
Is There a Best Symboli
 Cy
le-Dete
tionAlgorithm?Kathi Fisler1;4, Ranan Fraer2, Gila Kamhi2, Moshe Y. Vardi1?, and ZijiangYang1;31: Department of Computer S
ien
e, Ri
e University, Houston, TX, USA2: Intel Development Center, Haifa, Israel3: CCRL, NEC, Prin
eton, NJ, USA4: Wor
ester Polyte
hni
 Institute, Wor
ester, MA, USAAbstra
t. Fair-
y
le dete
tion, a 
ore problem in model 
he
king, issolvable in linear time in the size of the design model using an expli
it-state representation. Existing 
y
le-dete
tion algorithms for symboli
model 
he
king are quadrati
 or n log n time in the worst 
ase and oftenineÆ
ient in pra
ti
e. Whi
h default symboli
 
y
le-dete
tion algorithmto implement in model 
he
kers remains an open question. We 
ompareseveral su
h algorithms based on the numbers of external and internaliterations and the numbers of image operations that they perform onboth randomly-generated and real examples. Unlike re
ent work by Ravi,Bloem, and Somenzi, we 
on
lude that model 
he
kers need to implementat least two generi
 
y
le-dete
tion algorithms: the traditional Emerson-Lei algorithm and one that evolved from our study, originally due toHojati et al. We demonstrate that these two algorithms are 
omplemen-tary, as the latter algorithm is provably in
omparable to Emerson-Lei'sand often dominates it in pra
ti
e.1 Introdu
tionModel 
he
king, whether for LTL, CTL, or !-automata, has linear time 
om-plexity in the size of the design model. This well-known result follows fromtwo fa
ts: �rst, that most model 
he
king te
hniques redu
e to the problemof lo
ating 
y
les through a given set of nodes in a graph [3, 18℄; se
ond, that
y
le dete
tion is solvable in linear time using a depth-�rst sear
h that identi-�es strongly-
onne
ted 
omponents (
f, [4℄). This depth-�rst strategy providesa suitable approa
h to 
y
le dete
tion in expli
it-state model 
he
king, and hasbeen implemented in several tools [7, 11℄.Depth-�rst approa
hes to 
y
le dete
tion are not suitable for BDD-basedsymboli
 model 
he
king be
ause BDDs represent sets of states while depth-�rstsear
h examines individual states. EÆ
ient BDD-based model 
he
king requireseÆ
ient breadth-�rst, set-based 
y
le-dete
tion algorithms. Most modern sym-boli
 model 
he
kers employ some variant of Emerson and Lei's symboli
 
y
le-dete
tion algorithm [5℄. CTL model 
he
kers use the Emerson-Lei algorithm? Work partially supported by NSF Grant CCR-9988322 and a grant from the Intel
orporation.



(hen
eforth el) to pro
ess formulas of the form EG ', whi
h spe
ify in�nitepaths on whi
h every state satis�es '. Linear-time model 
he
kers 
ompose thedesign model with an automaton representing the negation of the property, then
he
k for 
y
les in the produ
t automaton using the CTL formula EG true. Un-fortunately, el's time 
omplexity is not linear in the size of the design model: thealgorithm 
ontains a doubly-nested �xpoint operator, and hen
e requires timequadrati
 in the design size in the worst 
ase. The algorithm is also often slowin pra
ti
e. el is a so-
alled SCC-hull algorithm [16℄. SCC-hull algorithms 
om-pute the set of states that 
ontains all fair 
y
les. In 
ontrast, SCC-enumerationalgorithms enumerate all the strongly 
onne
ted 
omponents of the state graph.While SCC-enumeration algorithms have a better worst-
ase 
omplexity thanSCC-hull algorithms [1℄, their performan
e in pra
ti
e seems to be inferior tothat of SCC-hull algorithms [16℄. This paper fo
uses on SCC-hull algorithms.Resear
hers have proposed several alternatives to el [8, 10, 14℄. Ravi, Bloem,and Somenzi have presented both a 
lassi�
ation s
heme for su
h algorithmsand an experimental 
omparison of several algorithms with el [16℄. They 
on-
luded that no algorithm 
onsistently outperforms el for 
y
le dete
tion, and,
onsequently, there is no reason to \dethrone" el as the default 
y
le-dete
tionalgorithm. Their 
omparison, however, is based primarily on running times, andse
ondarily on numbers of image operations. This approa
h has two signi�
antdrawba
ks: it provides no useful feedba
k on why the algorithms behave as ob-served, and it suggests no te
hniques for predi
ting when one algorithm mightoutperform another. Furthermore, their 
omparison 
onsiders some algorithmsthat are based on post-image operations and some that are based on pre-imageoperations (as is el), making it rather diÆ
ult to draw �rm 
on
lusions.This paper demonstrates a methodology that both addresses these 
on
ernsand identi�es a symboli
 
y
le-dete
tion algorithm that provides a viable al-ternative to el. Ravi et al. present bounds on the number of image operationsperformed by various 
y
le-dete
tion algorithms. We argue that to understandthe performan
e of SCC-hull algorithms one needs to measure both the numberof image 
omputations as well as the number of external iterations (de�ned inSe
tion 2). Our methodology fo
uses on the number of external iterations per-formed as a basis for 
omparing and re�ning symboli
 
y
le-dete
tion algorithms.In aiming to balan
e the numbers of external and internal iterations performed,we have identi�ed an algorithm that, as we argue, should join el as a generi

y
le-dete
tion algorithm. We demonstrate that this algorithm is in
omparableto el, dominating it in many 
ases. Our 
on
lusion is that, as in many other as-pe
ts of model 
he
king, there is no \best" 
y
le-dete
tion algorithm and model
he
kers need to implement at least both el and our algorithm.Se
tion 2 des
ribes our analyses of three existing symboli
 
y
le-dete
tionalgorithms and shows how the 
ompetitive algorithm evolved from these anal-yses. Se
tion 3 presents experimental results on randomly generated and realexamples for both the spe
ial 
ase of terminal and weak systems and more gen-eral examples. Se
tion 4 
ompares the 
ompetitive algorithm to a spe
ialized
y
le-dete
tion algorithm for terminal and weak systems. Se
tion 5 
on
ludes.



2 Symboli
 Cy
le-Dete
tion AlgorithmsCy
le-dete
tion algorithms in the 
ontext of model 
he
king sear
h for \bad"
y
les in a dire
ted graph representing a transition system modeling a designundergoing veri�
ation. Two parameters spe
ify whi
h 
y
les are 
onsidered bad:the invariant and the fair sets. The invariant spe
i�es a 
ondition, su
h as apropositional formula, that must be true of every state on a bad 
y
le. The fairsets spe
ify sets of states that every bad 
y
le must pass through. We writeEGfair' to indi
ate a sear
h for 
y
les satisfying invariant ' and passing throughfair sets fair. We will omit the fair annotation when all states are 
onsidered fair.Cy
le dete
tion in BDD-based model 
he
king is 
hallenging be
ause theBDDs 
o-mingle information about di�erent paths through a design. Symboli

y
le-dete
tion algorithms maintain a set of states that may lead to bad 
y
les;this set is 
onservative, in that it 
ontains all states that do lead to bad 
y
les.We 
all this the approximation set. The algorithms repeatedly re�ne the approx-imation set by lo
ating and removing states that 
annot lead to a bad 
y
le; we
all this the pruning step. If a state lies on a bad 
y
le, then it must have a su
-
essor and a prede
essor on that same 
y
le (and thus also in the approximationset). Cy
le-dete
tion algorithms use this information in di�erent ways.Formally, these algorithms sear
h for 
y
les in nondeterministi
 transitionsystems. A transition system is a tuple hQ;R;Q0;Fi, where Q is a set of states,Q0 � Q is the initial state set, R � Q�Q is the transition relation, and F � Qis the set of fair states. A transition system is weak i� (1) there exists a partitionof Q into sets Q1; : : : ; Qn su
h that ea
h Qi is either 
ontained in F or is disjointfrom it, and (2) the Qi's are partially ordered so that there is no transition fromQi to Qj unless Qi � Qj . If the Qi's 
ontained in F are the maximal elements ofthe partial order, a weak system is 
alled terminal. This de�nition of weak andterminal transition systems is due to Bloem, Ravi, and Somenzi [2℄, as re�nedfrom Kupferman and Vardi [15℄. In model 
he
king, designs 
ommonly haveseveral fair sets, and bad 
y
les must pass through ea
h fair set. Su
h designsare outside the s
ope of weak systems, whose de�nition is only meaningful forone fair set.1el appears in Figure 1 (left).2 At ea
h iteration through the while loop,el 
omputes the set of states that 
an rea
h every fair set via a non-trivialpath 
ontained in the approximation set, b. We 
all these iterations external ;the rea
hability 
omputations (the EU formula) form the internal iterations. eldoes most of its work in the internal iterations: ea
h external iteration performsonly one preimage 
omputation per fair set outside of the internal iterations.Hardin et al. attempted to redu
e the number of external iterations thatel performs as a means of a
hieving an improved algorithm [8℄. Their algo-rithm, 
alled Cat
h-Them-Young (hen
eforth 
ty), aggressively prunes the set1 LTL-to-automaton translation algorithms may yield multiple fair sets when onewould suÆ
e, rendering an otherwise weak system non-weak. Thus, minimizing thenumber of fair sets is an important optimization.2 Figure 1 shows VIS' implementation of el; in SMV, the �nal image 
omputation(b := b ^ EX d) is outside the for loop.



b := invariant ;while b 
hanges dofor ea
h fair set Fi dod := E[b U (Fi ^ b)℄ ;b := b ^ EX d ; b := invariant ;while b 
hanges dofor ea
h fair set Fi doFi := Fi ^ b ;b := E[true U Fi℄ ^ E[true S Fi℄while b 
hanges dob := b ^ EX b ^ EY b ;res := EF b; b := invariant ;while b 
hanges dofor ea
h fair set Fi doFi := Fi ^ b ;b := E[b U (b ^ EX Fi)℄ ;while b 
hanges dob := b ^ EX b ;Fig. 1. The el (left), 
ty (middle), and ow
ty (right) 
y
le-dete
tion algorithms. In
ty, EP Fi denotes all states that 
an rea
h Fi and EY b denotes the su

essors of b.A variant of 
ty, 
ty+, repla
es \true" with b in the EU and ES 
omputations. Ea
halgorithm initializes the approximation set to states satisfying the invariant.of states potentially lying on bad 
y
les during the internal iterations (a 
loselyrelated algorithm was proposed in [10℄). This 
an redu
e the number of externaliterations by removing states during an external iteration that a later externaliteration would otherwise handle in el.3 The original 
ty algorithm does 
y
ledete
tion only; it does not 
ompute EG as el does. For 
onsisten
y, Figure 1(middle) provides a version of 
ty that 
an be used to 
ompute EG; this entailsone di�eren
e from the original algorithm: the extra EF 
omputation in the laststep of the algorithm.The external iterations in 
ty perform two steps: �rst, 
ompute the set ofstates that are both rea
hable from and 
an rea
h every fair set (the internal it-erations); se
ond, repeatedly prune the approximation set until it is 
losed underboth su

essors and prede
essors. In 
ontrast, el prunes the approximation setonly on
e and removes only states whi
h have no su

essor in the approximationset; el does not iterate the pruning step within one external iteration. 
ty 
aneliminate states from the approximation set earlier than 
an el, hen
e the name\Cat
h-Them-Young". Like el, 
ty has quadrati
 time 
omplexity with respe
tto the size of the design. Hardin et al.'s experimental results, 
ondu
ted over alarge set of randomly-generated designs, were mixed; 
ty tended to outperformel when there was no bad 
y
le, but performed worse than el in the presen
e of
y
les [8℄. 
ty's aggressive pruning strategy su

eeded in redu
ing the number ofexternal iterations, but nevertheless in
urred a noti
eable performan
e penalty.In order to understand why 
ty fails to outperform el, we must examine ea
halgorithm's a
tual 
omputations. This paper studies patterns of image 
ompu-tations and external iterations, as the former are the most expensive operationsin a BDD-based setting and the latter greatly impa
t the performan
e of 
y-
le dete
tion algorithms. Se
tion 3 presents numeri
 data from this analysis. Insummary, while 
ty performs signi�
antly fewer external iterations than el, itdoes not redu
e the number of image 
omputations. In essen
e, el does too littlework outside the internal iterations whereas 
ty does too mu
h work overall.Engineering a better balan
e between the iterations might yield an algorithmthat 
onsistently outperforms both el and 
ty. One key di�eren
e between el3 Though el may eliminate states in earlier iterations than 
ty.



and 
ty is that el prunes based only on su

essors, whereas 
ty 
onsiders bothsu

essors and prede
essors. An intermediate approa
h 
ould perform 
ty's re-peated pruning, but using only pre-image 
omputations, as in el [19℄. This 
ouldgreatly redu
e the number of image 
omputations of 
ty, though perhaps at theexpense of some additional external iterations. The resulting algorithm, 
alledOne-Way-Cat
h-Them-Young (hen
eforth ow
ty), appears in Figure 1 (right).4ow
ty is essentially the pre-image version of Hojati et al.'s el2 algorithm (sansan initial rea
hability 
omputation) [10℄; its pruning strategy is similar in spiritto that of Kesten et al.'s algorithm for 
y
le dete
tion in the presen
e of strongfairness [14℄ (whi
h uses forward instead of ba
kward image operations).How do ow
ty and el 
ompare? Hojati et al.'s experiments on a smallset of small examples dis
ussed only running time and were in
on
lusive forthese two algorithms. Ravi et al.'s experiments 
ompared el and the forward-operator version of el2/ow
ty; this is not too meaningful, sin
e the issue offorward vs. ba
kward rea
hability [9℄ is orthogonal to the balan
e between ex-ternal and internal iterations (indeed, the upper bounds obtained in [16℄ for eland forward-el2 are in
omparable). ow
ty's worst-
ase running time has onlya linear overhead (see below) over the O(jFjdh) worst-
ase upper bound thatRavi et al. identi�ed for el [16℄ (where jFj is the number of fairness 
onstraints,d is the diameter of the state graph, and h is the length of the longest rea
hablepath in the SCC quotient graph). A worst-
ase analysis as done in [16℄ provides,however, only a very 
oarse 
omparison between the two algorithms. First, theoverhead of ow
ty over el is not very signi�
ant. Se
ond, the worst-
ase in-stan
es for el may be di�erent than those for ow
ty, whi
h means that the
omparison of worst-
ase running times does not tell us how the two algorithms
ompare on a given input instan
e. A more meaningful analysis would 
omparehow the two algorithms perform on 
on
rete instan
es. Analysis at this levelshows that the two algorithms are in
omparable. Figure 2 illustrates the di�er-en
es between the el and ow
ty pruning strategies; ow
ty outperforms el onthe �rst transition system, while el outperforms ow
ty on the se
ond.(1)(2)Fig. 2. Two transition systems that illustrate the di�eren
es between el and ow
ty.Bla
k 
ir
les denote fair states. All states satisfy the invariant.Consider the �rst transition system. Both algorithms eliminate the rightmoststate in the �rst iteration and 
apture the remaining states in the approximationset. During the �rst iteration, ow
ty eliminates all but the leftmost fair state;4 A variant of ow
ty performs pruning inside the for loop; in pra
ti
e, neither version
onsistently outperforms the other.



el eliminates only the rightmost fair state. el requires an additional iteration toeliminate ea
h of the four middle fair states. Ea
h iteration involves a rea
hability
omputation that ow
ty does not perform. If the 
hain of fair states in the �rstsystem 
ontained n fair states, ow
ty would perform O(n) image 
omputationswhile el would perform O(n2) image 
omputations. Thus, el has a quadrati
overhead relative to ow
ty on su
h systems.Now 
onsider the se
ond transition system. In the �rst iteration, both al-gorithms eliminate the rightmost state and retain the remaining states in theapproximation set. During the �rst iteration, el throws away the rightmost fairstate. The rea
hability 
omputation in the se
ond external iteration begins atthe middle fair state; thus, el eliminates the non-fair states between the righttwo fair states without traversing them expli
itly again. ow
ty, in 
ontrast,uses an additional image 
omputation to eliminate ea
h of those non-fair states.The se
ond system 
urrently 
ontains two 
opies of a 
hain of states 
onsistingof four non-fair states, followed by a fair state, followed by a non-fair state with aself loop. If the system had k 
onse
utive 
opies of this 
hain, ea
h with m statesin the initial non-fair 
hain, el would perform O(k2m) image 
omputations as
ompared to ow
ty's O(k2m + km) = O(k2m) image 
omputations. That is,the overhead of ow
ty relative to el is only linear.In general, the two algorithms are in
omparable with respe
t to their numbersof image 
omputations. As ow
ty provably performs no more external iterationsthan el, ow
ty's overhead (if it exists at all) is 
aused by the last line of thealgorithm, whi
h prunes the approximation set. Thus, ow
ty's overhead is atmost linear relative to el, while, as we saw, el 
an have a quadrati
 overheadrelative to ow
ty.To gain a better pi
ture on the 
omparative performan
e of el, 
ty, andow
ty, the experimental analyses in Se
tion 3 gather data on the numbers ofexternal iterations a
ross several randomly generated and real examples; to 
om-plement the Ravi et al. study [16℄, we also in
lude running time, memory usage,and BDD size statisti
s. Our analyses show that ow
ty requires almost thesame number of external iterations as 
ty with far fewer image 
omputations;in pra
ti
e, ow
ty almost always mat
hes or improves on el's performan
e.3 Comparative Analysis of the Algorithms3.1 Experiments on Random SystemsOur �rst set of experiments 
ompares the algorithms on random systems. Wegenerate random systems by generating random dire
ted graphs. We would liketo obtain dire
ted graphs with non-uniform out-degree and linear density (i.e.,a linear number of edges in the number of nodes); linear density prevents 
y-
le dete
tion from be
oming trivial due to an ex
ess or pau
ity of edges. Thefollowing model of random graphs, due to Karp [13℄, satis�es these 
riteria:De�nition 1 For ea
h positive integer n and ea
h p with 0 < p < 1, the samplespa
e 
onsists of all labeled digraphs Dn;p with n verti
es and edge probability p.



Given a graph G with verti
es V and edges E, the order of G is jV j and thedensity of G is jEj=jV j. We will use n and d to represent a graph's order anddensity, respe
tively. We wish to generate graphs in the spa
eDn;d=n. Generatingthe graphs dire
tly based on this model be
omes time 
onsuming as n growslarger: the pro
edure must de
ide whether to in
lude ea
h of the possible n(n�1)edges based on the probability d=n. Instead, we �x the number of edges to be theexpe
ted number dn, and 
hoose dn distin
t edges from the n(n�1) 
andidates.This approa
h provides a very good approximation to the given model [19℄.Our experiments 
ompare four algorithms: el, 
ty, 
ty+, and ow
ty.
ty+ is a variant of 
ty that restri
ts the rea
hability 
omputations to 
onsideronly paths through the approximation set, rather than through the entire statespa
e as in 
ty [19℄; in other words, 
ty+ repla
es line 5 of 
ty with b :=E[b U Fi℄ ^ E[b S Fi℄, where S is the past-time operator sin
e. We presenttwo sets of results. The �rst measures the number of external iterations thatea
h algorithm performs, the next measures the number of image 
omputationsthat ea
h algorithm performs.5 The experiments use graphs with order 212 anddensities varying over 1.2, 1.6, 2.0, and 2.4. This order is large enough to explorethe behavior of the algorithms, yet small enough to analyze in a reasonableamount of time. We de�ne a single fair set for ea
h graph, with size varying over:01n, :1n, :3n, :5n, :7n, and :9n where n is the digraph order. Ea
h experiment�xes either the density or the size of the fair set and varies the other. The �guresreported in the rest of this se
tion are averaged over 100 individual experiments.jFj:01n :1n :5n :9n
ty 2.18 2.41 2.09 2.00
ty+ 2.18 2.41 2.09 2.00ow
ty 2.17 2.37 2.07 2.00el 2.66 5.36 13.20 20.89 d1:2 1:6 2:0 2:4
ty 2.00 2.00 2.00 2.00
ty+ 2.00 2.00 2.00 2.00ow
ty 2.00 2.00 2.00 2.00el 20.89 10.37 7.02 5.09Table 1. Average number of external iterations on digraphs with order 212. The lefttable �xes the density at 1.2 and varies the fair set size. The right table �xes the fairset size at :9� 212 and varies the density.Table 1 shows the number of external iterations on digraphs with ordern = 212. One set of experiments �xes the density at 1.2 and varies the fairset size; the other �xes the fair set size at :9�212 and varies the density. The ta-bles indi
ate that 
ty, 
ty+ and ow
ty perform far fewer external iterationsthan el. Furthermore, ow
ty performs essentially the same number of externaliterations as 
ty; thus pruning based on prede
essors as well as su

essors, as
ty does, does not signi�
antly redu
e the number of external iterations over apruning strategy based only on su

essors. We therefore expe
t ow
ty to 
on-sume 
onsiderably fewer resour
es than 
ty in pra
ti
e. el requires signi�
antly5 We refer to post- and pre-image 
omputations 
olle
tively as image 
omputations.



more external iterations as the fair set grows larger, and signi�
antly fewer ex-ternal iterations as the density in
reases. In 
ontrast, 
ty, 
ty+, and ow
typerform fairly 
onsistent numbers of external iterations in both 
ases.The data in Table 1 do not indi
ate that 
ty and ow
ty are more eÆ-
ient than el be
ause the former algorithms may do more work in the internaliterations. The number of image 
omputations o�ers a more pre
ise eÆ
ien
y
omparison. Image 
omputations are the most 
omputationally expensive op-erations in ea
h of the 
y
le-dete
tion algorithms. The 
ost of these operationsdepends on the density and order of the underlying graphs [19℄. Sin
e we analyzethe four algorithms over the same randomly generated graphs, the 
ost of indi-vidual image 
omputations is 
omparable a
ross the algorithms. The number ofimage 
omputations is therefore a fair parameter for 
omparing the algorithms.

0 10 20 30 40 50 60 70 80 90
20

40

60

80

100

120

140

160

180

200

size of fair set (percentage of digraph order)

nu
m

be
r o

f i
m

ag
e 

co
m

pu
ta

tio
ns

EL
CTY
CTY+
OWCTY

Fig. 3. Number of image 
omputations for el, 
ty, 
ty+ and ow
ty.Figure 3 shows the number of image 
omputations performed over graphswith order n = 212, density d = 1:2, and fair set size ranging over :01n, :1n, :3n,:5n, :7n, and :9n. For 
ty, 
ty+ and ow
ty the number of image 
omputa-tions de
reases as the fair set gets larger. 
ty performs more image 
omputationsthan 
ty+ be
ause 
ty+ restri
ts rea
hability 
omputations to the approxi-mation set, whi
h allows the 
omputation to 
onverge faster. ow
ty performsfewer image 
omputations than either 
ty or 
ty+ be
ause it does not per-form forwards rea
hability. Separate data (not shown) show that the ba
kwardsrea
hability 
omputations in ow
ty and 
ty perform almost the same num-bers of image 
omputations; furthermore, the pruning step in ow
ty performsroughly half as many image 
omputations as that in 
ty+[19℄. Thus, eliminating



the forward image 
omputations makes ow
ty less 
omputationally expensivewithout adversely a�e
ting the number of external iterations required.Separate experiments (not shown) show that the number of image 
ompu-tations de
reases sharply as the density in
reases [19℄. In the 
ase of el, thenumber of image 
omputations drops be
ause the algorithm performs fewer ex-ternal iterations as density in
reases, as dis
ussed previously. For the remainingthree algorithms, our experimental data shows that the size of the approximationset after ea
h iteration be
omes larger as the density in
reases. The approxima-tion set determines the base set for subsequent rea
hability 
omputations. Thelarger the base set, the faster rea
hability 
omputations 
onverge [19℄. There-fore, fewer image 
omputations are needed when the digraph density in
reases.Although ea
h pruning step removes fewer verti
es, the �nal approximation setis also larger, so the algorithms perform fewer image 
omputations as densityin
reases. Plots for running time statisti
s are similar to those for image 
ompu-tations. In parti
ular, both ow
ty and 
ty 
onsistently outperform el. This
ontradi
ts the mixed results in other 
ty versus el experiments [8, 16℄.3.2 Experiments on Real SystemsOur real design examples 
ome from the VIS distribution and from Fabio Somenzi.They in
lude an ethernet proto
ol with varying numbers of 
ollisions beforefailure, a tree-stru
tured arbiter with 8 nodes, a g
d 
ir
uit, a 
oating pointmultiplier, and two mutual ex
lusion proto
ols (bakery and eisenberg). Theseexamples are written in Verilog and evaluated using the VIS model 
he
ker [17℄.We implemented ow
ty within the VIS framework by repla
ing the original(el) algorithm for evaluating EG formulas with ow
ty in a 
opy of VIS. Weran the experiments using VIS version 1.3 (with version 1.2 of the vl2mv 
om-piler), on an Intel 686 ma
hine with 1GB of memory running RedHat Linuxversion 2.2.12-20; our VIS installation uses the CUDD BDD pa
kage.Table 2 summarizes experiments with LTL model 
he
king of terminal andweak systems. For ea
h LTL experiment, we evaluated EGfairtrue on the produ
tof the original design and a manually-
onstru
ted automaton for the negation ofthe property. Table 3 
overs examples with multiple fair sets in the 
ontext ofCTL model 
he
king. Table 4 
overs LTL model 
he
king under multiple fairness
onstraints. In ea
h table, stars on experiment names denote that the models
ontained 
y
les or that the property failed. The EX/EY and EU/ES �gures 
ountthe number of image and rea
hability 
omputations performed, respe
tively.6The tables show that ow
ty generally mat
hes or outperforms el, while
ty and 
ty+ are 
learly not 
ompetitive. In many 
ases, ow
ty outperformsel dramati
ally; in 
ontrast, we have not yet found an example on whi
h el sig-ni�
antly outperforms ow
ty. The bene�ts of ow
ty are parti
ularly evidenton the ethernet and g
d examples in Table 2. As expe
ted, ow
ty uses fewerexternal iterations than el; however, ow
ty sometimes performs more image
omputations than el.6 The EU/ES 
ounts do not in
lude trivial 
omputations of the form [' U '℄.



Experiment Pro
edure Ext. EX or Time Mem peak liveIter. EX/EY (se
) (MB) BDD nodesethernet 1 el 51 2179 356.6 13.6 339932
ty 2 42/43 187.9 14.6 398280
ty+ 2 41/42 184.8 14.6 398280G(p! Fq) ow
ty 3 57 5.5 11.7 175118ethernet 2 el 107 6506 10656.1 14.4 367135
ty 2 67/68 1893.6 33.6 1365367
ty+ 2 66/67 1887.6 33.6 1365755G(p! Fq) ow
ty 3 113 59.6 14.1 404723ethernet 3 el 171 11914 4371.3 13.7 279823
ty 2 95/96 1962.2 35 1456597
ty+ 2 94/95 1938.0 35 1456597G(p! Fq) ow
ty 3 177 24.6 13.8 290593ethernet 4 el - - (30H) - -
ty 2 130/131 5859.7 53.6 2320201
ty+ 2 130/2 5895 53.6 2320201G(p! Fq) ow
ty 3 245 491.4 14.1 368225treearb 8* el 8 75 6.2 13.6 234021
ty - - (20M) (23) -
ty+ - - (20M) (23) -G(p! Fq) ow
ty 2 24 4.2 12.7 206640g
d el - - (37H) - -
ty 2 15/3 1384.2 59.3 2298351
ty+ 2 14/2 1383.0 59.3 2298351G(p! XFq) ow
ty 2 24 2497.5 130.9 6285856fpmult el 2 18 18345.8 363 17667058
ty 2 26/3 33089.7 369 17619441
ty+ 2 18/2 21994.7 368 17619441G(p! XXXq) ow
ty 2 17 22457.2 369 17422253Table 2. LTL model 
he
king on weak and terminal systems. Parenthesized timesindi
ate terminated 
omputations; M indi
ates minutes instead of se
onds.



Experiment Pro
edure Num Ext. EX / EU or Time Mem peak liveFair Iter. EX/EY/EU/ES (se
) (MB) BDD nodesbakery1* el 6 18 554 / 91 1.3 6.2 34447
ty 6 11 1371/650/67/66 10 13.3 176492
ty+ 6 12 344/299/51/50 7.0 13 182755AG(p! AFq) ow
ty 6 18 516 / 75 1.6 6.1 36962bakery2 el 6 18 490 / 92 1.3 6.0 29524
ty 6 11 1239/614/67/66 9.4 13.3 176492
ty+ 6 11 282/246/47/46 6.0 12.7 180657AG(p! AFq) ow
ty 6 18 444 / 72 1.4 5.8 28849treearb8* el 8 15 382 / 106 14.8 13.6 328115
ty 8 - - (194M) (112) -
ty+ 8 - - (170M) (123) -AG(p! AFq) ow
ty 8 13 416 / 104 13.1 13.4 309449eisenberg2 el 6 27 669 / 124 1.6 5.5 17352
ty 6 23 2159/2031/139/138 7.8 11.2 180311
ty+ 6 16 252/506/56/55 3.8 8.6 148353AG(p! AFq) ow
ty 6 27 631 / 102 1.4 5.4 18504elevator* el 8 12 849/97 498.2 13.8 275914
ty 8 - - (104M) (38) -
ty+ 8 - - (104M) (43) -AG(p! AFq) ow
ty 8 12 861/79 536.8 13.6 275914Table 3. CTL model 
he
king on systems with multiple fairness 
onstraints.Experiment Pro
edure Num Ext. EX / EU or Time Mem peak liveFair Iter. EX/EY/EU/ES (se
) (MB) BDD nodestreearb8* el 9 15 1021 / 135 1397.8 13.8 239731
ty 9 - - (186M) (44) -
ty+ 9 - - (207M) (157) -G(p! Fq) ow
ty 9 14 1000 / 126 911.6 13.9 369062eisenberg2 el 7 24 1332 / 161 5.7 7.2 47704
ty 7 24 5114/5486/169/168 60.3 13.7 240028
ty+ 7 15 229/399/53/52 4.7 8.8 147763G(p! Fq) ow
ty 7 24 1197 / 109 5.3 7.1 59802elevator3* el 3 2 7 / 1 1164.7 87.5 4062730
ty - - - (60M) (270) -
ty+ - - - (60M) (270) -Gp ow
ty 3 2 13 / 1 1167.3 87.5 4062730elevator4* el 1 2 3 / 1 16192.4 282 13308496
ty 1 - - (365M) (278) -
ty+ 1 - - (367M) (278) -Gp ow
ty 1 2 5 / 1 16388.0 282 13308496Table 4. LTL model 
he
king on systems with multiple fairness 
onstraints.



Exp. Pro
. Num Ext. EX TimeFair Iter. (se
)A* el 2 6 203 65.49ow
ty 2 2 77 32.58D* el 6 2 147 16.26ow
ty 6 2 149 16.33E* el 4 3 125 6.89ow
ty 4 2 87 6.39F* el 2 10 50 870.0ow
ty 2 2 27 897.7H1* el 2 8 40 633.8ow
ty 2 2 23 495.7H3* el 2 8 40 550.5ow
ty 2 2 23 592.7
Exp. Pro
. Num Ext. EX TimeFair Iter. (se
)I* el 2 2 40 1004.5ow
ty 2 2 23 692.9J1* el 2 8 40 521.9ow
ty 2 2 23 426.6J2* el 2 8 40 447.9ow
ty 2 2 23 347.7K* el 2 7 25 220.3ow
ty 2 2 20 165.3L* el 2 6 24 129.4ow
ty 2 2 19 129.4M1* el 2 7 35 81.5ow
ty 2 2 21 53.9Table 5. Results from Intel on 
he
king EGfairtrue on systems that have (and require)multiple fairness 
onstraints.Finally, we 
ompared ow
ty and el on Intel designs using internal Intel tools(Table 5). All the table entries re
e
t the 
omposition of a
tual designs withlinear-time properties, using multiple fairness 
onstraints. ow
ty performedsigni�
antly better than el in all examples ex
ept F and H3, where el slightlyoutperformed ow
ty.4 OWCTY Versus Spe
ialized AlgorithmsOur experimental results show that ow
ty generally outperforms el on terminaland weak systems. Bloem, Ravi, and Somenzi have presented an algorithm thatis spe
ialized to verify terminal and weak systems eÆ
iently [2℄. Linear-timemodel 
he
kers dete
t bad 
y
les by using the el algorithm to 
he
k EG trueover the produ
t of the design and the negation of the desired property. Bloemet al. observed that for terminal and weak systems, CTL formulas 
apture thesear
h for bad 
y
les. Spe
i�
ally, the formulas EF fair and EF EG fair are true ofterminal and weak systems, respe
tively, when they 
ontain in�nite fair 
y
les.A

ordingly, their algorithm (hen
eforth brs) 
he
ks one of the formulas EFfair, EF EG fair, or EGfairtrue based on the stru
ture of the input system. Thisstru
ture follows from the stru
ture of the property being tested: if a property
orresponds to a weak (resp. terminal) system, the produ
t of that property anda design model is also a weak (resp. terminal) system. Bloem et al. showed thatbrs signi�
antly outperforms el in pra
ti
e on terminal and weak systems.Table 6 
ompares ow
ty to brs.7 For the examples from Table 2, we 
he
kedboth EGfairtrue and the appropriate formula from brs using ow
ty. The statis-7 The g
d and fpmult examples are the same as Bloem et al. used in their paper [2℄. Ourresour
e usage on these examples di�ers widely from theirs due to di�eren
es betweenour two versions of the 
ompiler from Verilog to BLIF, the VIS input language.



Experiment Pro
edure EX Time Mem peak(se
) (MB) BDD nodesethernet 1 :EF EG fair 53 4.2 11.2 151306G(p! Fq) EGfairtrue(ow
ty) 57 5.5 11.7 175118ethernet 2 :EF EG fair 109 24.4 13.7 381839G(p! Fq) EGfairtrue(ow
ty) 113 59.6 14.1 404723ethernet 3 :EF EG fair 173 13.3 13.6 287787G(p! Fq) EGfairtrue(ow
ty) 177 24.6 13.8 290593ethernet 4 :EF EG fair 241 145.6 14.0 373531G(p! Fq) EGfairtrue(ow
ty) 245 491.4 14.1 368225treearb 8* :EF EG fair 22 4.1 12.6 200529G(p! Fq) EGfairtrue(ow
ty) 24 4.2 12.7 206640g
d :EF EG fair 20 3351.6 193 8204281G(p! XFq) EGfairtrue(ow
ty) 24 2497.5 130.9 6285856fpmult :EF fair 8 5565.5 329 16109729G(p! XXXq) EGfairtrue(ow
ty) 17 22457.2 369 17422253Table 6. Comparison between the ow
ty and brs algorithms.ti
s on EGfairtrue are reprodu
ed from Table 2. The spe
ialized approa
h outper-forms ow
ty on most of these examples (ex
ept the g
d example). This is dueto the di�eren
e between 
he
king EGtruefair (brs) and EGfairtrue (ow
ty).The former restri
ts the sear
h for a bad 
y
le to the fair states; the latter looksfor a 
y
le that interse
ts the fair states. As a result, both el and ow
ty 
anhave non-fair states in their approximation sets, while brs' approximation set
ontains only fair states. This restri
tion usually allows brs to 
onverge faster.This 
omparison demonstrates how exploiting stru
tural information aboutsystems 
an lead to more eÆ
ient veri�
ation algorithms. Note, however, thatbrs is not a generi
 
y
le-dete
tion algorithm. Furthermore, we must also 
on-sider the 
ost of determining whether a system is weak or terminal, whi
h isnot in
luded in our paper or in Bloem et al.'s. In theory, this operation 
an bedone symboli
ally in O(n logn) time [1℄, but experimental results are not yetavailable. For the simple properties 
onsidered by Bloem et al. and here, thisoverhead is insigni�
ant; for more 
ompli
ated properties (su
h as those in
lud-ing 
omplex environmental assumptions) it 
ould be rather substantial. ow
ty,whi
h is a generi
 algorithm, performs well in pra
ti
e without the overhead ofspe
ialized analyses as required in brs.5 Con
lusionsSymboli
 model 
he
king remains a heuristi
 pro
ess, as metri
s do not yet existto predi
t BDD behavior under di�ering algorithms. As a result, 
omparativeanalyses of algorithms are extremely useful in helping tool developers 
hoosewhi
h algorithms to implement. In the name of good s
ien
e, these analyses need



to be reprodu
ible and portable to the greatest extent possible. Su
h analysesprovide not only �rm data, but a foundation for future algorithm development.This paper 
ompares three symboli
 
y
le-dete
tion algorithms (and a varianton one of them) based on the number of iterations they take through theiroutermost �xpoint operator, as well as the number of image operations theyperform. Ea
h algorithm employs a slightly di�erent strategy for pruning theset of states potentially lying on 
y
les. Our analysis shows that the originalEmerson-Lei (el) algorithm [5℄ performs too little work outside of its internaliterations, while Hardin et al.'s Cat
h-Them-Young (
ty) algorithm [8℄ performstoo mu
h. In 
ontrast, Hojati's el2 algorithm [10℄, whi
h we view as a one-wayversion of 
ty (ow
ty) does seem to balan
e the work inside and outside theinternal iterations. On random examples and on terminal and weak systems,ow
ty dominates el, while on general systems, ow
ty is 
ompetitive withel, dominating it signi�
antly in many 
ases. We have also shown that the twoalgorithms are in
omparable with respe
t to the number of image 
omputationsthey perform: el 
an have a quadrati
 overhead over ow
ty, while ow
ty 
anhave a linear overhead over el. These results support our 
on
lusion that model
he
kers need to 
ontain both el and ow
ty.In the 
ourse of this proje
t, we have identi�ed two desired features for veri�-
ation tools. First, we want tools to implement multiple algorithms for 
ommonproblems su
h as 
y
le-dete
tion. Both our analysis and the re
ent one by Raviet al. [16℄ indi
ate that no algorithm 
onsistently outperforms the others; indeed,veri�
ation tasks may be tra
table with one algorithm and intra
table with an-other. Tools providing multiple algorithms a�ord human veri�ers opportunitiesto experiment and �nd algorithms that work on their appli
ations. A similar
on
lusion in the 
ontext of semi-exhaustive rea
hability analysis was rea
hedin [6℄. Se
ond, we want tools to provide visualizations of 
omputational patternsduring model 
he
king. Intel's Palette [12℄ does some of this; we wish we hadsu
h a tool to augment VIS and other publi
ly-available tools. Testbeds support-ing multiple algorithms and better data 
olle
tion would provide strong supportfor more dis
iplined approa
hes to algorithm 
omparisons in veri�
ation.A
knowledgementsWe thank Kavita Ravi, Fabio Somenzi, and Roderi
k Bloem for their very helpful
omments on this paper, and the Ri
e PLT group for a

ess to their large-memory server.Referen
es1. Bloem, R., H. N. Gabow and F. Somenzi. An algorithm for strongly 
onne
ted
omponent analysis in n log n symboli
 steps. In Intl. Conf. on Formal Methods inComputer-Aided Veri�
ation, Le
ture Notes in Computer S
ien
e. Springer-Verlag,2000.



2. Bloem, R., K. Ravi and F. Somenzi. EÆ
ient de
ision pro
edures for model 
he
k-ing of linear time logi
 properties. In Intl. Conf. on Computer-Aided Veri�
ation,Le
ture Notes in Computer S
ien
e, pages 222{235. Springer-Verlag, 1999.3. Clarke, E. M., E. A. Emerson and A. P. Sistla. Automati
 veri�
ation of �nite-state 
on
urrent systems using temporal logi
 spe
i�
ations. ACM Transa
tionson Programming Languages and Systems, 8(2):244{263, January 1986.4. Cour
oubetis, C., M. Y. Vardi, P. Wolper and M. Yannakakis. Memory eÆ
ientalgorithms for the veri�
ation of temporal properties. Formal Methods in SystemDesign, 1:275{288, 1992.5. Emerson, E. A. and C. L. Lei. EÆ
ient model 
he
king in fragments of the propo-sitional model mu-
al
ulus. Pro
eedings of LICS 1986, pages 267{278, 1986.6. Fraer, R., G. Kamhi, L. Fix and M. Y. Vardi. Evaluating semi-exhausting veri-�
ation te
hniques for bug hunting. In Pro
eedings of the 1st Intl. Workshop onSymboli
 Model Che
king. Ele
troni
 Notes in Theoreti
al Computer S
ien
e, 1999.7. Hardin, R. H., Z. Har'El and R. P. Kurshan. COSPAN. In Intl. Conf. on Computer-Aided Veri�
ation, number 1102 in Le
ture Notes in Computer S
ien
e, pages 423{427. Springer-Verlag, 1996.8. Hardin, R. H., R. P. Kurshan, S. K. Shukla and M. Y. Vardi. A new heuristi
 forbad 
y
le dete
tion using BDDs. In Pro
. Conf. on Computer-Aided veri�
ation(CAV'97), pages 268{278. Springer-Verlag. LNCS 1254, 1997.9. Henzinger, T., O. Kupferman and S. Qadeer. From prehistori
 to postmodernsymboli
 model 
he
king. In Hu, A. and M. Vardi, editors, Intl. Conf. on Computer-Aided Veri�
ation, volume 1427 of Le
ture Notes in Computer S
ien
e, pages 195{206. Springer-Verlag, 1998.10. Hojati, R., H. Touati, R. Kurshan and R. Brayton. EÆ
ient !-regular language
ontainment. In Intl. Conf. on Computer-Aided Veri�
ation, number 663 in Le
tureNotes in Computer S
ien
e. Springer-Verlag, 1992.11. Holzmann, G. and D. Peled. The state of SPIN. In Intl. Conf. on Computer-AidedVeri�
ation, number 1102 in Le
ture Notes in Computer S
ien
e, pages 385{389.Springer-Verlag, 1996.12. Kamhi, G., L. Fix and Z. Binyamini. Symboli
 model 
he
king visualization. InIntl. Conf. on Formal Methods in Computer-Aided Veri�
ation, number 1522 inLe
ture Notes in Computer S
ien
e, pages 290{303. Springer-Verlag, 1998.13. Karp, R. M. The transitive 
losure of a random digraph. Random Stru
tures andAlgorithms, 1(1), 1990.14. Kesten, Y., A. Pnueli and L. on Raviv. Algorithmi
 veri�
ation of linear temporallogi
 spe
i�
ations. In Intl. Colloquium on Automata, Languages, and Program-ming, number 1443 in Le
ture Notes in Computer S
ien
e. Springer-Verlag, 1998.15. Kupferman, O. and M. Y. Vardi. Freedom, weakness, and determinism: Fromlinear-time to bran
hing-time. In IEEE Symp on Logi
 in Computer S
ien
e, 1998.16. Ravi, K., R. Bloem and F. Somenzi. A 
omparative study of symboli
 algorithmsfor the 
omputation of fair 
y
les. In Intl. Conf. on Formal Methods in Computer-Aided Veri�
ation, Le
ture Notes in Computer S
ien
e. Springer-Verlag, 2000.17. The VIS Group. VIS: A system for veri�
ation and synthesis. In Alur, R. andT. Henzinger, editors, Intl. Conf. on Computer-Aided Veri�
ation, volume 1102 ofLe
ture Notes in Computer S
ien
e. Springer-Verlag, July 1996.18. Vardi, M. Y. and P. Wolper. An automata-theoreti
 approa
h to automati
 pro-gram veri�
ation. In IEEE Symposium on Logi
 in Computer S
ien
e, 1986.19. Yang, Z. Performan
e analysis of symboli
 rea
hability algorithms in model 
he
k-ing. Master's thesis, Ri
e University, Department of Computer S
ien
e, 1999.Available at http://www.
s.ri
e.edu/CS/Verifi
ation/.


