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Abstract—Automatic test case generation using symbolic 
execution suffers from the problem of path explosion: the number 
of paths to be explored may grow exponentially with the scale of 
a program. We believe that different paths may exhibit some 
similar program behaviors, thus it is unnecessary to explore all of 
the paths to generate test cases. In this paper, a novel model of 
program causality is proposed to extract all kinds of influences 
among statements of a program, which consists of four types of 
program dependencies. Then, a heuristic approach based on 
program causality is developed to selectively explore program 
paths in symbolic execution. We have implemented a prototype of 
our approach within the symbolic execution engine of Java 
Pathfinder. Experiments on six public benchmarks show that our 
approach can significantly reduce the number of explored paths 
and the symbolic execution time so that to improve the 
performance of test case generation. 

Keywords-Symbolic Execution; Causality Partition; Test Case 
Generation;  

I.  INTRODUCTION 

Automatic  test case generation using symbolic execution 
[1-3] has recently regained prominence as a technique for 
systematically exploring the paths of a program. In practice 
though, symbolic execution suffers from the inherent problem 
of path explosion where the number of paths to be explored 
can increase exponentially with the scale of a program. While 
there are techniques for mitigating path explosion, e.g. by 
using compositionality [4], abstraction refinement [5], and 
parallelization [6], systematically exploring program paths 
remains a daunting task even for medium-sized programs. 

In this paper, we propose a novel test case generation 
technique that selectively explores program paths based on 
program causality. The intuition is that the path with the same 
causal relationship with already explored paths does not reveal 
additional program behavior. Figure 1 shows a program that 
may raise division-by-zero exceptions at Lines 11 and 13. 
Table I gives all eight possible paths of the program. For 
brevity we only list branch statements of a path. As indicated 
by Column 3, paths π5 and π7 can raise the exception at Line  

                                                             
 * The corresponding author is Ting Liu (tliu@sei.xjtu.edu.cn)  

The work was supported in part by National Science Foundation of China 
under Grant (91118005, 91218301, 61221063, 61203174, U1301254), 
National High Technology Research and Development Program 863 of China 
under Grant (2012AA011003), Key Projects in the National Science and 
Technology Pillar Program of China (2012BAH16F02) and the Fundamental 
Research Funds for the Central Universities. 

void Test(int x, int y, int m) {
1:   int a=1;
2:   int b=1;
3:   int c=2;
4:   int d=3;
5:   int first_out, second_out;
6:   if(x+y < 0)
7:      a=3;
8:   if(m > 2)
9:      d=4;
10: if(x-y > 1)
11:    c=1/(a-b);
12: first_out=c;
13: second_out=1/(a-d);
 }  
Figure 1.  A Running Program. 

11, and paths π3 and π4 can raise the exception at Line 13. 
Columns 4-8 mark the necessary paths for kinds of coverage 
criteria, respectively. For statement coverage TStatement, path π1 is 
sufficient. For branch coverage TBranch, two paths π1 and π8 are 
satisfiable. In order to achieve the path coverage TPath, all eight 
paths have to be executed. As expected, statement and branch 
coverage require much fewer test cases than path coverage, at 
the cost of missing both exceptions at Lines 11 and 13. Column 
7 lists the paths that are covered by our approach. Note that 
with half of the paths to be explored, our approach can still 
catch both exceptions. Comparing π5 and π7, we can observe 
that the decision at Line 8 makes no difference on the potential 
exception at Line 11. Therefore a testing that covers either π5 or 
π7 can report the exception at Line 11. Similarly, it is not 
necessary to explore both π3 and π4 for detecting the exception 
at Line 13. This paper addresses a more general question: 
without considering any particular type of fault, is it possible to 
achieve the same testing effect as path coverage without 
exploring all paths? By exploring four instead of eight paths, 
Table I shows the answer is positive. In our approach we 
exploit causal relationship to achieve the path reduction. 
However, the existing program dependence definitions are not 
sufficient for causal relationship. Therefore in this paper we 
introduce a new type of program dependence called 
Correlation Dependence. The last column in Table I shows 
why correlation dependence is indispensable, as without it the 
exception at Line 13 cannot be detected. 

As illustrated by the example, the key insight of our 
approach is to prevent some irrelevant statements combination 
from generating redundant paths. We first extract causal 
dependencies of a program, which consist of control, data, 
potential dependence and newly proposed correlation 
dependence. Then, we conduct symbolic execution to 
selectively explore program paths through exploiting the 

TABLE I.  TEST CASES FOR KINDS OF COVERAGE CRITERIA 



No Execution Error TStatement TBranch TPath TCausal Tw/o  
π1 <6T,8T,10T>  √ √ √ √ √ 
π2 <6T,8T,10F>    √   
π3 <6T,8F,10T> 13   √ √  
π4 <6T,8F,10F> 13   √   
π5 <6F,8T,10T> 11   √ √ √ 
π6 <6F,8T,10F>    √   
π7 <6F,8F,10T> 11   √   
π8 <6F,8F,10F>   √ √ √ √ 

causal dependencies. We have implemented a prototype of our 
approach within the framework of JPF-SE [1] and conducted 
experiments on six public benchmarks. The results validate the 
effectiveness of our approach. Compared with the original 
JPF-SE, our approach can reduce the number of explored 
paths by 46.28% to 98.84%, and achieve a speedup of 2.47X 
to 49.12X. We also compare our approach with FlowTest [8], 
where our approach can reduce the number of explored paths 
by 49.37% to 98.86%, and achieve a speedup of 1.05X to 
61.40X. Additional experiments on the growth rates of the 
number of explored paths and usage time indicate that our 
approach can achieve orders of magnitude improvement. 

Our main contributions are summarized as follows. 

• We propose a novel approach to reduce test cases through 
exploiting the causality exhibited in program paths. Such 
reduction is sound. 

• We extract causality in terms of control dependence, data 
dependence, potential dependence and newly proposed 
correlation dependence. This can help to comprehensively 
and systematically understand the causal dependencies 
among program statements. 

• We have implemented a prototype of our approach within 
the framework of JPF-SE and conducted experiments on six 
public benchmarks. The results show that our approach can 
dramatically reduce the number of explored paths and the 
symbolic execution time. Additional experiments on growth 
rates of the explored path size and usage time indicate that 
our approach can offer orders of magnitude improvement. 

II. REDUCING TEST CASES WITH CAUSALITY PARTITIONS 

A. Relevant Definitions 
Control flow graph (CFG) of a procedure is a directed 

graph that can be represented by CFG=<N, E>, where N is the 
set of nodes and E⊆ N×N represents possible execution flow 
between the nodes. Br⊆ N is the set of branches. Also, we use 
n Br∈ to represent the opposite branch of n Br∈ . 

Definition 1 Control Dependence is a map controlD: Br×N
→{T, F} that returns true for a pair of nodes (ni, nj) if node ni 
has more than one exit paths, and one of the exit paths must 
result in nj being executed but the other exit path may result in 
nj not being executed; Otherwise it returns false. 

Definition 2 Data Dependence is a map dataD: N×N→{T, F} 
that returns true for a pair of nodes (ni, nj) if there exists a 
path π from ni to nj where ni defines a variable v, nj uses the 

variable v and any nk (i<k<j) on π does not redefine the 
variable v; Otherwise it returns false. 

Definition 3 Potential Dependence [9] is a map potentialD: 
Br×N→{T, F} that returns true for a pair of nodes (ni, nj), if (1) 
there exists a path π from ni to nj where nj uses a variable v 
and the definition of v occurs before ni; (2) nj is not control 
dependent on ni; (3) a different definition of v could potentially 
reach nj if ni is evaluated differently; Otherwise it returns false. 

We define Traditional Dependence as a map traditionalD: 
N×N→{T, F} that returns true for a pair of nodes (ni, nj) if 
controlD(ni, nj)∨dataD(ni, nj)∨potentialD(ni, nj); Otherwise it 
returns false. 

Definition 4 Correlation Dependence is a map correlationD: 
N×N→{T, F} that returns true for a pair of nodes (ni, nj) if 
there exists a path π=<…ni…nj…nk…>, and ni, nj, nk satisfy (1)  
traditionalD(ni, nk)∧ (traditionalD(nj, nk) ∨ correlationD(nj, 
nk)); or (2) (traditionalD(ni, nk) ∨ correlationD(ni, nk)) ∧

traditionalD(nj, nk); Otherwise it returns false. 

We define Causal Dependence as a map causalD: N×N→
{T, F} that returns true for a pair of nodes (ni, nj) if 
traditionalD(ni, nj)∨correlationD(ni, nj); Otherwise it returns 
false. Table II lists all causal dependencies of the example. 

TABLE II.  DEPENDENCIES OF THE PROGRAM IN FIGURE 1 

Type Dependent Pairs 
ControlD (6T,7) (8T,9) (10T,11) 

DataD (1,11) (1,13) (2,11) (3,12) (4,13) 
(7,11) (7,13) (9,13) (11,12) 

PotentialD (6F,11) (6F,13) (8F,13) (10F,12) 

CorrelationD 

(1,2) (1,4) (1,6F) (1,8T) (1,8F) 
(1,9) (1,10T) (2,6T) (2,6F) (2,7) 
(2,10T) (3,10F) (4,6T) (4,6F) (4,7) 
(4,8F) (6F,8T) (6F,8F) (6F,9) (6F,10T)  
(7,8T) (7,8F) (7,9) (7,10T) 

Definition 5 A covered causal chain cπ of path π is a sequence 
V=[n1,…,nm] such that 

� ∃/ ni∈π, causalD(ni, n1), and 

� ∀ nj∈V, traditionalD(ni, nj)→ni∈V, and 

� ∀ nj, nj+1∈V, causalD(nj, nj+1). 

Definition 6 A discovered causal chain dπ of path π is a 
sequence V=[n1 ,…, mn ] that is a covered causal chain of path 
π' generated by flipping the branch nm to mn in path π. 

B. Computation of Causal Dependence 
Since control, data and potential dependence are widely 

applied in the software engineering and can be obtained by the 
existing tools [8, 9], in this paper we focus on the computation 
of newly proposed correlation dependence.  

We first compute the reachability of node pair (ni, nj) using 
Equations (1), (2) and (3). Similar to the data flow analysis via 
graph reachability [11], we use the node pair in the 
computation. Note that n0 represents start node of CFG, which 
has no incoming node pair. The outgoing node pairs of nj 



consist of two parts: the node pairs generated at nj, and the 
subtraction of the incoming node pairs by the node pairs killed 
at nj. Given the incoming nodes Nj at nj, obtained through data 
flow analysis [11], the node pair (n'j, nj) is generated at nj 
through pairing every n'j∈Nj with nj. A node pair (np, nq) is 
killed at nj if either np or nq is redefined by nj. We consider np 
or nq is redefined by nj, if np or nq is the definition statement 
and the variable they define is the same with the variable 
defined at nj, or np or nq is the conditional statement and they 
no longer directly or indirectly control nj. Assuming Npre is the 
set of nodes that are immediate predecessors of nj in CFG, the 
incoming node pairs of nj are the union of the outgoing node 
pairs of the nodes in Npre. 

 
We then compute the correlation dependence. For each 

node nj with an incoming node pair (np, nq), if either 
traditionalD(np, nj)∧causalD(nq, nj)  or causalD(np, nj) ∧ 
traditionalD(nq, nj), it is considered that nq is correlation 
dependent on np.  

C. Reducing Test Cases with Causality Partitions 
Overview. Algorithm 1 gives a high level overview of our 
approach. It maintains two global data structures C and D. C is 
the set of covered causal chains and D is the set of discovered 
causal chains that are yet to be covered. The algorithm first 
starts symbolic execution with a random input (Line 2). Each 
subsequent path exploration is directed by a discovered causal 
chain d removed from D (Line 5). At Line 6, if d is satisfiable, 
we will obtain a new input such that d can be covered by the 
execution under the newly acquired input. When we obtain an 
input, we use the procedure reducedPathExploration to handle 
the sets C and D (Line 8), which are used to drive the future 
path explorations. The algorithm terminates when D becomes 
empty. The computation of the input based on a discovered 
causal chain d (Line 6) and the algorithm for procedure 
reducedPathExploration (Line 8) will be discussed later. 

Table III gives a complete procedure of our approach in 
the example program. Column 1 shows the discovered causal 
chains that are yet not covered and then used to guide further 
path explorations. The generated inputs and corresponding 
paths are given in Columns 2 and 3, respectively. Columns 4 
and 5 list the set of covered causal chains and discovered 
causal chains. Note that although we pick only one discovered 
causal chain in each iteration, the newly explored path may 
cover many previously discovered causal chains that are still 
not covered. Therefore it may reduce the size of D 
significantly. As illustrated in Table III, four paths can cover 
all possible causal chains instead of eight paths in standard 
symbolic execution. 

Table IV explains why neither π3 nor π4 is explored without 
considering correlation dependence and hence the exception at 
Line 13 is missed. The exception at Line 13 can only be raised 
by the path that executes both 6T and 8F. Since there does not 

 
exist any control, data or potential dependence between 6T 
and 8F, symbolic execution without correlation dependence 
will not combine 6T and 8F to generate a new path after 
exploring π=<6T,8T,10T>, which leads to incompleteness. 

Causal Chain Computation during Path Exploration. 
Algorithm 2 focuses on computing the covered and discovered 
causal chains once a path π is obtained. We will explain the 
algorithm through Table V, which illustrates the procedures 
under the path π=<1,2,3,4,6T,7,8T,9,10T,11,12,13>. Let Cπ 
and Dπ be the set of covered and discovered causal chains of π, 
respectively. Initially, as shown in row 1, Cπ={[1], [3]} and 
Dπ={}. Both nodes 1 and 3 appear in π and they are not causal 
dependent on any other nodes in π (Line 2). Dπ is empty as 
there is no node in π whose negated node is not causal 
dependent on any other nodes in π (Line 3). We illustrate 
Lines 5-15 in Algorithm 2 using rows 6 and 13 in Table V. 
cπ.branch at Line 6 represents the sub sequence of cπ that 
consists of all its branches. In fact, the longer causal chain is 
generated by extending a node into the previous shorter causal 
chain. In row 6, the previous shorter covered causal chain cπ is 
[1,2,6T,7,10T] that is generated at row 5 and EXT is {11}. 
EXT represents the set of extensible nodes. If a node nj is 
causal dependent on the last node of previous shorter covered 
causal chain cπ and the set of nodes that are traditional 
dependent by nj are all included in cπ, nj can be an extensible  

TABLE III.  SYMBOLIC EXECUTION WITH CAUSALITY 

Causal Chain Input Path C D 

None (0,-2,3) <6T,8T,10T> 

[6T] 
[6T,8T] 
[6T,10T] 
[8T] 
[10T] 

[6F] 
[6T,8F] 
 
[8F] 
[10F] 

[6F] (2,0,3) <6F,8T,10T> 
[6F] 
[6F,8T] 
[6F,10T] 

 
[6F,8F] 
 

[6T, 8F] (0,-2,0) <6T,8F,10T> [6T,8F] 
[8F]  

[10F] (1,0,0) <6F,8F,10F> [6F,8F] 
[10F]  

TABLE IV.  SYMBOLIC EXECUTION WITHOUT CORRELATION DEPENDENCE 

Causal Chain Input Path C D 

None (0,-2,3) <6T,8T,10T> 

[6T] 
[6T,10T] 
[8T] 
[10T] 

[6F] 
 
[8F] 
[10F] 

[6F] (2,0,3) <6F,8T,10T> [6F] 
[6F,10T] 

 
 

[10F] (1,0,0) <6F,8F,10F> [8F] 
[10F]  



 
node of cπ (Line 7). Note that cπ.lastNode at Line 7 refers to 
the last node of cπ. Since node 11 is causal dependent on 
branch 10T and the set of nodes {2,7,10T} that are traditional 
dependent by node 11 are all included in cπ, node 11 is an 
extensible node. Obviously, ext π∈ and finally cπ' is added 
into Cπ. In row 13, the previous shorter covered causal chain cπ 
is [3] and EXT is {10F}. cπ is appended as cπ'=[3,10F] and cπ' 
is added into Dπ because ext π∈/ . 

From Discovered Causal Chain to Input. Given a 
discovered causal chain d, we will compute an input so that the 
execution under the newly acquired input can cover d. In this 
section we use an example to illustrate the computation. 

Assume d = [10F] and we would like to obtain a path π of 
the program in Figure 1 such that π can cover d. Treating 
inputs as symbolic variables we start a symbolic execution. At 
the first conditional statement (Line 6) we allow symbolic 
execution to choose any branch because d does not specify a 
particular branch at Line 6. The fact that d does not specify 
Line 6 means that there is no statement in d that is causal 
dependent on Line 6. Therefore symbolic execution can take 
any branch at Line 6. Next symbolic execution encounters the 
conditional statement Line 8. Since the branch at Line 8 is also 
not specified by d, symbolic execution still executes randomly. 
Finally symbolic execution reaches the conditional statement 
Line 10. Since 10F is specified in d, symbolic execution takes 
the false branch and adds term x–y≤1 into the path constraints 
ξ to match the requirement of 10F in d. If ξ is unsatisfiable, the 
procedure terminates and no input can be found to match d, 
otherwise symbolic execution continues. As there is no more 
conditional constraint in d, we pass ξ to SMT solver. If ξ is 
satisfiable, the solution forms an input that can cover d; 
otherwise there is no valid path to cover d. 

Theorem 1. Given a program P, our approach can cover all 
feasible causal chains of P. 
Example. Assume a causal chain V=[1,4,6T,7,8F,13] of the  
program in Figure 1 is required to be covered, which can 
detect the exception at Line 13. As shown in rows 9 and 10 of 
Table V, the initial path π=<1,2,3,4,6T,7,8T,9,10T,11,12,13> 
is able to cover the causal chain V'=[1,4,6T,7] and discover the 

TABLE V.  CAUSAL CHAINS OF Π = <1,2,3,4,6T,7,8T,9,10T,11,12,13> 

No. cπ ext Cπ Dπ 

1  1 [1]  
3 [3]  

2 [1] 

2 [1,2]  
4 [1,4]  
6F  [1,6F] 
8T [1,8T]  
8F  [1,8F] 
10T [1,10T]  

3 [1,2] 
6T [1,2,6T]  
6F  [1,2,6F] 
10T [1,2,10T]  

4 [1,2,6T] 7 [1,2,6T,7]  
5 [1,2,6T,7] 10T [1,2,6T,7,10T]  
6 [1,2,6T,7,10T] 11 [1,2,6T,7,10T,11]  
7 [1,2,6T,7,10T,11] 12 [1,2,6T,7,10T,11,12]  

8 [1,4] 
6T [1,4,6T]  
6F  [1,4,6F] 
8F  [1,4,8F] 

9 [1,4,6T] 7 [1,4,6T,7]  

10 [1,4,6T,7] 
8T [1,4,6T,7,8T]  
8F  [1,4,6T,7,8F] 
10T [1,4,6T,7,10T]  

11 [1,4,6T,7,8T] 9 [1,4,6T,7,8T,9]  
12 [1,4,6T,7,8T,9] 13 [1,4,6T,7,8T,9,13]  
13 [3] 10F  [3,10F] 

causal chain V''=[1,4,6T,7,8F] through extending the node 8F 
to V'. As stated in our algorithm, the discovered causal chain 
V'' then is used to direct symbolic execution to generate an 
input input=<x=0, y=-2, m=0> which can cover V'', as shown 
in Table III. Simultaneously, input can cover the required 
causal chain V. 

III. RELATED WORK 
Symbolic execution [1-3] has emerged as a popular 

technique for testing real-world software applications. 
However, symbolic execution suffers from the inherent path 
explosion problem. Many techniques have been proposed to 
alleviate this problem, and they can be roughly divided into 
four categories. The first category addresses the path 
explosion problem, e.g., [5], through integrating abstraction to 
reduce the search space. In the second category (e.g. [4]), 
researchers generate method summaries to enable more 
efficient constraint solving. The approaches of the third 
category, e.g., [8, 9, 12, 13], adopt the notion of the path 
equivalence to avoid full path exploration. Finally the 
techniques in the fourth category, e.g., [14, 15], limit the 
analysis scope to avoid irrelevant path exploration. 

Our approach shares similarities with the third category. 
The technique in [9] partitions the paths based on the program 
symbolic output. Two paths are placed in the same partition if 
the symbolic expressions connecting the input of a program 
with the output are the same. During symbolic execution only 
one path from each partition is explored. The main difference 
from our approach is that [9] ignores program crashes that do 
not come from the unexpected outputs, while our approach can 
avoid such situation. In work [13], a program is statically 
decomposed into some path families, where each path family 
contains several paths that share similar program behaviors. 



TABLE VI.  SYMBOLIC EXECUTION WITH AND WITHOUT CAUSALITY REDUCTION 

Subject LoC 
Time(s) #Explored Paths #Infeasible Paths #Avg. PC 

Causal Flow JPF Causal Flow JPF Causal Flow JPF Causal Flow JPF 
WBS 231 196 539 519 4123 13840 13824 0 0 0 28.8 56.0 56.1 
Jtcas 236 734 1906 1813 101 216 188 214 1169 1138 20.2 23.9 24.4 

Totinfo 375 7946 36224 34998 37 225 204 306 3536 3151 54.2 93.8 93.7 
Siena 1529 39 41 596 40 79 1728 104 104 471 7.2 6.7 20.2 
Wc 1557 25 1535 1228 163 2626 2596 130 2630 2590 4.3 23.2 23.5 

Sum 1257 37 720 696 17 1490 1464 23 1460 1458 6.5 17.8 18.0 

Authors argue that a program can be analyzed at the granularity 
of path family instead of individual path. A significant 
difference from our approach is that [13] does not consider the 
interaction of statements that are correlation dependent. The 
technique in [12] partitions paths based on program states. Two 
program paths are equivalent if symbolic states of all live 
variables are the same. 

The work closest to our approach is FlowTest [8], where 
the inputs of a program are partitioned into non-interfering 
blocks such that symbolically solving an input block while 
keeping other blocks assigned with concrete values can find the 
same set of assertion violations as symbolically solving for the 
entire inputs. Two inputs are considered of interfering, if they 
are jointly relevant to the same statement or they are relevant to 
the statements that have dependent relationship in some 
program path. By partitioning the program inputs, FlowTest 
can avoid full path exploration as our approach. In this paper, 
we have re-implemented FlowTest within the framework of 
JPF-SE and empirically compared it with our approach in 
Section IV. The main difference between two techniques is the 
different partition criteria. The technique FlowTest partitions 
the paths based on the dependencies of the program inputs, 
while our approach partitions the paths based on the 
dependencies of the program statements. Our approach enjoys 
finer granularity as if two statements are dependent, the inputs 
that are relevant to these two statements must be dependent; it 
may be not true for the opposite situation. 

IV. EMPIRICAL STUDY 
We implemented a prototype of our approach within the 

framework of JPF-SE [1] and used the constraint solver Z3 
[16] to check the satisfiability of path conditions. To compute 
the causal dependence we used Indus [10], an inter-procedural 
analysis tool based on Soot for Java byte code. Our benchmark 
suite consists of six programs with lines of code ranging from 
200 to 2000(Column LoC in Table VI). WBS is a synchronous 
reactive component from the automotive domain. Its Java 
implementation is based on a Simulink model derived from 
the WBS case example presented in ARP 4761 [15]. Jtcas, 
Totinfo and Siena are obtained from the SIR repository [17, 
18]. Jtcas is an aircraft collision avoidance system. Totinfo is 
used to compute the statistics of the given input data. Siena 
implements partial event notification architecture. WC and 
SUM are obtained from the GNU Coreutils suite [2]. WC 
calculates the number of bytes, words, and lines in a file. SUM 
checksums and counts the number of blocks in a file. Totinfo, 
WC and SUM are written in C and we manually translated 
them to Java. 

We conducted two groups of experiments. In the first 
group, we compared our approach against standard symbolic 
execution JPF-SE and FlowTest proposed in [8]. We reported 
the symbolic execution time, the number of explored paths and 
other data on six benchmark programs. In the second group, 
we examined the growth rates of the explored path size and 
usage time with respect to the number of input parameters, 
through using our approach and other two peer techniques. 
The benchmark programs used in the second group are WC 
and SUM, because both programs can take different numbers 
of input parameters and produce different numbers of explored 
paths. 

A. Reducing Test Cases with Causality Partitions 
Table VI gives the experiment results of our approach and 

other two peer techniques. We set the number of input 
parameters of WC and SUM to be 5 and 7, respectively. The 
columns labeled with Causal, Flow and JPF denote the results 
obtained from our approach, FlowTest and standard symbolic 
execution JPF-SE, respectively. The column Time(s) gives the 
usage time of three approaches in second. 

It can be observed that the speedup achieved by our 
approach is significant, ranging from 2.47X to 49.12X 
compared with JPF-SE, and from 1.05X to 61.40X compared 
with FlowTest. These results indicate the effectiveness of our 
approach. It is well known that the cost of symbolic execution 
is dominated by SMT solver callings. From this perspective, 
there are three main reasons that can explain the speedup 
achieved by our approach. The first reason is due to the 
reduction in the number of explored paths. This can be 
confirmed by the column labeled with #Explored Paths. The 
number of #Explored Paths is proportional to the number of 
SMT solver callings that are satisfiable, and our approach 
reduces the number of explored paths by 46.28% to 98.84% 
and by 49.37% to 98.86% compared with JPF-SE and 
FlowTest, respectively. The second reason is due to fewer 
numbers of SMT solver callings that are unsatisfiable. This can 
be confirmed by the column #Infeasible Paths. Our approach 
reduces the number of #Infeasible Paths by 0 to 98.42% and by 
0 to 98.43% compared with JPF-SE and FlowTest, 
respectively. In this paper, if the path conditions ξi are 
unsatisfiable, any path conditions ξj prefixed by ξi are not 
counted in #Infeasible Paths because ξj cannot be generated by 
our approach and other two peer techniques. The third reason is 
that the average number of constraints in the path conditions is 
fewer in our approach. Although not guaranteed, in general 
SMT solver is more efficient with fewer numbers of 
constraints. This can be explained by the fact that the path 



conditions in our approach must have causal relationships,  
while in JPF-SE and FlowTest  
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Figure 2.  Growth of the explored paths and usage time on WC and SUM. 

all path conditions encountered during a path exploration have 
to be considered. This can be confirmed by the data presented 
in the column labeled with #Avg.PC that shows the average 
number of constraints in the path conditions. 

B. Growth Rates of Explored Path Size and Usage Time 
Figure 2 depicts the number of explored paths and usage 

time over different numbers of input parameters that range 
from 2 to 6 for WC and from 2 to 9 for SUM. 

It can be observed that in JPF-SE both the number of 
explored paths and usage time grow exponentially with the 
number of input parameters, and there is no observable 
improvement in FlowTest. In both programs, FlowTest 
explores the paths without reduction because the input 
parameters of two programs are mutually dependent. On the 
other hand, the growth rates are much slower in our approach. 
In Figure 2(a), we can see that the number of explored paths 
and usage time in our approach still grow exponentially with 
the number of input parameters, but the exponents in our 
approach are smaller than other two peer techniques. In Figure 
2(b), the number of explored paths and usage time in our 
approach become to grow in the order of polynomial 
magnitude and it greatly slows the growth rates. In program 
SUM, the program statements that handle input parameters are 
independent. Therefore, with additional input parameters our 
approach only additionally explores the program paths that are 
relevant to the added input parameters, without considering 
the program paths that are relevant to the previous input 
parameters. In addition, it can also be observed that when the 
number of explored paths is trivial, our approach uses a little 

longer time than JPF-SE. This is due to the overhead of the 
causal chain computation. Based on the growth rates of the 
explored path size and usage time, our approach has potential 
to offer orders of magnitude improvement over standard 
symbolic execution. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we present a novel test case generation 

technique that selectively explores program paths based on 
program causality, which can generally alleviate the path 
explosion problem of symbolic execution. In addition, our 
reduction is sound, which means our approach can cover all 
feasible causal chains of a program. This enables us to obtain a 
concise test suite. We also empirically compare the efficiency 
of our approach with standard symbolic execution JPF-SE and 
another improved symbolic execution FlowTest. 

Moreover, our approach can be extended for regression 
testing if we only focus on the program dependencies relevant 
to the changed statements. We will address this problem in the 
future work. 

REFERENCES 
[1] Pasareanu, C. and N. Rungta. Symbolic PathFinder: symbolic execution 

of Java bytecode. ASE, 2010. Antwerp, Belgium: ACM. 
[2] Cadar, C., D. Dunbar, and D. Engler. KLEE: unassisted and automatic 

generation of high-coverage tests for complex systems programs. OSDI, 
2008. San Diego, California: USENIX Association. 

[3] Godefroid, P., N. Klarlund, and K. Sen. DART: directed automated 
random testing. PLDI, 2005. Chicago, IL, USA: ACM. 

[4] Anand, S., and N. Tillmann. Demand-driven compositional symbolic 
execution. TACAS, 2008. Budapest, Hungary: Springer-Verlag. 

[5] Anand, S, Pasareanu, C, Visser, W. Symbolic execution with 
abstraction. Int. J. Softw. Tools Technol. Transf., 2009. 11(1): p. 53-67. 

[6] Siddiqui, J.H. and S. Khurshid. Scaling symbolic execution using ranged 
analysis. OOPSLA, 2012. Tucson, Arizona, USA: ACM. 

[7] Staats, M. and C. P. Parallel symbolic execution for structural test 
generation. ISSTA, 2010. Trento, Italy: ACM. 

[8] Majumdar, R. and R.-G. Xu. Reducing Test Inputs Using Information 
Partitions. CAV, 2009. Grenoble, France: Springer-Verlag. 

[9] Qi, D., H.D.T. Nguyen, and A. Roychoudhury. Path exploration based 
on symbolic output. FSE, 2011. Szeged, Hungary: ACM. 

[10] Ranganath, V.P., et al., A new foundation for control dependence and 
slicing for modern program structures. ACM Trans. Program. Lang. 
Syst., 2007. 29(5): p. 27. 

[11] Reps, T., S. Horwitz, and M. Sagiv, Precise interprocedural dataflow 
analysis via graph reachability. POPL, 1995, ACM: San Francisco, 
California, USA. p. 49-61. 

[12] Boonstoppel, P., C. Cadar, and D. Engler. RWset: attacking path 
explosion in constraint-based test generation. TACAS, 2008. Budapest, 
Hungary: Springer-Verlag. 

[13] Santelices and Harrold. Exploiting program dependencies for scalable 
multiple-path symbolic execution. ISSTA, 2010. Trento, Italy: ACM. 

[14] Taneja et al. eXpress: guided path exploration for efficient regression 
test generation. ISSTA, 2011. Toronto, Ontario, Canada: ACM. 

[15] Person S., G.Yang, Rungta, N. Directed incremental symbolic execution. 
PLDI, 2011. San Jose, California, USA: ACM. 

[16] Moura, L.D., Bjorner N. Z3: an efficient SMT solver. TACAS, 2008. 
Budapest, Hungary: Springer-Verlag. 

[17] Hutchins, M., Foster, H. Goradia, T, Ostrand, T. Experiments of the 
effectiveness of dataflow- and controlflow-based test adequacy criteria. 
ICSE, 1994. Sorrento, Italy: IEEE Computer Society Press. 

[18] Bohme, M., Oliveira, B, Rochoudhur, A. Partition-based regression 
verification. ICSE, 2013. San Francisco, CA, USA: IEEE Press. 



 


