
Reducing Test Cases with Causality Partitions
Haijun Wang1, Xiaohong Guan1, Qinghua Zheng1, Ting Liu1,*, Xiangyang Li1, Lechen Yu1, Zijiang Yang2

1. MOE Key Lab. for Intelligent Networks and Network Security, Xi’an Jiaotong University, Xi’an, China
2. Western Michigan University, Kalamazoo MI, U.S.A.

{hjwang, xhguan, tliu, xyli, lcyu}@sei.xjtu.edu.cn; qhzheng@mail.xjtu.edu.cn; zijiang.yang@wmich.edu

Abstract—Automatic test case generation using symbolic
execution suffers from the problem of path explosion: the number
of paths to be explored may grow exponentially with the scale of
a program. We believe that different paths may exhibit some
similar program behaviors, thus it is unnecessary to explore all of
the paths to generate test cases. In this paper, a novel model of
program causality is proposed to extract all kinds of influences
among statements of a program, which consists of four types of
program dependencies. Then, a heuristic approach based on
program causality is developed to selectively explore program
paths in symbolic execution. We have implemented a prototype of
our approach within the symbolic execution engine of Java
Pathfinder. Experiments on six public benchmarks show that our
approach can significantly reduce the number of explored paths
and the symbolic execution time so that to improve the
performance of test case generation.

Keywords-Symbolic Execution; Causality Partition; Test Case
Generation;

I. INTRODUCTION

Automatic test case generation using symbolic execution
[1-3] has recently regained prominence as a technique for
systematically exploring the paths of a program. In practice
though, symbolic execution suffers from the inherent problem
of path explosion where the number of paths to be explored
can increase exponentially with the scale of a program. While
there are techniques for mitigating path explosion, e.g. by
using compositionality [4], abstraction refinement [5], and
parallelization [6], systematically exploring program paths
remains a daunting task even for medium-sized programs.

In this paper, we propose a novel test case generation
technique that selectively explores program paths based on
program causality. The intuition is that the path with the same
causal relationship with already explored paths does not reveal
additional program behavior. Figure 1 shows a program that
may raise division-by-zero exceptions at Lines 11 and 13.
Table I gives all eight possible paths of the program. For
brevity we only list branch statements of a path. As indicated
by Column 3, paths π5 and π7 can raise the exception at Line

 * The corresponding author is Ting Liu (tliu@sei.xjtu.edu.cn)

The work was supported in part by National Science Foundation of China
under Grant (91118005, 91218301, 61221063, 61203174, U1301254),
National High Technology Research and Development Program 863 of China
under Grant (2012AA011003), Key Projects in the National Science and
Technology Pillar Program of China (2012BAH16F02) and the Fundamental
Research Funds for the Central Universities.

void Test(int x, int y, int m) {
1: int a=1;
2: int b=1;
3: int c=2;
4: int d=3;
5: int first_out, second_out;
6: if(x+y < 0)
7: a=3;
8: if(m > 2)
9: d=4;
10: if(x-y > 1)
11: c=1/(a-b);
12: first_out=c;
13: second_out=1/(a-d);
 }
Figure 1. A Running Program.

11, and paths π3 and π4 can raise the exception at Line 13.
Columns 4-8 mark the necessary paths for kinds of coverage
criteria, respectively. For statement coverage TStatement, path π1 is
sufficient. For branch coverage TBranch, two paths π1 and π8 are
satisfiable. In order to achieve the path coverage TPath, all eight
paths have to be executed. As expected, statement and branch
coverage require much fewer test cases than path coverage, at
the cost of missing both exceptions at Lines 11 and 13. Column
7 lists the paths that are covered by our approach. Note that
with half of the paths to be explored, our approach can still
catch both exceptions. Comparing π5 and π7, we can observe
that the decision at Line 8 makes no difference on the potential
exception at Line 11. Therefore a testing that covers either π5 or
π7 can report the exception at Line 11. Similarly, it is not
necessary to explore both π3 and π4 for detecting the exception
at Line 13. This paper addresses a more general question:
without considering any particular type of fault, is it possible to
achieve the same testing effect as path coverage without
exploring all paths? By exploring four instead of eight paths,
Table I shows the answer is positive. In our approach we
exploit causal relationship to achieve the path reduction.
However, the existing program dependence definitions are not
sufficient for causal relationship. Therefore in this paper we
introduce a new type of program dependence called
Correlation Dependence. The last column in Table I shows
why correlation dependence is indispensable, as without it the
exception at Line 13 cannot be detected.

As illustrated by the example, the key insight of our
approach is to prevent some irrelevant statements combination
from generating redundant paths. We first extract causal
dependencies of a program, which consist of control, data,
potential dependence and newly proposed correlation
dependence. Then, we conduct symbolic execution to
selectively explore program paths through exploiting the

TABLE I. TEST CASES FOR KINDS OF COVERAGE CRITERIA

No Execution Error TStatement TBranch TPath TCausal Tw/o
π1 <6T,8T,10T> √ √ √ √ √
π2 <6T,8T,10F> √
π3 <6T,8F,10T> 13 √ √
π4 <6T,8F,10F> 13 √
π5 <6F,8T,10T> 11 √ √ √
π6 <6F,8T,10F> √
π7 <6F,8F,10T> 11 √
π8 <6F,8F,10F> √ √ √ √

causal dependencies. We have implemented a prototype of our
approach within the framework of JPF-SE [1] and conducted
experiments on six public benchmarks. The results validate the
effectiveness of our approach. Compared with the original
JPF-SE, our approach can reduce the number of explored
paths by 46.28% to 98.84%, and achieve a speedup of 2.47X
to 49.12X. We also compare our approach with FlowTest [8],
where our approach can reduce the number of explored paths
by 49.37% to 98.86%, and achieve a speedup of 1.05X to
61.40X. Additional experiments on the growth rates of the
number of explored paths and usage time indicate that our
approach can achieve orders of magnitude improvement.

Our main contributions are summarized as follows.

• We propose a novel approach to reduce test cases through
exploiting the causality exhibited in program paths. Such
reduction is sound.

• We extract causality in terms of control dependence, data
dependence, potential dependence and newly proposed
correlation dependence. This can help to comprehensively
and systematically understand the causal dependencies
among program statements.

• We have implemented a prototype of our approach within
the framework of JPF-SE and conducted experiments on six
public benchmarks. The results show that our approach can
dramatically reduce the number of explored paths and the
symbolic execution time. Additional experiments on growth
rates of the explored path size and usage time indicate that
our approach can offer orders of magnitude improvement.

II. REDUCING TEST CASES WITH CAUSALITY PARTITIONS

A. Relevant Definitions
Control flow graph (CFG) of a procedure is a directed

graph that can be represented by CFG=<N, E>, where N is the
set of nodes and E⊆ N×N represents possible execution flow
between the nodes. Br⊆ N is the set of branches. Also, we use
n Br∈ to represent the opposite branch of n Br∈ .

Definition 1 Control Dependence is a map controlD: Br×N
→{T, F} that returns true for a pair of nodes (ni, nj) if node ni
has more than one exit paths, and one of the exit paths must
result in nj being executed but the other exit path may result in
nj not being executed; Otherwise it returns false.

Definition 2 Data Dependence is a map dataD: N×N→{T, F}
that returns true for a pair of nodes (ni, nj) if there exists a
path π from ni to nj where ni defines a variable v, nj uses the

variable v and any nk (i<k<j) on π does not redefine the
variable v; Otherwise it returns false.

Definition 3 Potential Dependence [9] is a map potentialD:
Br×N→{T, F} that returns true for a pair of nodes (ni, nj), if (1)
there exists a path π from ni to nj where nj uses a variable v
and the definition of v occurs before ni; (2) nj is not control
dependent on ni; (3) a different definition of v could potentially
reach nj if ni is evaluated differently; Otherwise it returns false.

We define Traditional Dependence as a map traditionalD:
N×N→{T, F} that returns true for a pair of nodes (ni, nj) if
controlD(ni, nj)∨dataD(ni, nj)∨potentialD(ni, nj); Otherwise it
returns false.

Definition 4 Correlation Dependence is a map correlationD:
N×N→{T, F} that returns true for a pair of nodes (ni, nj) if
there exists a path π=<…ni…nj…nk…>, and ni, nj, nk satisfy (1)
traditionalD(ni, nk)∧ (traditionalD(nj, nk) ∨ correlationD(nj,
nk)); or (2) (traditionalD(ni, nk) ∨ correlationD(ni, nk)) ∧

traditionalD(nj, nk); Otherwise it returns false.

We define Causal Dependence as a map causalD: N×N→
{T, F} that returns true for a pair of nodes (ni, nj) if
traditionalD(ni, nj)∨correlationD(ni, nj); Otherwise it returns
false. Table II lists all causal dependencies of the example.

TABLE II. DEPENDENCIES OF THE PROGRAM IN FIGURE 1

Type Dependent Pairs
ControlD (6T,7) (8T,9) (10T,11)

DataD (1,11) (1,13) (2,11) (3,12) (4,13)
(7,11) (7,13) (9,13) (11,12)

PotentialD (6F,11) (6F,13) (8F,13) (10F,12)

CorrelationD

(1,2) (1,4) (1,6F) (1,8T) (1,8F)
(1,9) (1,10T) (2,6T) (2,6F) (2,7)
(2,10T) (3,10F) (4,6T) (4,6F) (4,7)
(4,8F) (6F,8T) (6F,8F) (6F,9) (6F,10T)
(7,8T) (7,8F) (7,9) (7,10T)

Definition 5 A covered causal chain cπ of path π is a sequence
V=[n1,…,nm] such that

� ∃/ ni∈π, causalD(ni, n1), and

� ∀ nj∈V, traditionalD(ni, nj)→ni∈V, and

� ∀ nj, nj+1∈V, causalD(nj, nj+1).

Definition 6 A discovered causal chain dπ of path π is a
sequence V=[n1 ,…, mn] that is a covered causal chain of path
π' generated by flipping the branch nm to mn in path π.

B. Computation of Causal Dependence
Since control, data and potential dependence are widely

applied in the software engineering and can be obtained by the
existing tools [8, 9], in this paper we focus on the computation
of newly proposed correlation dependence.

We first compute the reachability of node pair (ni, nj) using
Equations (1), (2) and (3). Similar to the data flow analysis via
graph reachability [11], we use the node pair in the
computation. Note that n0 represents start node of CFG, which
has no incoming node pair. The outgoing node pairs of nj

consist of two parts: the node pairs generated at nj, and the
subtraction of the incoming node pairs by the node pairs killed
at nj. Given the incoming nodes Nj at nj, obtained through data
flow analysis [11], the node pair (n'j, nj) is generated at nj
through pairing every n'j∈Nj with nj. A node pair (np, nq) is
killed at nj if either np or nq is redefined by nj. We consider np
or nq is redefined by nj, if np or nq is the definition statement
and the variable they define is the same with the variable
defined at nj, or np or nq is the conditional statement and they
no longer directly or indirectly control nj. Assuming Npre is the
set of nodes that are immediate predecessors of nj in CFG, the
incoming node pairs of nj are the union of the outgoing node
pairs of the nodes in Npre.

We then compute the correlation dependence. For each

node nj with an incoming node pair (np, nq), if either
traditionalD(np, nj)∧causalD(nq, nj) or causalD(np, nj) ∧
traditionalD(nq, nj), it is considered that nq is correlation
dependent on np.

C. Reducing Test Cases with Causality Partitions
Overview. Algorithm 1 gives a high level overview of our
approach. It maintains two global data structures C and D. C is
the set of covered causal chains and D is the set of discovered
causal chains that are yet to be covered. The algorithm first
starts symbolic execution with a random input (Line 2). Each
subsequent path exploration is directed by a discovered causal
chain d removed from D (Line 5). At Line 6, if d is satisfiable,
we will obtain a new input such that d can be covered by the
execution under the newly acquired input. When we obtain an
input, we use the procedure reducedPathExploration to handle
the sets C and D (Line 8), which are used to drive the future
path explorations. The algorithm terminates when D becomes
empty. The computation of the input based on a discovered
causal chain d (Line 6) and the algorithm for procedure
reducedPathExploration (Line 8) will be discussed later.

Table III gives a complete procedure of our approach in
the example program. Column 1 shows the discovered causal
chains that are yet not covered and then used to guide further
path explorations. The generated inputs and corresponding
paths are given in Columns 2 and 3, respectively. Columns 4
and 5 list the set of covered causal chains and discovered
causal chains. Note that although we pick only one discovered
causal chain in each iteration, the newly explored path may
cover many previously discovered causal chains that are still
not covered. Therefore it may reduce the size of D
significantly. As illustrated in Table III, four paths can cover
all possible causal chains instead of eight paths in standard
symbolic execution.

Table IV explains why neither π3 nor π4 is explored without
considering correlation dependence and hence the exception at
Line 13 is missed. The exception at Line 13 can only be raised
by the path that executes both 6T and 8F. Since there does not

exist any control, data or potential dependence between 6T
and 8F, symbolic execution without correlation dependence
will not combine 6T and 8F to generate a new path after
exploring π=<6T,8T,10T>, which leads to incompleteness.

Causal Chain Computation during Path Exploration.
Algorithm 2 focuses on computing the covered and discovered
causal chains once a path π is obtained. We will explain the
algorithm through Table V, which illustrates the procedures
under the path π=<1,2,3,4,6T,7,8T,9,10T,11,12,13>. Let Cπ
and Dπ be the set of covered and discovered causal chains of π,
respectively. Initially, as shown in row 1, Cπ={[1], [3]} and
Dπ={}. Both nodes 1 and 3 appear in π and they are not causal
dependent on any other nodes in π (Line 2). Dπ is empty as
there is no node in π whose negated node is not causal
dependent on any other nodes in π (Line 3). We illustrate
Lines 5-15 in Algorithm 2 using rows 6 and 13 in Table V.
cπ.branch at Line 6 represents the sub sequence of cπ that
consists of all its branches. In fact, the longer causal chain is
generated by extending a node into the previous shorter causal
chain. In row 6, the previous shorter covered causal chain cπ is
[1,2,6T,7,10T] that is generated at row 5 and EXT is {11}.
EXT represents the set of extensible nodes. If a node nj is
causal dependent on the last node of previous shorter covered
causal chain cπ and the set of nodes that are traditional
dependent by nj are all included in cπ, nj can be an extensible

TABLE III. SYMBOLIC EXECUTION WITH CAUSALITY

Causal Chain Input Path C D

None (0,-2,3) <6T,8T,10T>

[6T]
[6T,8T]
[6T,10T]
[8T]
[10T]

[6F]
[6T,8F]

[8F]
[10F]

[6F] (2,0,3) <6F,8T,10T>
[6F]
[6F,8T]
[6F,10T]

[6F,8F]

[6T, 8F] (0,-2,0) <6T,8F,10T> [6T,8F]
[8F]

[10F] (1,0,0) <6F,8F,10F> [6F,8F]
[10F]

TABLE IV. SYMBOLIC EXECUTION WITHOUT CORRELATION DEPENDENCE

Causal Chain Input Path C D

None (0,-2,3) <6T,8T,10T>

[6T]
[6T,10T]
[8T]
[10T]

[6F]

[8F]
[10F]

[6F] (2,0,3) <6F,8T,10T> [6F]
[6F,10T]

[10F] (1,0,0) <6F,8F,10F> [8F]
[10F]

node of cπ (Line 7). Note that cπ.lastNode at Line 7 refers to
the last node of cπ. Since node 11 is causal dependent on
branch 10T and the set of nodes {2,7,10T} that are traditional
dependent by node 11 are all included in cπ, node 11 is an
extensible node. Obviously, ext π∈ and finally cπ' is added
into Cπ. In row 13, the previous shorter covered causal chain cπ
is [3] and EXT is {10F}. cπ is appended as cπ'=[3,10F] and cπ'
is added into Dπ because ext π∈/ .

From Discovered Causal Chain to Input. Given a
discovered causal chain d, we will compute an input so that the
execution under the newly acquired input can cover d. In this
section we use an example to illustrate the computation.

Assume d = [10F] and we would like to obtain a path π of
the program in Figure 1 such that π can cover d. Treating
inputs as symbolic variables we start a symbolic execution. At
the first conditional statement (Line 6) we allow symbolic
execution to choose any branch because d does not specify a
particular branch at Line 6. The fact that d does not specify
Line 6 means that there is no statement in d that is causal
dependent on Line 6. Therefore symbolic execution can take
any branch at Line 6. Next symbolic execution encounters the
conditional statement Line 8. Since the branch at Line 8 is also
not specified by d, symbolic execution still executes randomly.
Finally symbolic execution reaches the conditional statement
Line 10. Since 10F is specified in d, symbolic execution takes
the false branch and adds term x–y≤1 into the path constraints
ξ to match the requirement of 10F in d. If ξ is unsatisfiable, the
procedure terminates and no input can be found to match d,
otherwise symbolic execution continues. As there is no more
conditional constraint in d, we pass ξ to SMT solver. If ξ is
satisfiable, the solution forms an input that can cover d;
otherwise there is no valid path to cover d.

Theorem 1. Given a program P, our approach can cover all
feasible causal chains of P.
Example. Assume a causal chain V=[1,4,6T,7,8F,13] of the
program in Figure 1 is required to be covered, which can
detect the exception at Line 13. As shown in rows 9 and 10 of
Table V, the initial path π=<1,2,3,4,6T,7,8T,9,10T,11,12,13>
is able to cover the causal chain V'=[1,4,6T,7] and discover the

TABLE V. CAUSAL CHAINS OF Π = <1,2,3,4,6T,7,8T,9,10T,11,12,13>

No. cπ ext Cπ Dπ

1 1 [1]
3 [3]

2 [1]

2 [1,2]
4 [1,4]
6F [1,6F]
8T [1,8T]
8F [1,8F]
10T [1,10T]

3 [1,2]
6T [1,2,6T]
6F [1,2,6F]
10T [1,2,10T]

4 [1,2,6T] 7 [1,2,6T,7]
5 [1,2,6T,7] 10T [1,2,6T,7,10T]
6 [1,2,6T,7,10T] 11 [1,2,6T,7,10T,11]
7 [1,2,6T,7,10T,11] 12 [1,2,6T,7,10T,11,12]

8 [1,4]
6T [1,4,6T]
6F [1,4,6F]
8F [1,4,8F]

9 [1,4,6T] 7 [1,4,6T,7]

10 [1,4,6T,7]
8T [1,4,6T,7,8T]
8F [1,4,6T,7,8F]
10T [1,4,6T,7,10T]

11 [1,4,6T,7,8T] 9 [1,4,6T,7,8T,9]
12 [1,4,6T,7,8T,9] 13 [1,4,6T,7,8T,9,13]
13 [3] 10F [3,10F]

causal chain V''=[1,4,6T,7,8F] through extending the node 8F
to V'. As stated in our algorithm, the discovered causal chain
V'' then is used to direct symbolic execution to generate an
input input=<x=0, y=-2, m=0> which can cover V'', as shown
in Table III. Simultaneously, input can cover the required
causal chain V.

III. RELATED WORK
Symbolic execution [1-3] has emerged as a popular

technique for testing real-world software applications.
However, symbolic execution suffers from the inherent path
explosion problem. Many techniques have been proposed to
alleviate this problem, and they can be roughly divided into
four categories. The first category addresses the path
explosion problem, e.g., [5], through integrating abstraction to
reduce the search space. In the second category (e.g. [4]),
researchers generate method summaries to enable more
efficient constraint solving. The approaches of the third
category, e.g., [8, 9, 12, 13], adopt the notion of the path
equivalence to avoid full path exploration. Finally the
techniques in the fourth category, e.g., [14, 15], limit the
analysis scope to avoid irrelevant path exploration.

Our approach shares similarities with the third category.
The technique in [9] partitions the paths based on the program
symbolic output. Two paths are placed in the same partition if
the symbolic expressions connecting the input of a program
with the output are the same. During symbolic execution only
one path from each partition is explored. The main difference
from our approach is that [9] ignores program crashes that do
not come from the unexpected outputs, while our approach can
avoid such situation. In work [13], a program is statically
decomposed into some path families, where each path family
contains several paths that share similar program behaviors.

TABLE VI. SYMBOLIC EXECUTION WITH AND WITHOUT CAUSALITY REDUCTION

Subject LoC
Time(s) #Explored Paths #Infeasible Paths #Avg. PC

Causal Flow JPF Causal Flow JPF Causal Flow JPF Causal Flow JPF
WBS 231 196 539 519 4123 13840 13824 0 0 0 28.8 56.0 56.1
Jtcas 236 734 1906 1813 101 216 188 214 1169 1138 20.2 23.9 24.4

Totinfo 375 7946 36224 34998 37 225 204 306 3536 3151 54.2 93.8 93.7
Siena 1529 39 41 596 40 79 1728 104 104 471 7.2 6.7 20.2
Wc 1557 25 1535 1228 163 2626 2596 130 2630 2590 4.3 23.2 23.5

Sum 1257 37 720 696 17 1490 1464 23 1460 1458 6.5 17.8 18.0

Authors argue that a program can be analyzed at the granularity
of path family instead of individual path. A significant
difference from our approach is that [13] does not consider the
interaction of statements that are correlation dependent. The
technique in [12] partitions paths based on program states. Two
program paths are equivalent if symbolic states of all live
variables are the same.

The work closest to our approach is FlowTest [8], where
the inputs of a program are partitioned into non-interfering
blocks such that symbolically solving an input block while
keeping other blocks assigned with concrete values can find the
same set of assertion violations as symbolically solving for the
entire inputs. Two inputs are considered of interfering, if they
are jointly relevant to the same statement or they are relevant to
the statements that have dependent relationship in some
program path. By partitioning the program inputs, FlowTest
can avoid full path exploration as our approach. In this paper,
we have re-implemented FlowTest within the framework of
JPF-SE and empirically compared it with our approach in
Section IV. The main difference between two techniques is the
different partition criteria. The technique FlowTest partitions
the paths based on the dependencies of the program inputs,
while our approach partitions the paths based on the
dependencies of the program statements. Our approach enjoys
finer granularity as if two statements are dependent, the inputs
that are relevant to these two statements must be dependent; it
may be not true for the opposite situation.

IV. EMPIRICAL STUDY
We implemented a prototype of our approach within the

framework of JPF-SE [1] and used the constraint solver Z3
[16] to check the satisfiability of path conditions. To compute
the causal dependence we used Indus [10], an inter-procedural
analysis tool based on Soot for Java byte code. Our benchmark
suite consists of six programs with lines of code ranging from
200 to 2000(Column LoC in Table VI). WBS is a synchronous
reactive component from the automotive domain. Its Java
implementation is based on a Simulink model derived from
the WBS case example presented in ARP 4761 [15]. Jtcas,
Totinfo and Siena are obtained from the SIR repository [17,
18]. Jtcas is an aircraft collision avoidance system. Totinfo is
used to compute the statistics of the given input data. Siena
implements partial event notification architecture. WC and
SUM are obtained from the GNU Coreutils suite [2]. WC
calculates the number of bytes, words, and lines in a file. SUM
checksums and counts the number of blocks in a file. Totinfo,
WC and SUM are written in C and we manually translated
them to Java.

We conducted two groups of experiments. In the first
group, we compared our approach against standard symbolic
execution JPF-SE and FlowTest proposed in [8]. We reported
the symbolic execution time, the number of explored paths and
other data on six benchmark programs. In the second group,
we examined the growth rates of the explored path size and
usage time with respect to the number of input parameters,
through using our approach and other two peer techniques.
The benchmark programs used in the second group are WC
and SUM, because both programs can take different numbers
of input parameters and produce different numbers of explored
paths.

A. Reducing Test Cases with Causality Partitions
Table VI gives the experiment results of our approach and

other two peer techniques. We set the number of input
parameters of WC and SUM to be 5 and 7, respectively. The
columns labeled with Causal, Flow and JPF denote the results
obtained from our approach, FlowTest and standard symbolic
execution JPF-SE, respectively. The column Time(s) gives the
usage time of three approaches in second.

It can be observed that the speedup achieved by our
approach is significant, ranging from 2.47X to 49.12X
compared with JPF-SE, and from 1.05X to 61.40X compared
with FlowTest. These results indicate the effectiveness of our
approach. It is well known that the cost of symbolic execution
is dominated by SMT solver callings. From this perspective,
there are three main reasons that can explain the speedup
achieved by our approach. The first reason is due to the
reduction in the number of explored paths. This can be
confirmed by the column labeled with #Explored Paths. The
number of #Explored Paths is proportional to the number of
SMT solver callings that are satisfiable, and our approach
reduces the number of explored paths by 46.28% to 98.84%
and by 49.37% to 98.86% compared with JPF-SE and
FlowTest, respectively. The second reason is due to fewer
numbers of SMT solver callings that are unsatisfiable. This can
be confirmed by the column #Infeasible Paths. Our approach
reduces the number of #Infeasible Paths by 0 to 98.42% and by
0 to 98.43% compared with JPF-SE and FlowTest,
respectively. In this paper, if the path conditions ξi are
unsatisfiable, any path conditions ξj prefixed by ξi are not
counted in #Infeasible Paths because ξj cannot be generated by
our approach and other two peer techniques. The third reason is
that the average number of constraints in the path conditions is
fewer in our approach. Although not guaranteed, in general
SMT solver is more efficient with fewer numbers of
constraints. This can be explained by the fact that the path

conditions in our approach must have causal relationships,
while in JPF-SE and FlowTest

(a) WC

(b) SUM

Figure 2. Growth of the explored paths and usage time on WC and SUM.

all path conditions encountered during a path exploration have
to be considered. This can be confirmed by the data presented
in the column labeled with #Avg.PC that shows the average
number of constraints in the path conditions.

B. Growth Rates of Explored Path Size and Usage Time
Figure 2 depicts the number of explored paths and usage

time over different numbers of input parameters that range
from 2 to 6 for WC and from 2 to 9 for SUM.

It can be observed that in JPF-SE both the number of
explored paths and usage time grow exponentially with the
number of input parameters, and there is no observable
improvement in FlowTest. In both programs, FlowTest
explores the paths without reduction because the input
parameters of two programs are mutually dependent. On the
other hand, the growth rates are much slower in our approach.
In Figure 2(a), we can see that the number of explored paths
and usage time in our approach still grow exponentially with
the number of input parameters, but the exponents in our
approach are smaller than other two peer techniques. In Figure
2(b), the number of explored paths and usage time in our
approach become to grow in the order of polynomial
magnitude and it greatly slows the growth rates. In program
SUM, the program statements that handle input parameters are
independent. Therefore, with additional input parameters our
approach only additionally explores the program paths that are
relevant to the added input parameters, without considering
the program paths that are relevant to the previous input
parameters. In addition, it can also be observed that when the
number of explored paths is trivial, our approach uses a little

longer time than JPF-SE. This is due to the overhead of the
causal chain computation. Based on the growth rates of the
explored path size and usage time, our approach has potential
to offer orders of magnitude improvement over standard
symbolic execution.

V. CONCLUSION AND FUTURE WORK
In this paper, we present a novel test case generation

technique that selectively explores program paths based on
program causality, which can generally alleviate the path
explosion problem of symbolic execution. In addition, our
reduction is sound, which means our approach can cover all
feasible causal chains of a program. This enables us to obtain a
concise test suite. We also empirically compare the efficiency
of our approach with standard symbolic execution JPF-SE and
another improved symbolic execution FlowTest.

Moreover, our approach can be extended for regression
testing if we only focus on the program dependencies relevant
to the changed statements. We will address this problem in the
future work.

REFERENCES
[1] Pasareanu, C. and N. Rungta. Symbolic PathFinder: symbolic execution

of Java bytecode. ASE, 2010. Antwerp, Belgium: ACM.
[2] Cadar, C., D. Dunbar, and D. Engler. KLEE: unassisted and automatic

generation of high-coverage tests for complex systems programs. OSDI,
2008. San Diego, California: USENIX Association.

[3] Godefroid, P., N. Klarlund, and K. Sen. DART: directed automated
random testing. PLDI, 2005. Chicago, IL, USA: ACM.

[4] Anand, S., and N. Tillmann. Demand-driven compositional symbolic
execution. TACAS, 2008. Budapest, Hungary: Springer-Verlag.

[5] Anand, S, Pasareanu, C, Visser, W. Symbolic execution with
abstraction. Int. J. Softw. Tools Technol. Transf., 2009. 11(1): p. 53-67.

[6] Siddiqui, J.H. and S. Khurshid. Scaling symbolic execution using ranged
analysis. OOPSLA, 2012. Tucson, Arizona, USA: ACM.

[7] Staats, M. and C. P. Parallel symbolic execution for structural test
generation. ISSTA, 2010. Trento, Italy: ACM.

[8] Majumdar, R. and R.-G. Xu. Reducing Test Inputs Using Information
Partitions. CAV, 2009. Grenoble, France: Springer-Verlag.

[9] Qi, D., H.D.T. Nguyen, and A. Roychoudhury. Path exploration based
on symbolic output. FSE, 2011. Szeged, Hungary: ACM.

[10] Ranganath, V.P., et al., A new foundation for control dependence and
slicing for modern program structures. ACM Trans. Program. Lang.
Syst., 2007. 29(5): p. 27.

[11] Reps, T., S. Horwitz, and M. Sagiv, Precise interprocedural dataflow
analysis via graph reachability. POPL, 1995, ACM: San Francisco,
California, USA. p. 49-61.

[12] Boonstoppel, P., C. Cadar, and D. Engler. RWset: attacking path
explosion in constraint-based test generation. TACAS, 2008. Budapest,
Hungary: Springer-Verlag.

[13] Santelices and Harrold. Exploiting program dependencies for scalable
multiple-path symbolic execution. ISSTA, 2010. Trento, Italy: ACM.

[14] Taneja et al. eXpress: guided path exploration for efficient regression
test generation. ISSTA, 2011. Toronto, Ontario, Canada: ACM.

[15] Person S., G.Yang, Rungta, N. Directed incremental symbolic execution.
PLDI, 2011. San Jose, California, USA: ACM.

[16] Moura, L.D., Bjorner N. Z3: an efficient SMT solver. TACAS, 2008.
Budapest, Hungary: Springer-Verlag.

[17] Hutchins, M., Foster, H. Goradia, T, Ostrand, T. Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria.
ICSE, 1994. Sorrento, Italy: IEEE Computer Society Press.

[18] Bohme, M., Oliveira, B, Rochoudhur, A. Partition-based regression
verification. ICSE, 2013. San Francisco, CA, USA: IEEE Press.

