, we

have
a∗ij
bij
≤ aij

a∗ij
⇒ εij ≥ 1

µij
≥ 1. According to Lemma

1, µij + 1
µij
≤ εij + 1

εij
.

For matrices U and V , by computing the sum to i, j, we

obtain 1
n

n∑
i=1

n∑
j=1

µij ≤ 1
n

n∑
i=1

n∑
j=1

εij .

If | ln bij − ln a∗ij | ≤ | ln aij − ln a∗ij | (i < j), then
| ln bij − ln a∗ij | ≤ | ln aij − ln a∗ij | (i > j). We obtain

1
n

n∑
i=1

n∑
j=i

| ln bij − ln a∗ij | ≤ 1
n

n∑
i=1

n∑
j=i

| ln aij − ln a∗ij |.

If | ln bij − ln a∗ij | ≥ | ln aij − ln a∗ij |(i < j or i > j), the
proofs of equations (3) and (4) are similar to equations (1)
and (2).

Theorem 4. Given two matrices A = (aij)n×n ∈ RM(n)

and B = (bij)n×n ∈ RM(n), we have 1
n

n∑
i=1

n∑
j=1

bij
b∗ij
≤

1
n

n∑
i=1

n∑
j=1

bij
a∗ij

, if the method that derives the priority vector

from the numerical pairwise comparison matrix is Logarithmic
Least-squares Method.

Proof. According to Logarithmic Least-squares Method [9],
we have

min
n∑
i=1

∑
j>i

[ln bij − (lnωi(B)− lnωj(B))]2

s.t.ωi(B)> 0,
n∑
i=1

ωi(B) = 1

Let S =
n∑
i=1

∑
j>i

[ln bij − (lnωi(B)− lnωj(B))]2. If S is

the minimum at point ωi0(B)(1 ≤ i ≤ n), we have that
[ln(bij) − (lnωi

0(B) − lnωj0(B))]2(i < j, 1 ≤ i, j ≤ n) is
the minimum. | ln(bij)− (lnωi

0(B)− lnωj0(B))|(i < j, 1 ≤
i, j ≤ n) is also the minimum.

Let (ω1
0, ω2

0, · · · , ωn0) be the priority vector of matrix
B computed based on LLM and b∗ij = ωi

0

ωj
0 (1 ≤ i, j ≤

n). According to the aforementioned facts, we have that
| ln(bij) − ln b∗ij |(j > i, 1 ≤ i, j ≤ n) is the minimum. As
a result, | ln(bij) − ln b∗ij | ≤ | ln(bij) − ln a∗ij |(1 ≤ i, j ≤ n).

Based on theorem 3, we have 1
n

n∑
i=1

n∑
j=1

bij
b∗ij
≤ 1

n

n∑
i=1

n∑
j=1

bij
a∗ij

.

Theorem 5. Let A(k)(k = 1, 2, . . . ,m) be the matrix
sequence generated by ISA or ISAICM, and CR(A(k)) be the
consistency index of A(k), we have CR(A(k+1)) ≤ CR(A(k)).

Proof. Let λA
(k)

max (k = 1, 2, . . . ,m) be the maximal eigen-
value of matrix A(k). Based on ISA and ISAICM, we know:
| ln a(k+1)

ij − ln a
(k)∗
ij | ≤ | ln a

(k)
ij − ln a

(k)∗
ij |(i < j). Ac-

cording to theorems 3 and 4, we get λA
(k+1)

max ≤ λA
(k)

max ⇔
CR(A(k+1)) ≤ CR(A(k)).

2) Difference Evaluation of Optimal Matrices’ Consisten-
cies Computed by ISA or ISAICM .

Lemma 6. [69] Given any non negative matrix A, let

ρi(A) =
n∑
j=1

aij , and ρ(A) be the spectral radius of matrix A

(the maximal eigenvalue). We have 1
2 min

i
(ρi(A)+ρi(A

T )) ≤
ρ(A) ≤ 1

2 max
i

(ρi(A) + ρi(A
T ))

Theorem 7. Let E = (eij)n×n ∈ RM(n) be the ap-
proximate optimal matrix computed by ISA or ISAICM. If

∀i,
n∑
j=1

eij
e∗ij

=
n∑
k=1

eki

e∗ki
holds, we get:

1) the matrix E is the optimal matrix computed by ISA or
ISAICM;
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2) if F = (fij)n×n ∈ RM(n) (F 6= E ) is another ap-
proximate optimal matrix computed by ISA or ISAICM,
we get CR(F ) − CR(E) ≤ δ

(n−1)×RI , δ = (λFmax −

min
i
{ 1

2 (
n∑
j=1

fij
f∗
ij

+
n∑
k=1

fki

f∗
ki

)}).

Proof. 1) Let F be another approximate optimum matrix
computed by ISA or ISAICM. For matrix E, we have
| ln eij − ln e∗ij | ≤ | ln fij − ln e∗ij | (1 ≤ i < j ≤ n),
based on ISA or ISAICM.
Let Y = (yij)n×n(yij =

fij
e∗ij

),

ωTE = (ω1(E), · · · , ωn(E)), and D =
diag(ω1(E), ω2(E), · · · , ωn(E)), we obtain Y =

D−1FD ⇒ λFmax = λYmax ≥ min
i
{ 1

2 (
n∑
j=1

yij +
n∑
k=1

yki)}

(Lemma 6). Based on theorem 3, we have

min
i
{ 1

2 (
n∑
j=1

yij+
n∑
k=1

yki)} = 1
2 (

n∑
j=1

yi0j+
n∑
k=1

yki0) ≥

1
2 (

n∑
j=1

ei0j

e∗i0j
+

n∑
k=1

eki0

e∗ki0

).

According to the known condition, ∀i,
n∑
j=1

eij
e∗ij

=

n∑
k=1

eki

e∗ki
, we have 1

2 (
n∑
j=1

ei0j

e∗i0j
+

n∑
k=1

eki0

e∗ki0

) = λEmax. That is,

λEmax ≤ λFmax. Similarly, if the condition, ∀i,
n∑
j=1

fij
f∗
ij

=

n∑
k=1

fki

f∗
ki

is also satisfied by F , we have λFmax ≤ λEmax.

As a result, λEmax = λFmax. This proves that the matrix
E is the optimal matrix computed by ISA or ISAICM.

2) Let X = (xij)n×n (xij =
eij
f∗
ij

), we obtain λEmax = λXmax.

Based on lemma 6, we have λEmax ≥ min
i
{ 1

2 (
n∑
j=1

xij +

n∑
k=1

xki)} = 1
2 (

n∑
j=1

xi0j+
n∑
k=1

xki0). Based on theorem

3, we have
1
2 (

n∑
j=1

xi0j+
n∑
k=1

xki0) ≥ 1
2 (

n∑
j=1

fi0j

f∗
i0j

+
n∑
k=1

fki0

f∗
ki0

) ≥

min
i
{ 1

2 (
n∑
j=1

fij
f∗
ij

+
n∑
k=1

fki

f∗
ki

)}.

If F 6= E, λFmax − λEmax ≤ λFmax −
min(

n∑
j=1

fij
f∗
ij

+
n∑
k=1

fki

f∗
ki

) = δ. CR(F ) − CR(E) =

λF
max−λ

E
max

(n−1)×RI ≤
δ

(n−1)×RI .

Theorem 8. Let Ā be the interval comparison matrix, C =
(cij)n×n be the matrix computed by model (2), and D =
(dij)n×n be the matrix computed by ISAICM. If the approach
that derives the priority vector is LLM [9], then C is the matrix
computed by ISAICM and D is a solution of model (2).

Proof. Based on the model (2), we have

ICI(Ā) = min
A∈NĀ

CI (A) = CI(C) (3)

where CI(C) = 1
n2

n∑
i=1

n∑
j=1

|lncij − lnωi(C) + lnωj(C)|.

Equation (3) shows that |lncij − lnωi(C) + lnωj(C)| =

|lncij − lnc∗ij | is the minimum for 1 ≤ i, j ≤ n. Based on

theorems 3 and 4, we can conclude that 1
n

n∑
i=1

n∑
j=1

cij
c∗ij

is the

approximate minimal one for all the comparison matrices in
Ā. As a result, C is the matrix computed by ISAICM.

Let Ā = ([alij , a
h
ij ])n×n. If d∗ij ∈ [alij , a

h
ij ], according to

ISAICM, d∗ij = dij . If d∗ij /∈ [alij , a
h
ij ], dij = alij or dij = ahij .

These two cases can ensure that |ln(d∗ij) − ln(dij)|(i, j =
1, 2, . . . , n) is the minimum in Ā. As a result, D is a solution
of model (2).

IV. EXPERIMENTS

In this section we represent experimental results that illus-
trate the effectiveness of the proposed approach.

A. Traditional Pairwise Comparison and Linguistic Discrete
Region Pairwise Comparison

We invited several evaluators to evaluate eight features of
the relational database systems that are selected from the
ISO/IEC 25010 software quality model. The features include
functionality, reliability, efficiency, operability, security, com-
patibility, maintainability and portability. All evaluators are
asked to give their evaluations twice: a traditional pairwise
comparison and a linguistic discrete region pairwise compar-
ison. We randomly choose evaluators C to show the whole
process.

1) Traditional Pairwise Comparison
Let the traditional pairwise comparison matrix given by

evaluators C be C1.
The comparison matrix C1 can be translated into a real

number matrix through the 2-tuple linguistic model. The
consistency index of C1 is CR = 0.028708.

C1 =



s4 s3 s2 s6 s1 s1 s3 s3

s4 s5 s7 s5 s6 s7 s7

s4 s7 s3 s5 s7 s7

s4 s2 s2 s4 s3

s4 s6 s7 s7

s4 s4 s4

s4 s4

s4


2) Linguistic Discrete Region Pairwise Comparison
Let the linguistic discrete region pairwise comparison ma-

trix given by evaluators C be C2.
Since C1 and C2 are given by the same evaluators, the

linguistic discrete regions in C2 usually contain the corre-
sponding values in C1. After C2 is translated into a set-matrix
U , the procedure of the approach is as follows.

First iteration:
Step-1-1: Choose a matrix M from the set-matrix C2. The

elements of upper triangular of M are the maximums in related
RNDRs of C2.

1.000 0.707 0.500 2.000 0.707 0.707 0.707 0.707
1.414 1.000 1.414 2.828 1.414 2.000 2.828 2.828
2.000 0.707 1.000 2.828 1.000 2.828 2.828 4.000
0.500 0.354 0.354 1.000 0.707 0.500 1.000 1.000
1.414 0.707 1.000 1.414 1.000 2.000 2.828 2.828
1.414 0.500 0.354 2.000 0.500 1.000 1.414 1.414
1.414 0.354 0.354 1.000 0.354 0.707 1.000 1.000
1.414 0.354 0.250 1.000 0.354 0.707 1.000 1.000


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C2 =



[s4] [s1, s3] [s0, s2] [s5, s6] [s0, s3] [s1, s3] [s1, s3] [s1, s3]
[s4] [s4, s5] [s5, s7] [s3, s5] [s4, s5] [s5, s7] [s5, s7]

[s4] [s6, s7] [s3, s4] [s5, s7] [s5, s7] [s6, s8]
[s4] [s1, s3] [s0, s2] [s3, s4] [s3, s4]

[s4] [s4, s6] [s5, s7] [s5, s7]
[s4] [s4, s5] [s4, s5]

[s4] [s2, s4]
[s4]



Step-1-2: Calculate the matrix A(k)∗ and the consistency
index CR of matrix A(k)

1.000 0.439 0.439 1.297 0.545 0.878 1.189 1.242
2.278 1.000 2.000 1.954 2.242 2.000 2.708 2.828
2.278 1.000 1.000 2.954 1.242 2.000 2.708 2.828
0.771 0.339 0.339 1.000 0.420 0.677 0.917 0.958
1.824 0.805 0.805 2.378 1.000 1.611 2.181 2.278
1.139 0.500 0.500 1.477 0.621 1.000 1.354 1.414
0.841 0.369 0.369 1.091 0.459 0.738 1.000 1.044
0.805 0.354 0.354 1.044 0.439 0.707 0.958 1.000


CR(Ak) = 0.027050.

Step-1-3: Based on A(k)∗, the next matrix A(k+1) is com-
puted according to set-matrix C2.

1.000 0.500 0.500 1.414 0.500 0.707 0.707 0.707
2.000 1.000 1.000 2.828 1.414 2.000 2.828 2.828
2.000 1.000 1.000 2.828 1.000 2.000 2.828 2.828
0.707 0.354 0.354 1.000 0.354 0.500 0.707 0.707
2.000 0.707 1.000 2.828 1.000 1.414 2.000 2.000
1.414 0.500 0.500 2.000 0.707 1.000 1.414 1.414
1.414 0.354 0.354 1.414 0.500 0.707 1.000 1.000
1.414 0.354 0.354 1.000 0.500 0.707 1.000 1.000



Step-1-4: The value of CR(A(k+1)) is 0.008031. Since
CR(A(k+1)) 6= CR(A(k)), the algorithm starts the second
iteration.

Second iteration:
Step-2-1: Calculate the matrix A(k)∗ and the consistency

index CR of matrix A(k)

1.000 0.386 0.403 1.189 0.479 0.707 1.000 1.000
2.594 1.000 1.044 3.084 1.242 1.834 2.594 2.594
2.484 0.958 1.000 2.954 1.189 1.756 2.484 2.484
0.841 0.324 0.339 1.000 0.403 0.595 0.841 0.841
2.089 0.805 0.841 2.484 1.000 1.477 2.089 2.089
1.414 0.545 0.569 1.682 0.677 1.000 1.414 1.414
1.000 0.386 0.403 1.189 0.479 0.707 1.000 1.000
1.000 0.386 0.403 1.189 0.479 0.707 1.000 1.000


CR(Ak) = 0.008031.

Step-2-2: Based on A(k)∗, the next matrix A(k) from the
set-matrix C2 is obtained.

1.000 0.354 0.354 1.414 0.500 0.707 0.707 0.707
2.828 1.000 1.000 2.828 1.414 2.000 2.828 2.828
2.828 1.000 1.000 2.828 1.000 2.000 2.828 2.828
0.707 0.354 0.354 1.000 0.354 0.500 0.707 0.707
2.000 0.707 1.000 2.828 1.000 1.414 2.000 2.000
1.414 0.500 0.500 2.000 0.707 1.000 1.414 1.414
1.414 0.354 0.354 1.414 0.500 0.707 1.000 1.000
1.414 0.354 0.354 1.414 0.500 0.707 1.000 1.000



Step-2-3: The value of CR(A(k+1)) is 0.004576. Since
CR(A(k+1)) 6= CR(A(k)), the algorithm starts the third
iteration.

Third iteration:
Step-3-1: Calculate the matrix A(k)∗ and the consistency

index CR of matrix A(k)

1.000 0.339 0.354 1.189 0.439 0.648 0.878 0.878
2.954 1.000 1.044 3.513 1.297 1.915 2.594 2.594
2.828 0.958 1.000 3.364 1.242 1.834 2.484 2.484
0.841 0.285 0.297 1.000 0.369 0.545 0.738 0.738
2.278 0.771 0.805 2.709 1.000 1.477 2.000 2.000
1.542 0.522 0.545 1.834 0.677 1.000 1.354 1.354
1.139 0.386 0.403 1.354 0.500 0.738 1.000 1.000
1.139 0.386 0.403 1.354 0.500 0.738 1.000 1.000


CR(Ak) = 0.004576.

Step-3-2: Based on A(k)∗, the next matrix A(k+1) from the
set-matrix C2 is obtained.

1.000 0.354 0.354 1.414 0.500 0.707 0.707 0.707
2.828 1.000 1.000 2.828 1.414 2.000 2.828 2.828
2.828 1.000 1.000 2.828 1.000 2.000 2.828 2.828
0.707 0.354 0.354 1.000 0.354 0.500 0.707 0.707
2.000 0.707 1.000 2.828 1.000 1.414 2.000 2.000
1.414 0.500 0.500 2.000 0.707 1.000 1.414 1.414
1.414 0.354 0.354 1.414 0.500 0.707 1.000 1.000
1.414 0.354 0.354 1.414 0.500 0.707 1.000 1.000


Step-3-3: The value of CR(A(k+1)) is 0.004576. Since

CR(A(k+1)) = CR(A(k)), the algorithm terminates. A(k) is
an approximate optimal matrix. Its consistency index is less
than the corresponding consistency index of matrix C1.

3) Performance Analysis
The consistency indexes of all the comparison matrices are

given in TABLE II. It shows that the consistency indexes (CR)
of the linguistic discrete region comparison matrices are lower
than those of the traditional comparison matrices. In most
cases, the differences are significant.

B. Random Experiment 1

We consider the positive receptacle matrices with orders 5-
16, 20, and 50. For each matrix order, 100 random set-matrices
are generated. Each simulates the set-matrix produced by the
linguistic discrete region pairwise comparison. For each set-
matrix, we run ISA 500 times. An approximate optimal matrix
is obtained and its consistency is calculated in each run of
ISA. For each set-matrix, there are 500 approximate optimal
consistency indexes. The average and standard deviation of
these values, the maximal and minimal consistent indexes are
computed.

Fig. 2 depicts the experimental results of the matrices with
order 8. The results of the others matrices with different orders
are similar. The horizontal axis gives the serial numbers of
the set-matrices. The vertical axis gives the values of standard
deviation for the consistency indexes (CR) and the differences
between the maximal and minimal consistency indexes. The
standard deviation of consistency indexes (CR) are very small,
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TABLE II
CONSISTENCIES OF THE MATRICES FOR ALL EVALUATORS

1 2 3 4 5 6 7 8

traditional 0.015328 0.024706 0.009562 0.019957 0.028708 0.019200 0.018513 0.011102
discrete region 0.004960 0.003809 0.000000 0.004191 0.003048 0.004195 0.006874 0.003826
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Fig. 2. Standard deviations of CRs and maximal differences of max CRs and min CRs for all set-matrices.

with 0.001484 and 0 being the maximal and minimal values
for all the set-matrices. Fig. 2 gives the differences between
the maximal and minimal consistency indexes CR. The largest
difference is 0.006459 for 100 set-matrices. For all the 5-16
order matrices, the average numbers of iterations of ISA are
listed in TABLE IV.

C. Random Experiment 2

Again we consider the positive receptacle matrices with
orders 5-16, 20, and 50. For every order, a consistent positive
reciprocal matrix is generated. This special matrix is called
the Optimal Seed Matrix (OSM). Based on OSM, 100 random
set-matrices are randomly generated. There is an OSM in each
set-matrix. For each set-matrix, we run ISA 200 times. In
each run, the average, the standard deviation, the maximal
and minimal of the consistency indexes for the approximate
optimal matrices are calculated.

Fig. 3 depicts the experimental results of matrices with order
7. The horizontal axis shows the serial numbers of the set-
matrix, and the vertical axis gives the values of consistency
index CR. The maximal value of the standard deviation is
0.001938. It shows that the consistency indexes of approximate
optimal matrices obtained by ISA are very close to each
other. For all the set-matrices, the minimal and maximal
consistency indexes of the approximate optimal matrices are
0 and 0.009067, respectively. It shows that the difference
between the optimal and approximate optimal consistency
index is less than 0.009067 in these experiments.

In the experiments, a final weight vector is also calculated
when ISA computes an approximate optimal matrix according
to a set-matrix. This weight vector is called the Weight of ISA
(WOISA). In addition, the weight vector of OSM is named as

the Weight of Optimal Seed Matrix (WOSM). In each experi-
ment, the cosine similarity of WOSM and WOISA is calculated.
For all the 200 experiments of each set-matrix, the average,
the maximum, the minimum, and the standard deviation of the
cosine similarities are computed. The experimental results of
7-order matrices are depicted in Fig. 4 and 5. In Fig.4, the
maximal standard deviation of the cosine similarities between
WOSMs and WOISAs is 0.00401 among all the set-matrices.
It shows that the cosine similarities between WOSMs and
WOISAs for all experiments are very close to each other. In
Fig. 5, the average of the cosine similarities between WOSMs
and WOISAs is very close to 1. The minimal average of the
cosine similarities between WOSMs and WOISAs is 0.994729.

In summary, both WOSMs and WOISAs are very similar in
all the experiments. It shows that the weight vector computed
based on the approximate optimal matrix is very similar to the
weight vector of the optimal matrix in the set-matrix.

D. Random Experiment 3

In this experiment, the range of matrix orders is as before.
For each matrix order, 100 linguistic discrete region compari-
son matrices are randomly generated and then translated into
the interval comparison matrices. For each interval comparison
matrix, we run ISAICM 500 times. In each run of ISAICM,
an approximate optimal matrix is obtained, its consistency
(CR) and weight vector are also calculated. We treat the
first calculated weight vector as the initial weight vector, and
compute the cosine similarities between this initial weight
vector and other weight vectors. The maximal differences,
the standard deviations of these consistencies are calculated,
the minimal and averaging values of cosine similarities are
also calculated. Fig. 6 and 7 give the experimental results of
order seven matrices. It can be observed that the maximal
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difference and standard deviation are 0.000155 and 0.000012,
respectively (Fig.6). It shows that the consistencies obtained
by ISAICM are very close to each other. The minimal cosine
similarity of the weight vectors computed by ISAICM is
0.99974. All the average cosine similarities are close to 1.0
(Fig.7). It shows that the weight vectors computed by ISAICM
are very similar to each other. The results of the matrices with
other orders are very similar.

E. Random Experiment 4

In this experiment, 1000 random linguistic comparison ma-
trices are generated for each order, and the orders of matrices
range from 5 to 16. Each linguistic comparison matrix is trans-
formed into a set-matrix and an interval reciprocal matrix, and
ISA and ISAICM are used to compute the approximate optimal
matrices. The initial comparison matrices are randomly chosen
from the set-matrices (ISA) and interval comparison matrices
(ISAICM). The consistency indices CR and the weight vectors
are computed based on the approximate optimal matrices.

The experimental results are shown in TABLE III and
TABLE IV. In Table III, “CR Differ.” refers to the differences
between CRs computed by ISA and ISAICM, and “Weight

Similarity” represents the cosine similarities between two
weight vectors derived by ISA and ISAICM. For each order, we
report its average and maximal values. It can be observed that
the maximal difference between CRs is 0.01313. The average
of cosine similarities between two weight vectors derived by
ISA and ISAICM is greater than 0.999, the minimal value is
greater than 0.97 for all experiments. The average numbers of
iterations of the two algorithms are shown in TABLE IV. The
matrix orders range from 5 to 16. It can be observed that the
numbers of iterations are relatively small, even less than the
order of matrices.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new approach that is able
to improve the consistency of linguistic pairwise comparison
matrices. Our approach allows the evaluators to express their
fuzzy intentions with linguistic discrete regions rather than
specific values. We have designed two algorithms (ISA and
ISAICM) to compute the approximate optimal matrices based
on the set-matrices and interval comparison matrices. The
weight vectors computed using ISA and ISAICM are very
similar. The approximate optimal matrices computed by ISA



13

TABLE III
THE DIFFERENCES OF CR AND THE COSINE SIMILARITIES OF WEIGHT VECTORS FOR ISA AND ISAICM

order type CR Differ. Weight Similarity order type CR Differ. Weight Similarity order type CR Differ. Weight Similarity

5 Avg. 0.00134 0.99923 9 Avg. 0.00065 0.99979 13 Avg. 0.00052 0.99990
5 Max. 0.01313 0.97289 9 Max. 0.00328 0.98969 13 Max. 0.00162 0.99907
6 Avg. 0.00101 0.99958 10 Avg. 0.00064 0.99984 14 Avg. 0.00048 0.99992
6 Max. 0.01044 0.98942 10 Max. 0.00449 0.99778 14 Max. 0.00178 0.99891
7 Avg. 0.00084 0.99964 11 Avg. 0.00057 0.99986 15 Avg. 0.00048 0.99993
7 Max. 0.00563 0.98800 11 Max. 0.00208 0.99864 15 Max. 0.00142 0.99953
8 Avg. 0.00072 0.99976 12 Avg. 0.00051 0.99990 16 Avg. 0.00000 0.99993
8 Max. 0.00582 0.99554 12 Max. 0.00254 0.99889 16 Max. 0.00000 0.99912

TABLE IV
THE AVERAGE NUMBERS OF ITERATIONS FOR TWO ALGORITHMS

order 5 6 7 8 9 10 11 12 13 14 15 16

ISA 4.05 4.91 5.47 6.29 6.82 7.82 8.23 9.18 9.79 10.24 10.59 11.00
ISAICM 5.94 5.78 5.65 5.49 5.27 5.23 5.07 4.90 4.78 4.74 4.66 4.59

are not only a faithful representation of evaluators’ intentions,
but also highly consistent.

Furthermore, by using the matrix theory, we have proved
that these algorithms are efficient. The experimental results
also confirm that the proposed approach has good perfor-
mance. In the future, we will consider other consistency
indexes. For example, 2-tuple linguistic index [5] and the
ordinal consistency index (OCI)[18]. We believe ISA and
ISAICM can be adapted to improve these consistency indexes
as well.
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