
Is There a Best Symboli Cyle-DetetionAlgorithm?Kathi Fisler1;4, Ranan Fraer2, Gila Kamhi2, Moshe Y. Vardi1?, and ZijiangYang1;31: Department of Computer Siene, Rie University, Houston, TX, USA2: Intel Development Center, Haifa, Israel3: CCRL, NEC, Prineton, NJ, USA4: Worester Polytehni Institute, Worester, MA, USAAbstrat. Fair-yle detetion, a ore problem in model heking, issolvable in linear time in the size of the design model using an expliit-state representation. Existing yle-detetion algorithms for symbolimodel heking are quadrati or n log n time in the worst ase and oftenineÆient in pratie. Whih default symboli yle-detetion algorithmto implement in model hekers remains an open question. We ompareseveral suh algorithms based on the numbers of external and internaliterations and the numbers of image operations that they perform onboth randomly-generated and real examples. Unlike reent work by Ravi,Bloem, and Somenzi, we onlude that model hekers need to implementat least two generi yle-detetion algorithms: the traditional Emerson-Lei algorithm and one that evolved from our study, originally due toHojati et al. We demonstrate that these two algorithms are omplemen-tary, as the latter algorithm is provably inomparable to Emerson-Lei'sand often dominates it in pratie.1 IntrodutionModel heking, whether for LTL, CTL, or !-automata, has linear time om-plexity in the size of the design model. This well-known result follows fromtwo fats: �rst, that most model heking tehniques redue to the problemof loating yles through a given set of nodes in a graph [3, 18℄; seond, thatyle detetion is solvable in linear time using a depth-�rst searh that identi-�es strongly-onneted omponents (f, [4℄). This depth-�rst strategy providesa suitable approah to yle detetion in expliit-state model heking, and hasbeen implemented in several tools [7, 11℄.Depth-�rst approahes to yle detetion are not suitable for BDD-basedsymboli model heking beause BDDs represent sets of states while depth-�rstsearh examines individual states. EÆient BDD-based model heking requireseÆient breadth-�rst, set-based yle-detetion algorithms. Most modern sym-boli model hekers employ some variant of Emerson and Lei's symboli yle-detetion algorithm [5℄. CTL model hekers use the Emerson-Lei algorithm? Work partially supported by NSF Grant CCR-9988322 and a grant from the Intelorporation.



(heneforth el) to proess formulas of the form EG ', whih speify in�nitepaths on whih every state satis�es '. Linear-time model hekers ompose thedesign model with an automaton representing the negation of the property, thenhek for yles in the produt automaton using the CTL formula EG true. Un-fortunately, el's time omplexity is not linear in the size of the design model: thealgorithm ontains a doubly-nested �xpoint operator, and hene requires timequadrati in the design size in the worst ase. The algorithm is also often slowin pratie. el is a so-alled SCC-hull algorithm [16℄. SCC-hull algorithms om-pute the set of states that ontains all fair yles. In ontrast, SCC-enumerationalgorithms enumerate all the strongly onneted omponents of the state graph.While SCC-enumeration algorithms have a better worst-ase omplexity thanSCC-hull algorithms [1℄, their performane in pratie seems to be inferior tothat of SCC-hull algorithms [16℄. This paper fouses on SCC-hull algorithms.Researhers have proposed several alternatives to el [8, 10, 14℄. Ravi, Bloem,and Somenzi have presented both a lassi�ation sheme for suh algorithmsand an experimental omparison of several algorithms with el [16℄. They on-luded that no algorithm onsistently outperforms el for yle detetion, and,onsequently, there is no reason to \dethrone" el as the default yle-detetionalgorithm. Their omparison, however, is based primarily on running times, andseondarily on numbers of image operations. This approah has two signi�antdrawbaks: it provides no useful feedbak on why the algorithms behave as ob-served, and it suggests no tehniques for prediting when one algorithm mightoutperform another. Furthermore, their omparison onsiders some algorithmsthat are based on post-image operations and some that are based on pre-imageoperations (as is el), making it rather diÆult to draw �rm onlusions.This paper demonstrates a methodology that both addresses these onernsand identi�es a symboli yle-detetion algorithm that provides a viable al-ternative to el. Ravi et al. present bounds on the number of image operationsperformed by various yle-detetion algorithms. We argue that to understandthe performane of SCC-hull algorithms one needs to measure both the numberof image omputations as well as the number of external iterations (de�ned inSetion 2). Our methodology fouses on the number of external iterations per-formed as a basis for omparing and re�ning symboli yle-detetion algorithms.In aiming to balane the numbers of external and internal iterations performed,we have identi�ed an algorithm that, as we argue, should join el as a generiyle-detetion algorithm. We demonstrate that this algorithm is inomparableto el, dominating it in many ases. Our onlusion is that, as in many other as-pets of model heking, there is no \best" yle-detetion algorithm and modelhekers need to implement at least both el and our algorithm.Setion 2 desribes our analyses of three existing symboli yle-detetionalgorithms and shows how the ompetitive algorithm evolved from these anal-yses. Setion 3 presents experimental results on randomly generated and realexamples for both the speial ase of terminal and weak systems and more gen-eral examples. Setion 4 ompares the ompetitive algorithm to a speializedyle-detetion algorithm for terminal and weak systems. Setion 5 onludes.



2 Symboli Cyle-Detetion AlgorithmsCyle-detetion algorithms in the ontext of model heking searh for \bad"yles in a direted graph representing a transition system modeling a designundergoing veri�ation. Two parameters speify whih yles are onsidered bad:the invariant and the fair sets. The invariant spei�es a ondition, suh as apropositional formula, that must be true of every state on a bad yle. The fairsets speify sets of states that every bad yle must pass through. We writeEGfair' to indiate a searh for yles satisfying invariant ' and passing throughfair sets fair. We will omit the fair annotation when all states are onsidered fair.Cyle detetion in BDD-based model heking is hallenging beause theBDDs o-mingle information about di�erent paths through a design. Symboliyle-detetion algorithms maintain a set of states that may lead to bad yles;this set is onservative, in that it ontains all states that do lead to bad yles.We all this the approximation set. The algorithms repeatedly re�ne the approx-imation set by loating and removing states that annot lead to a bad yle; weall this the pruning step. If a state lies on a bad yle, then it must have a su-essor and a predeessor on that same yle (and thus also in the approximationset). Cyle-detetion algorithms use this information in di�erent ways.Formally, these algorithms searh for yles in nondeterministi transitionsystems. A transition system is a tuple hQ;R;Q0;Fi, where Q is a set of states,Q0 � Q is the initial state set, R � Q�Q is the transition relation, and F � Qis the set of fair states. A transition system is weak i� (1) there exists a partitionof Q into sets Q1; : : : ; Qn suh that eah Qi is either ontained in F or is disjointfrom it, and (2) the Qi's are partially ordered so that there is no transition fromQi to Qj unless Qi � Qj . If the Qi's ontained in F are the maximal elements ofthe partial order, a weak system is alled terminal. This de�nition of weak andterminal transition systems is due to Bloem, Ravi, and Somenzi [2℄, as re�nedfrom Kupferman and Vardi [15℄. In model heking, designs ommonly haveseveral fair sets, and bad yles must pass through eah fair set. Suh designsare outside the sope of weak systems, whose de�nition is only meaningful forone fair set.1el appears in Figure 1 (left).2 At eah iteration through the while loop,el omputes the set of states that an reah every fair set via a non-trivialpath ontained in the approximation set, b. We all these iterations external ;the reahability omputations (the EU formula) form the internal iterations. eldoes most of its work in the internal iterations: eah external iteration performsonly one preimage omputation per fair set outside of the internal iterations.Hardin et al. attempted to redue the number of external iterations thatel performs as a means of ahieving an improved algorithm [8℄. Their algo-rithm, alled Cath-Them-Young (heneforth ty), aggressively prunes the set1 LTL-to-automaton translation algorithms may yield multiple fair sets when onewould suÆe, rendering an otherwise weak system non-weak. Thus, minimizing thenumber of fair sets is an important optimization.2 Figure 1 shows VIS' implementation of el; in SMV, the �nal image omputation(b := b ^ EX d) is outside the for loop.



b := invariant ;while b hanges dofor eah fair set Fi dod := E[b U (Fi ^ b)℄ ;b := b ^ EX d ; b := invariant ;while b hanges dofor eah fair set Fi doFi := Fi ^ b ;b := E[true U Fi℄ ^ E[true S Fi℄while b hanges dob := b ^ EX b ^ EY b ;res := EF b; b := invariant ;while b hanges dofor eah fair set Fi doFi := Fi ^ b ;b := E[b U (b ^ EX Fi)℄ ;while b hanges dob := b ^ EX b ;Fig. 1. The el (left), ty (middle), and owty (right) yle-detetion algorithms. Inty, EP Fi denotes all states that an reah Fi and EY b denotes the suessors of b.A variant of ty, ty+, replaes \true" with b in the EU and ES omputations. Eahalgorithm initializes the approximation set to states satisfying the invariant.of states potentially lying on bad yles during the internal iterations (a loselyrelated algorithm was proposed in [10℄). This an redue the number of externaliterations by removing states during an external iteration that a later externaliteration would otherwise handle in el.3 The original ty algorithm does yledetetion only; it does not ompute EG as el does. For onsisteny, Figure 1(middle) provides a version of ty that an be used to ompute EG; this entailsone di�erene from the original algorithm: the extra EF omputation in the laststep of the algorithm.The external iterations in ty perform two steps: �rst, ompute the set ofstates that are both reahable from and an reah every fair set (the internal it-erations); seond, repeatedly prune the approximation set until it is losed underboth suessors and predeessors. In ontrast, el prunes the approximation setonly one and removes only states whih have no suessor in the approximationset; el does not iterate the pruning step within one external iteration. ty aneliminate states from the approximation set earlier than an el, hene the name\Cath-Them-Young". Like el, ty has quadrati time omplexity with respetto the size of the design. Hardin et al.'s experimental results, onduted over alarge set of randomly-generated designs, were mixed; ty tended to outperformel when there was no bad yle, but performed worse than el in the presene ofyles [8℄. ty's aggressive pruning strategy sueeded in reduing the number ofexternal iterations, but nevertheless inurred a notieable performane penalty.In order to understand why ty fails to outperform el, we must examine eahalgorithm's atual omputations. This paper studies patterns of image ompu-tations and external iterations, as the former are the most expensive operationsin a BDD-based setting and the latter greatly impat the performane of y-le detetion algorithms. Setion 3 presents numeri data from this analysis. Insummary, while ty performs signi�antly fewer external iterations than el, itdoes not redue the number of image omputations. In essene, el does too littlework outside the internal iterations whereas ty does too muh work overall.Engineering a better balane between the iterations might yield an algorithmthat onsistently outperforms both el and ty. One key di�erene between el3 Though el may eliminate states in earlier iterations than ty.



and ty is that el prunes based only on suessors, whereas ty onsiders bothsuessors and predeessors. An intermediate approah ould perform ty's re-peated pruning, but using only pre-image omputations, as in el [19℄. This ouldgreatly redue the number of image omputations of ty, though perhaps at theexpense of some additional external iterations. The resulting algorithm, alledOne-Way-Cath-Them-Young (heneforth owty), appears in Figure 1 (right).4owty is essentially the pre-image version of Hojati et al.'s el2 algorithm (sansan initial reahability omputation) [10℄; its pruning strategy is similar in spiritto that of Kesten et al.'s algorithm for yle detetion in the presene of strongfairness [14℄ (whih uses forward instead of bakward image operations).How do owty and el ompare? Hojati et al.'s experiments on a smallset of small examples disussed only running time and were inonlusive forthese two algorithms. Ravi et al.'s experiments ompared el and the forward-operator version of el2/owty; this is not too meaningful, sine the issue offorward vs. bakward reahability [9℄ is orthogonal to the balane between ex-ternal and internal iterations (indeed, the upper bounds obtained in [16℄ for eland forward-el2 are inomparable). owty's worst-ase running time has onlya linear overhead (see below) over the O(jFjdh) worst-ase upper bound thatRavi et al. identi�ed for el [16℄ (where jFj is the number of fairness onstraints,d is the diameter of the state graph, and h is the length of the longest reahablepath in the SCC quotient graph). A worst-ase analysis as done in [16℄ provides,however, only a very oarse omparison between the two algorithms. First, theoverhead of owty over el is not very signi�ant. Seond, the worst-ase in-stanes for el may be di�erent than those for owty, whih means that theomparison of worst-ase running times does not tell us how the two algorithmsompare on a given input instane. A more meaningful analysis would omparehow the two algorithms perform on onrete instanes. Analysis at this levelshows that the two algorithms are inomparable. Figure 2 illustrates the di�er-enes between the el and owty pruning strategies; owty outperforms el onthe �rst transition system, while el outperforms owty on the seond.(1)(2)Fig. 2. Two transition systems that illustrate the di�erenes between el and owty.Blak irles denote fair states. All states satisfy the invariant.Consider the �rst transition system. Both algorithms eliminate the rightmoststate in the �rst iteration and apture the remaining states in the approximationset. During the �rst iteration, owty eliminates all but the leftmost fair state;4 A variant of owty performs pruning inside the for loop; in pratie, neither versiononsistently outperforms the other.



el eliminates only the rightmost fair state. el requires an additional iteration toeliminate eah of the four middle fair states. Eah iteration involves a reahabilityomputation that owty does not perform. If the hain of fair states in the �rstsystem ontained n fair states, owty would perform O(n) image omputationswhile el would perform O(n2) image omputations. Thus, el has a quadratioverhead relative to owty on suh systems.Now onsider the seond transition system. In the �rst iteration, both al-gorithms eliminate the rightmost state and retain the remaining states in theapproximation set. During the �rst iteration, el throws away the rightmost fairstate. The reahability omputation in the seond external iteration begins atthe middle fair state; thus, el eliminates the non-fair states between the righttwo fair states without traversing them expliitly again. owty, in ontrast,uses an additional image omputation to eliminate eah of those non-fair states.The seond system urrently ontains two opies of a hain of states onsistingof four non-fair states, followed by a fair state, followed by a non-fair state with aself loop. If the system had k onseutive opies of this hain, eah with m statesin the initial non-fair hain, el would perform O(k2m) image omputations asompared to owty's O(k2m + km) = O(k2m) image omputations. That is,the overhead of owty relative to el is only linear.In general, the two algorithms are inomparable with respet to their numbersof image omputations. As owty provably performs no more external iterationsthan el, owty's overhead (if it exists at all) is aused by the last line of thealgorithm, whih prunes the approximation set. Thus, owty's overhead is atmost linear relative to el, while, as we saw, el an have a quadrati overheadrelative to owty.To gain a better piture on the omparative performane of el, ty, andowty, the experimental analyses in Setion 3 gather data on the numbers ofexternal iterations aross several randomly generated and real examples; to om-plement the Ravi et al. study [16℄, we also inlude running time, memory usage,and BDD size statistis. Our analyses show that owty requires almost thesame number of external iterations as ty with far fewer image omputations;in pratie, owty almost always mathes or improves on el's performane.3 Comparative Analysis of the Algorithms3.1 Experiments on Random SystemsOur �rst set of experiments ompares the algorithms on random systems. Wegenerate random systems by generating random direted graphs. We would liketo obtain direted graphs with non-uniform out-degree and linear density (i.e.,a linear number of edges in the number of nodes); linear density prevents y-le detetion from beoming trivial due to an exess or pauity of edges. Thefollowing model of random graphs, due to Karp [13℄, satis�es these riteria:De�nition 1 For eah positive integer n and eah p with 0 < p < 1, the samplespae onsists of all labeled digraphs Dn;p with n verties and edge probability p.



Given a graph G with verties V and edges E, the order of G is jV j and thedensity of G is jEj=jV j. We will use n and d to represent a graph's order anddensity, respetively. We wish to generate graphs in the spaeDn;d=n. Generatingthe graphs diretly based on this model beomes time onsuming as n growslarger: the proedure must deide whether to inlude eah of the possible n(n�1)edges based on the probability d=n. Instead, we �x the number of edges to be theexpeted number dn, and hoose dn distint edges from the n(n�1) andidates.This approah provides a very good approximation to the given model [19℄.Our experiments ompare four algorithms: el, ty, ty+, and owty.ty+ is a variant of ty that restrits the reahability omputations to onsideronly paths through the approximation set, rather than through the entire statespae as in ty [19℄; in other words, ty+ replaes line 5 of ty with b :=E[b U Fi℄ ^ E[b S Fi℄, where S is the past-time operator sine. We presenttwo sets of results. The �rst measures the number of external iterations thateah algorithm performs, the next measures the number of image omputationsthat eah algorithm performs.5 The experiments use graphs with order 212 anddensities varying over 1.2, 1.6, 2.0, and 2.4. This order is large enough to explorethe behavior of the algorithms, yet small enough to analyze in a reasonableamount of time. We de�ne a single fair set for eah graph, with size varying over:01n, :1n, :3n, :5n, :7n, and :9n where n is the digraph order. Eah experiment�xes either the density or the size of the fair set and varies the other. The �guresreported in the rest of this setion are averaged over 100 individual experiments.jFj:01n :1n :5n :9nty 2.18 2.41 2.09 2.00ty+ 2.18 2.41 2.09 2.00owty 2.17 2.37 2.07 2.00el 2.66 5.36 13.20 20.89 d1:2 1:6 2:0 2:4ty 2.00 2.00 2.00 2.00ty+ 2.00 2.00 2.00 2.00owty 2.00 2.00 2.00 2.00el 20.89 10.37 7.02 5.09Table 1. Average number of external iterations on digraphs with order 212. The lefttable �xes the density at 1.2 and varies the fair set size. The right table �xes the fairset size at :9� 212 and varies the density.Table 1 shows the number of external iterations on digraphs with ordern = 212. One set of experiments �xes the density at 1.2 and varies the fairset size; the other �xes the fair set size at :9�212 and varies the density. The ta-bles indiate that ty, ty+ and owty perform far fewer external iterationsthan el. Furthermore, owty performs essentially the same number of externaliterations as ty; thus pruning based on predeessors as well as suessors, asty does, does not signi�antly redue the number of external iterations over apruning strategy based only on suessors. We therefore expet owty to on-sume onsiderably fewer resoures than ty in pratie. el requires signi�antly5 We refer to post- and pre-image omputations olletively as image omputations.



more external iterations as the fair set grows larger, and signi�antly fewer ex-ternal iterations as the density inreases. In ontrast, ty, ty+, and owtyperform fairly onsistent numbers of external iterations in both ases.The data in Table 1 do not indiate that ty and owty are more eÆ-ient than el beause the former algorithms may do more work in the internaliterations. The number of image omputations o�ers a more preise eÆienyomparison. Image omputations are the most omputationally expensive op-erations in eah of the yle-detetion algorithms. The ost of these operationsdepends on the density and order of the underlying graphs [19℄. Sine we analyzethe four algorithms over the same randomly generated graphs, the ost of indi-vidual image omputations is omparable aross the algorithms. The number ofimage omputations is therefore a fair parameter for omparing the algorithms.

0 10 20 30 40 50 60 70 80 90
20

40

60

80

100

120

140

160

180

200

size of fair set (percentage of digraph order)

nu
m

be
r o

f i
m

ag
e 

co
m

pu
ta

tio
ns

EL
CTY
CTY+
OWCTY

Fig. 3. Number of image omputations for el, ty, ty+ and owty.Figure 3 shows the number of image omputations performed over graphswith order n = 212, density d = 1:2, and fair set size ranging over :01n, :1n, :3n,:5n, :7n, and :9n. For ty, ty+ and owty the number of image omputa-tions dereases as the fair set gets larger. ty performs more image omputationsthan ty+ beause ty+ restrits reahability omputations to the approxi-mation set, whih allows the omputation to onverge faster. owty performsfewer image omputations than either ty or ty+ beause it does not per-form forwards reahability. Separate data (not shown) show that the bakwardsreahability omputations in owty and ty perform almost the same num-bers of image omputations; furthermore, the pruning step in owty performsroughly half as many image omputations as that in ty+[19℄. Thus, eliminating



the forward image omputations makes owty less omputationally expensivewithout adversely a�eting the number of external iterations required.Separate experiments (not shown) show that the number of image ompu-tations dereases sharply as the density inreases [19℄. In the ase of el, thenumber of image omputations drops beause the algorithm performs fewer ex-ternal iterations as density inreases, as disussed previously. For the remainingthree algorithms, our experimental data shows that the size of the approximationset after eah iteration beomes larger as the density inreases. The approxima-tion set determines the base set for subsequent reahability omputations. Thelarger the base set, the faster reahability omputations onverge [19℄. There-fore, fewer image omputations are needed when the digraph density inreases.Although eah pruning step removes fewer verties, the �nal approximation setis also larger, so the algorithms perform fewer image omputations as densityinreases. Plots for running time statistis are similar to those for image ompu-tations. In partiular, both owty and ty onsistently outperform el. Thisontradits the mixed results in other ty versus el experiments [8, 16℄.3.2 Experiments on Real SystemsOur real design examples ome from the VIS distribution and from Fabio Somenzi.They inlude an ethernet protool with varying numbers of ollisions beforefailure, a tree-strutured arbiter with 8 nodes, a gd iruit, a oating pointmultiplier, and two mutual exlusion protools (bakery and eisenberg). Theseexamples are written in Verilog and evaluated using the VIS model heker [17℄.We implemented owty within the VIS framework by replaing the original(el) algorithm for evaluating EG formulas with owty in a opy of VIS. Weran the experiments using VIS version 1.3 (with version 1.2 of the vl2mv om-piler), on an Intel 686 mahine with 1GB of memory running RedHat Linuxversion 2.2.12-20; our VIS installation uses the CUDD BDD pakage.Table 2 summarizes experiments with LTL model heking of terminal andweak systems. For eah LTL experiment, we evaluated EGfairtrue on the produtof the original design and a manually-onstruted automaton for the negation ofthe property. Table 3 overs examples with multiple fair sets in the ontext ofCTL model heking. Table 4 overs LTL model heking under multiple fairnessonstraints. In eah table, stars on experiment names denote that the modelsontained yles or that the property failed. The EX/EY and EU/ES �gures ountthe number of image and reahability omputations performed, respetively.6The tables show that owty generally mathes or outperforms el, whilety and ty+ are learly not ompetitive. In many ases, owty outperformsel dramatially; in ontrast, we have not yet found an example on whih el sig-ni�antly outperforms owty. The bene�ts of owty are partiularly evidenton the ethernet and gd examples in Table 2. As expeted, owty uses fewerexternal iterations than el; however, owty sometimes performs more imageomputations than el.6 The EU/ES ounts do not inlude trivial omputations of the form [' U '℄.



Experiment Proedure Ext. EX or Time Mem peak liveIter. EX/EY (se) (MB) BDD nodesethernet 1 el 51 2179 356.6 13.6 339932ty 2 42/43 187.9 14.6 398280ty+ 2 41/42 184.8 14.6 398280G(p! Fq) owty 3 57 5.5 11.7 175118ethernet 2 el 107 6506 10656.1 14.4 367135ty 2 67/68 1893.6 33.6 1365367ty+ 2 66/67 1887.6 33.6 1365755G(p! Fq) owty 3 113 59.6 14.1 404723ethernet 3 el 171 11914 4371.3 13.7 279823ty 2 95/96 1962.2 35 1456597ty+ 2 94/95 1938.0 35 1456597G(p! Fq) owty 3 177 24.6 13.8 290593ethernet 4 el - - (30H) - -ty 2 130/131 5859.7 53.6 2320201ty+ 2 130/2 5895 53.6 2320201G(p! Fq) owty 3 245 491.4 14.1 368225treearb 8* el 8 75 6.2 13.6 234021ty - - (20M) (23) -ty+ - - (20M) (23) -G(p! Fq) owty 2 24 4.2 12.7 206640gd el - - (37H) - -ty 2 15/3 1384.2 59.3 2298351ty+ 2 14/2 1383.0 59.3 2298351G(p! XFq) owty 2 24 2497.5 130.9 6285856fpmult el 2 18 18345.8 363 17667058ty 2 26/3 33089.7 369 17619441ty+ 2 18/2 21994.7 368 17619441G(p! XXXq) owty 2 17 22457.2 369 17422253Table 2. LTL model heking on weak and terminal systems. Parenthesized timesindiate terminated omputations; M indiates minutes instead of seonds.



Experiment Proedure Num Ext. EX / EU or Time Mem peak liveFair Iter. EX/EY/EU/ES (se) (MB) BDD nodesbakery1* el 6 18 554 / 91 1.3 6.2 34447ty 6 11 1371/650/67/66 10 13.3 176492ty+ 6 12 344/299/51/50 7.0 13 182755AG(p! AFq) owty 6 18 516 / 75 1.6 6.1 36962bakery2 el 6 18 490 / 92 1.3 6.0 29524ty 6 11 1239/614/67/66 9.4 13.3 176492ty+ 6 11 282/246/47/46 6.0 12.7 180657AG(p! AFq) owty 6 18 444 / 72 1.4 5.8 28849treearb8* el 8 15 382 / 106 14.8 13.6 328115ty 8 - - (194M) (112) -ty+ 8 - - (170M) (123) -AG(p! AFq) owty 8 13 416 / 104 13.1 13.4 309449eisenberg2 el 6 27 669 / 124 1.6 5.5 17352ty 6 23 2159/2031/139/138 7.8 11.2 180311ty+ 6 16 252/506/56/55 3.8 8.6 148353AG(p! AFq) owty 6 27 631 / 102 1.4 5.4 18504elevator* el 8 12 849/97 498.2 13.8 275914ty 8 - - (104M) (38) -ty+ 8 - - (104M) (43) -AG(p! AFq) owty 8 12 861/79 536.8 13.6 275914Table 3. CTL model heking on systems with multiple fairness onstraints.Experiment Proedure Num Ext. EX / EU or Time Mem peak liveFair Iter. EX/EY/EU/ES (se) (MB) BDD nodestreearb8* el 9 15 1021 / 135 1397.8 13.8 239731ty 9 - - (186M) (44) -ty+ 9 - - (207M) (157) -G(p! Fq) owty 9 14 1000 / 126 911.6 13.9 369062eisenberg2 el 7 24 1332 / 161 5.7 7.2 47704ty 7 24 5114/5486/169/168 60.3 13.7 240028ty+ 7 15 229/399/53/52 4.7 8.8 147763G(p! Fq) owty 7 24 1197 / 109 5.3 7.1 59802elevator3* el 3 2 7 / 1 1164.7 87.5 4062730ty - - - (60M) (270) -ty+ - - - (60M) (270) -Gp owty 3 2 13 / 1 1167.3 87.5 4062730elevator4* el 1 2 3 / 1 16192.4 282 13308496ty 1 - - (365M) (278) -ty+ 1 - - (367M) (278) -Gp owty 1 2 5 / 1 16388.0 282 13308496Table 4. LTL model heking on systems with multiple fairness onstraints.



Exp. Pro. Num Ext. EX TimeFair Iter. (se)A* el 2 6 203 65.49owty 2 2 77 32.58D* el 6 2 147 16.26owty 6 2 149 16.33E* el 4 3 125 6.89owty 4 2 87 6.39F* el 2 10 50 870.0owty 2 2 27 897.7H1* el 2 8 40 633.8owty 2 2 23 495.7H3* el 2 8 40 550.5owty 2 2 23 592.7
Exp. Pro. Num Ext. EX TimeFair Iter. (se)I* el 2 2 40 1004.5owty 2 2 23 692.9J1* el 2 8 40 521.9owty 2 2 23 426.6J2* el 2 8 40 447.9owty 2 2 23 347.7K* el 2 7 25 220.3owty 2 2 20 165.3L* el 2 6 24 129.4owty 2 2 19 129.4M1* el 2 7 35 81.5owty 2 2 21 53.9Table 5. Results from Intel on heking EGfairtrue on systems that have (and require)multiple fairness onstraints.Finally, we ompared owty and el on Intel designs using internal Intel tools(Table 5). All the table entries reet the omposition of atual designs withlinear-time properties, using multiple fairness onstraints. owty performedsigni�antly better than el in all examples exept F and H3, where el slightlyoutperformed owty.4 OWCTY Versus Speialized AlgorithmsOur experimental results show that owty generally outperforms el on terminaland weak systems. Bloem, Ravi, and Somenzi have presented an algorithm thatis speialized to verify terminal and weak systems eÆiently [2℄. Linear-timemodel hekers detet bad yles by using the el algorithm to hek EG trueover the produt of the design and the negation of the desired property. Bloemet al. observed that for terminal and weak systems, CTL formulas apture thesearh for bad yles. Spei�ally, the formulas EF fair and EF EG fair are true ofterminal and weak systems, respetively, when they ontain in�nite fair yles.Aordingly, their algorithm (heneforth brs) heks one of the formulas EFfair, EF EG fair, or EGfairtrue based on the struture of the input system. Thisstruture follows from the struture of the property being tested: if a propertyorresponds to a weak (resp. terminal) system, the produt of that property anda design model is also a weak (resp. terminal) system. Bloem et al. showed thatbrs signi�antly outperforms el in pratie on terminal and weak systems.Table 6 ompares owty to brs.7 For the examples from Table 2, we hekedboth EGfairtrue and the appropriate formula from brs using owty. The statis-7 The gd and fpmult examples are the same as Bloem et al. used in their paper [2℄. Ourresoure usage on these examples di�ers widely from theirs due to di�erenes betweenour two versions of the ompiler from Verilog to BLIF, the VIS input language.



Experiment Proedure EX Time Mem peak(se) (MB) BDD nodesethernet 1 :EF EG fair 53 4.2 11.2 151306G(p! Fq) EGfairtrue(owty) 57 5.5 11.7 175118ethernet 2 :EF EG fair 109 24.4 13.7 381839G(p! Fq) EGfairtrue(owty) 113 59.6 14.1 404723ethernet 3 :EF EG fair 173 13.3 13.6 287787G(p! Fq) EGfairtrue(owty) 177 24.6 13.8 290593ethernet 4 :EF EG fair 241 145.6 14.0 373531G(p! Fq) EGfairtrue(owty) 245 491.4 14.1 368225treearb 8* :EF EG fair 22 4.1 12.6 200529G(p! Fq) EGfairtrue(owty) 24 4.2 12.7 206640gd :EF EG fair 20 3351.6 193 8204281G(p! XFq) EGfairtrue(owty) 24 2497.5 130.9 6285856fpmult :EF fair 8 5565.5 329 16109729G(p! XXXq) EGfairtrue(owty) 17 22457.2 369 17422253Table 6. Comparison between the owty and brs algorithms.tis on EGfairtrue are reprodued from Table 2. The speialized approah outper-forms owty on most of these examples (exept the gd example). This is dueto the di�erene between heking EGtruefair (brs) and EGfairtrue (owty).The former restrits the searh for a bad yle to the fair states; the latter looksfor a yle that intersets the fair states. As a result, both el and owty anhave non-fair states in their approximation sets, while brs' approximation setontains only fair states. This restrition usually allows brs to onverge faster.This omparison demonstrates how exploiting strutural information aboutsystems an lead to more eÆient veri�ation algorithms. Note, however, thatbrs is not a generi yle-detetion algorithm. Furthermore, we must also on-sider the ost of determining whether a system is weak or terminal, whih isnot inluded in our paper or in Bloem et al.'s. In theory, this operation an bedone symbolially in O(n logn) time [1℄, but experimental results are not yetavailable. For the simple properties onsidered by Bloem et al. and here, thisoverhead is insigni�ant; for more ompliated properties (suh as those inlud-ing omplex environmental assumptions) it ould be rather substantial. owty,whih is a generi algorithm, performs well in pratie without the overhead ofspeialized analyses as required in brs.5 ConlusionsSymboli model heking remains a heuristi proess, as metris do not yet existto predit BDD behavior under di�ering algorithms. As a result, omparativeanalyses of algorithms are extremely useful in helping tool developers hoosewhih algorithms to implement. In the name of good siene, these analyses need



to be reproduible and portable to the greatest extent possible. Suh analysesprovide not only �rm data, but a foundation for future algorithm development.This paper ompares three symboli yle-detetion algorithms (and a varianton one of them) based on the number of iterations they take through theiroutermost �xpoint operator, as well as the number of image operations theyperform. Eah algorithm employs a slightly di�erent strategy for pruning theset of states potentially lying on yles. Our analysis shows that the originalEmerson-Lei (el) algorithm [5℄ performs too little work outside of its internaliterations, while Hardin et al.'s Cath-Them-Young (ty) algorithm [8℄ performstoo muh. In ontrast, Hojati's el2 algorithm [10℄, whih we view as a one-wayversion of ty (owty) does seem to balane the work inside and outside theinternal iterations. On random examples and on terminal and weak systems,owty dominates el, while on general systems, owty is ompetitive withel, dominating it signi�antly in many ases. We have also shown that the twoalgorithms are inomparable with respet to the number of image omputationsthey perform: el an have a quadrati overhead over owty, while owty anhave a linear overhead over el. These results support our onlusion that modelhekers need to ontain both el and owty.In the ourse of this projet, we have identi�ed two desired features for veri�-ation tools. First, we want tools to implement multiple algorithms for ommonproblems suh as yle-detetion. Both our analysis and the reent one by Raviet al. [16℄ indiate that no algorithm onsistently outperforms the others; indeed,veri�ation tasks may be tratable with one algorithm and intratable with an-other. Tools providing multiple algorithms a�ord human veri�ers opportunitiesto experiment and �nd algorithms that work on their appliations. A similaronlusion in the ontext of semi-exhaustive reahability analysis was reahedin [6℄. Seond, we want tools to provide visualizations of omputational patternsduring model heking. Intel's Palette [12℄ does some of this; we wish we hadsuh a tool to augment VIS and other publily-available tools. Testbeds support-ing multiple algorithms and better data olletion would provide strong supportfor more disiplined approahes to algorithm omparisons in veri�ation.AknowledgementsWe thank Kavita Ravi, Fabio Somenzi, and Roderik Bloem for their very helpfulomments on this paper, and the Rie PLT group for aess to their large-memory server.Referenes1. Bloem, R., H. N. Gabow and F. Somenzi. An algorithm for strongly onnetedomponent analysis in n log n symboli steps. In Intl. Conf. on Formal Methods inComputer-Aided Veri�ation, Leture Notes in Computer Siene. Springer-Verlag,2000.



2. Bloem, R., K. Ravi and F. Somenzi. EÆient deision proedures for model hek-ing of linear time logi properties. In Intl. Conf. on Computer-Aided Veri�ation,Leture Notes in Computer Siene, pages 222{235. Springer-Verlag, 1999.3. Clarke, E. M., E. A. Emerson and A. P. Sistla. Automati veri�ation of �nite-state onurrent systems using temporal logi spei�ations. ACM Transationson Programming Languages and Systems, 8(2):244{263, January 1986.4. Couroubetis, C., M. Y. Vardi, P. Wolper and M. Yannakakis. Memory eÆientalgorithms for the veri�ation of temporal properties. Formal Methods in SystemDesign, 1:275{288, 1992.5. Emerson, E. A. and C. L. Lei. EÆient model heking in fragments of the propo-sitional model mu-alulus. Proeedings of LICS 1986, pages 267{278, 1986.6. Fraer, R., G. Kamhi, L. Fix and M. Y. Vardi. Evaluating semi-exhausting veri-�ation tehniques for bug hunting. In Proeedings of the 1st Intl. Workshop onSymboli Model Cheking. Eletroni Notes in Theoretial Computer Siene, 1999.7. Hardin, R. H., Z. Har'El and R. P. Kurshan. COSPAN. In Intl. Conf. on Computer-Aided Veri�ation, number 1102 in Leture Notes in Computer Siene, pages 423{427. Springer-Verlag, 1996.8. Hardin, R. H., R. P. Kurshan, S. K. Shukla and M. Y. Vardi. A new heuristi forbad yle detetion using BDDs. In Pro. Conf. on Computer-Aided veri�ation(CAV'97), pages 268{278. Springer-Verlag. LNCS 1254, 1997.9. Henzinger, T., O. Kupferman and S. Qadeer. From prehistori to postmodernsymboli model heking. In Hu, A. and M. Vardi, editors, Intl. Conf. on Computer-Aided Veri�ation, volume 1427 of Leture Notes in Computer Siene, pages 195{206. Springer-Verlag, 1998.10. Hojati, R., H. Touati, R. Kurshan and R. Brayton. EÆient !-regular languageontainment. In Intl. Conf. on Computer-Aided Veri�ation, number 663 in LetureNotes in Computer Siene. Springer-Verlag, 1992.11. Holzmann, G. and D. Peled. The state of SPIN. In Intl. Conf. on Computer-AidedVeri�ation, number 1102 in Leture Notes in Computer Siene, pages 385{389.Springer-Verlag, 1996.12. Kamhi, G., L. Fix and Z. Binyamini. Symboli model heking visualization. InIntl. Conf. on Formal Methods in Computer-Aided Veri�ation, number 1522 inLeture Notes in Computer Siene, pages 290{303. Springer-Verlag, 1998.13. Karp, R. M. The transitive losure of a random digraph. Random Strutures andAlgorithms, 1(1), 1990.14. Kesten, Y., A. Pnueli and L. on Raviv. Algorithmi veri�ation of linear temporallogi spei�ations. In Intl. Colloquium on Automata, Languages, and Program-ming, number 1443 in Leture Notes in Computer Siene. Springer-Verlag, 1998.15. Kupferman, O. and M. Y. Vardi. Freedom, weakness, and determinism: Fromlinear-time to branhing-time. In IEEE Symp on Logi in Computer Siene, 1998.16. Ravi, K., R. Bloem and F. Somenzi. A omparative study of symboli algorithmsfor the omputation of fair yles. In Intl. Conf. on Formal Methods in Computer-Aided Veri�ation, Leture Notes in Computer Siene. Springer-Verlag, 2000.17. The VIS Group. VIS: A system for veri�ation and synthesis. In Alur, R. andT. Henzinger, editors, Intl. Conf. on Computer-Aided Veri�ation, volume 1102 ofLeture Notes in Computer Siene. Springer-Verlag, July 1996.18. Vardi, M. Y. and P. Wolper. An automata-theoreti approah to automati pro-gram veri�ation. In IEEE Symposium on Logi in Computer Siene, 1986.19. Yang, Z. Performane analysis of symboli reahability algorithms in model hek-ing. Master's thesis, Rie University, Department of Computer Siene, 1999.Available at http://www.s.rie.edu/CS/Verifiation/.


