
Scalable Tag Recommendation for Software
Information Sites

Pingyi Zhou∗, Jin Liu∗♯, Zijiang Yang†♯, and Guangyou Zhou‡
∗ State Key Lab. of Software Engineering, Computer School, Wuhan University, China

† Department of Computer Science, Western Michigan University, Kalamazoo, Michigan, USA
‡ School of Computer, Central China Normal University, Wuhan, China

{zhou pinyi, jinliu}@whu.edu.cn, zijiang.yang@wmich.edu, gyzhou@mail.ccnu.edu.cn

Abstract—Software developers can search, share and learn
development experience, solutions, bug fixes and open source
projects in software information sites such as StackOverflow
and Freecode. Many software information sites rely on tags to
classify their contents, i.e. software objects, in order to improve
the performance and accuracy of various operations on the sites.
The quality of tags thus has a significant impact on the usefulness
of these sites. High quality tags are expected to be concise and
can describe the most important features of the software objects.

Unfortunately tagging is inherently an uncoordinated process.
The choice of tags made by individual software developers
is dependent not only on a developer’s understanding of the
software object but also on the developer’s English skills and
preferences. As a result, the number of different tags grows
rapidly along with continuous addition of software objects. With
thousands of different tags, many of which introduce noise,
software objects become poorly classified. Such phenomenon
affects negatively the speed and accuracy of developers’ queries.

In this paper, we propose a tool called TagMulRec to au-
tomatically recommend tags and classify software objects in
evolving large-scale software information sites. Given a new
software object, TagMulRec locates the software objects that
are semantically similar to the new one and exploit their
tags. We have evaluated TagMulRec on four software informa-
tion sites, StackOverflow, AskUbuntu, AskDifferent and
Freecode. According to our empirical study, TagMulRec is not
only accurate but also scalable that can handle a large-scale
software information site with millions of software objects and
thousands of tags.

Index Terms—Software Information Site, Tag Recomendation,
Software Object, Multi-Classification

I. INTRODUCTION

Software information sites [1], [2], [3] offer indispens-
able platforms for software developers to search solutions,
share experience, offer help and learn new techniques [4],
[5], [6], [7], [8]. These sites include online developer Q&A
communities [9], such as StackOverflow1, AskUbuntu2,
AskDifferent3, and open source software community [10],
such as Freecode4, GitHub5. The contents posted on these
software information sites, such as a question with answers

♯Jin Liu and Zijiang Yang are the corresponding authors.
1http://www.stackoverflow.com
2http://www.askubuntu.com
3http://www.apple.stackexchange.com
4http://www.freecode.com
5http://www.github.com

in a developer Q&A community and a project in an open
source software community, are regarded as software objects
[1], [2]. As the software information sites evolve, the number
of software objects grow significantly, which makes it a very
difficult for software developers to locate a particular software
object [11], [12]. To address this issue, it is a typical practice
for software developers to add tags that are commonly used
in social media [13], [14], [15], [16], [17] with each posted
content. Since tags normally consists of a few words or
abbreviations only, they provide a type of metadata to search,
describe, identify, bookmark, classify and organize software
objects on software information sites [3]. Most software infor-
mation sites rely on the tags to classify the software objects
in order to improve the performance and accuracy of various
operations on the sites [18], [19]. Therefore, the quality of tags
are critical for software information sites. High quality tags are
expected to be concise and can describe the most important
features of the software objects.

Unfortunately tagging is inherently a distributed and un-
coordinated process [1]. Each developer is free to choose
tags that are deemed most appropriate for a software object.
The choice is dependent not only on a developer’s under-
standing of the software object but also on the developer’s
English skills and preferences. For example, the tags scc,
source-code-control, sccs and several other words in
StackOverflow are all used to describe version control. In
addition, a software object can be labeled with multiple tags.
For instance, StackOverflow suggests three to five tags per
posting and Freecode allows more than ten tags per posting.
As a result, the number of different tags grows rapidly along
with continuous addition of software objects. As of today there
are more than 20 million questions and 46 thousand tags
in StackOverflow. With such large number of different
tags, many of which introduce noise, software objects become
more and more poorly classified. Such phenomenon affects
negatively the speed and accuracy of developers’ queries.

In this paper, we propose a tool called TagMulRec to
recommend tags to developers and classify software objects
in evolving large-scale software information sites. There are
two challenges that have to be addressed: (1)TagMulRec must
adapt to dynamic changes. Besides the fact that a large number
of software objects are continuously added into a software

information site every day, developers can also modify a
posted content by attaching new tags or removing existing
tags. (2) TagMulRec must be efficient considering the size
of the software objects and tags. Taking these challenges
into consideration, TagMulRec firstly constructs indices for
the description documents of software objects. Then, based
on indices, software objects that are semantically similar are
retrieved to construct target candidate sets. Next, TagMulRec
employs a simple algorithm to rank all tags in the candidate
set. The tags with high ranking scores are recommended to
developers.

We have evaluated TagMulRec on four software information
sites, StackOverflow, AskUbuntu, AskDifferent
and Freecode. StackOverflow is further divided into
StackOverflow@small and StackOverflow@large
based on their sizes. StackOverflow@small,
AskUbuntu, AskDifferent and Freecode are
relatively small with tens of thousands of software object
and hundreds of tags. We compare TagMulRec against
the state-of-the-art method EnTagRec [2] on these four
small-scale datasets. The experimental results show that
TagMulRec improves EnTagRec by -0.2% and 8.05% in
terms of F1-score@5 and F1-score@10 scores. Compared
with EnTagRec, TagMulRec achieves three orders of
magnitude speed-up. The large-scale software information
site StackOverflow@large has more than ten million
software objects and forty thousand tags. While EnTagRec
method cannot handle such large dataset, TagMulRec achieves
F1-score@5 and F1-score@10 scores of 0.449 and 0.294,
respectively.

The main contributions of this paper include:
• We automate tag recommendation in large-scale evolving

software information sites based on the semantics of soft-
ware objects. This alleviates the problem of rapid growth
of tags by reducing inappropriate tags and different tags
referring to the same content.

• We propose an efficient tag-based multi-classification
algorithm that is able to handle millions of software
objects.

• We evaluate TagMulRec using four software
information sites, StackOverflow, AskUbuntu,
AskDifferent and Freecode. The experiments
show that our approach is as accurate as and more
scalable than the existing approach.

The rest of this paper is organized as follows. Section II
presents related work. Section III gives an overview of our
approach, followed by a detailed explanation in Section IV.
Section V evaluates the performance of TagMulRec. Sec-
tion VI discusses limitations and threats to validity. Finally
Section VII concludes the paper.

II. RELATED WORK

Tag recommendation has been a hot research problem in the
fields of social network and data mining [20], [21], [22], [23],
[24]. Automatic tag recommendation in software engineering
was first proposed by Al-Kofahi et. al. in 2010 [3]. Al-Kofahi

et al. proposed a method called TAGREC to automatically
recommend tags for work items in IBM Jazz. TAGREC was
based on the fuzzy set theory and considered the dynamic
evolution of a system. Later a method called TAGCOM-
BINE [1] was proposed to automatically recommend tags
for software objects in software information sites. It consists
of three components: a multi-label ranking component, a
similarity based ranking component, and a tag-term based
ranking component. The multi-label ranking approach adopted
by TAGCOMBINE limits its application to relatively small
datasets. For a large-scale software information site such
as StackOverflow@large, TAGCOMBINE has to train
more than forty thousand binary classifier models and the size
of each train set is more than ten million. A more recent
approach called EnTagRec [2] outperforms TAGCOMBINE
in terms of Recall and Precision metrics. EnTagRec con-
sists of two components: Bayesian inference component and
Frequentist inference component. However, EnTagRec is not
scalable as well, as it also utilizes all information in software
information sites to recommend tags for a software object. In
contrast, our approach only utilizes a small portion of software
information sites that is most relevant to a given software
object. In addition, neither TAGCOMBINE nor EnTagRec
adapts to the dynamic evolution of software information sites.
In contrast, our approach is scalable and is able to handle
continuous updates in the software information sites.

In the field of software engineering, tags have become wide-
ly used [4], [5], [25], [26], [27]. Storey et. al. proposed a set
of pertinent research questions [4], which strives to understand
the benefits, risks and limitations of using social media in soft-
ware development at the team, project and community level,
around community involvement, project coordination, project
management and individual software development activities.
Begel et al. described the potential benefits [5] for social
media to both improve communication and coordination in
software development teams and support of the creation of
new kinds of software development communities. Treude et
al. explored how tagging is used to bridge the gap between
technical and social aspects of managing work items [25].
They conducted an empirical study on how tagging has been
adopted and adapted over the two year of a large project
with 175 developers. Their results showed that the tagging
mechanism had become a significant part for many informal
processes [25]. Thung et al. detected similar software appli-
cation using software tags [26]. Wang et al. analyzed tags of
projects in FREECODE to infer semantic relationships among
the tags, and express the relationships as a taxonomy [27].

III. TAGMULREC OVERVIEW

In this section, we present the overall framework of Tag-
MulRec after formally formulate our research question.

A. Problem Formulation

Tags provide a type of metadata to search, describe,
identify, bookmark, classify, and organize software objects
in software information sites [3]. They are widely used

in the developer Q&A and open source communities.
For example, StackOverflow, AskUbuntu and
AskDifferent suggest that developers should attach
at least three but no more than five tags per posting
and Freecode allows developers to create more than ten
tags for each posting. Figure 1 shows a question with
four tags {C++, standards, C++1z, C++-faq} in
StackOverflow. Figure 2 lists a question posted in
AskUbuntu with four tags {system-installation,
live-usb, ssd, mint}. Figure 3 gives a
question posted in AskDifferent with five tags {OSX,
yosemite, software-recommendation, pdf,
word-processor}. Figure 4 shows a shared project
in Freecode with project description and five
tags {System Administration, Operating
Systems, Monitoring, Software Development,
Internet}. Since software developers are free to choose
tags, the words used for tags are arbitrary. Even for the
words that represent the same meaning, there are differences
such as spaces vs. no spaces, upper cases vs. lower cases,
acrononym vs. full spelling, hyphens vs. no hyphens, etc.
Such phenomenon makes it difficult for software developers to
search for existing tags, thus become more likely to use their
own wording, which leads to more and more synonymous
tags with different spelling. Figure 5 gives a small portion of
the synonymous tag list in StackOverflow that contains
3429 tags.

Fig. 1: A stackoverflow software object.

Fig. 2: An AskUbuntu software object.

Since there is a large number of tags in established informa-
tion sites, it becomes less and less likely that the existing tags
are not sufficient for a new software object. Therefore, we aim
to automatically recommend tags so developers do not need
to create new ones. Such strategy can stabilize the tags in a
large software information site. In the following we formalize
the research problem we attempt to solve.

Fig. 3: An AskDifferent software object.

Fig. 4: A project shared in Freecode.

A software information site is a set S = {o1, . . . , on},
where oi(1 ≤ i ≤ n) denotes a software object. For a
developer Q&A site, such as StackOverflow, the attributes
of oi include an identifier id, a title tti, a body bi, a set of
tags Ti, etc. For an open source site, such as Freecode, the
attributes of oi include a project name ni, a project description
bi, a set of tags Ti, etc. If we treat the combination of the
title tt and body b of a software object in a Q&A site as a
project description d, we can assume that any software object
oi contains a description oi.d and a set of tags oi.T . The tags
in an information site S is a set T = {t1, . . . , tm} and the
tags associated with an object oi, i.e. oi.T , is a subset of T .
The research question we try to answer in this paper is the
following: given a larget set of existing software objects that
are labeled with tags, how to multi-classify a new software
object oi it into a set of tags oi.T .

B. Overall Framework

Figure 6 gives an overview of our method TagMulRec.
Let S be the software information site under consideration.
TagMulRec first eliminates software objects without tags
or with unreliable tags only. A tag is unreliable if it is
rarely used in a software information site. All the remaining
software objects are then indexed. Next, given a new soft-
ware object o, TagMulRec computes a target candidate set
C = {(o1, δ1), . . . , (ocs, δcs)} that consists of software objects
semantically similar to o . The attribute δi is a score that
quantifies the similarity between oi and o. If the context is not
clear we use δ(o, oi) to denote the similarity score between
o and oi. Finally TagMulRec exploits a multi-classification
algorithm based on semantics similarity to categorize tags in
the target candidate set C. This step produces a ranked tag list
⟨t1, . . . , tk⟩ that is presented to software developers.

IV. TAGMULREC METHOD

In this section, we present each step of TagMulRec method
in detail.

!

Index

Index descriptions Search Index

Software Information site

All software objects with tags in software information site

Software Object1 Tags

Software Object2 Tags

Software Object3 Tags

... ...

Description

Description

Description

...

Software Object with No Tags

Software Object DescriptionAll Software Objects

Nontarget Software Object

Candidates

Target Software Object

Candidate

Target Software Object Candidate

Software Object Tags

Software Object Tags

Software Object Tags

... ...

Description

Description

Description

Description

Score

Score

Score

Score

 software object multi-classification

Algorithm based semantic similarity

Result: A list of Category

(tags)

step1

step2

step3

step4

Fig. 6: Overview of TagMulRec.

Fig. 5: Tag synonyms in StackOverflow.

A. Preprocessing

Tags are highly recommended but not required. Therefore
there may exist software objects without tags in a software
information site S. These software objects obviously have to

be removed because our tag recommendation exploits existing
tags.

If a tag t appears in S but very infrequently, there are two
possibilities: (1) It was a bad choice and it is not used by
others. For example, the spelling of t is incorrect. In this case,
t should not be recommended. (2) The software object contains
a rare topic. It is possible that the new software object o also
contains this rare topic. Even so, t may not be an appropriate
tag to describe the topic as it is not widely agreed upon yet.
In this case, it is better for a software developer to create her
own tags. Based on the above observation we set a predefined
threshold θ. TagMulRec does not consider those tags with
frequency less than θ. If the frequency of all the tags in a
software object os is less than θ, we remove os.

The preprocessing produces S′ ⊆ S. As a final step, we
remove all the stop words from the description of o′ ∈ S′.
These preprocessing rules have also been used in previous
research [1], [2].

B. Indexing

TagMulRec assigns each software object in S′ a unique
index. TagMulRec also constructs a dictionary D that contains
all the words appearing in the descriptions of software objects
in S′. For each entry w ∈ D, TagMulRec creates a linked
list [28], [29] with each node consisting of the index of the
software object oi such that w ∈ oi.d, and the frequency of w
occurring in oi.d. For an evolving software information site,
the dictionary can be incrementally maintained with addition
of software objects.

software

developer

object

…

dictionary Posting List

2 3 10 35 92

1

35

…

3 5 10 35 95

77 100

…

Fig. 7: The structure of indices.

Figure 7 depicts an example with three words software,
developer and object. The linked list associated with
object indicates that the description of software objects 35,
77 and 100 contain the word. Due to space limit we omit the
information on frequency in the figure.

C. Similarity Score Computation

Given a new software object o and an existing one oi ∈ S′,
TagMulRec computes a similarity score δ(o, oi) based on their
descriptions. Equation 1 gives the formula that is used for this
computation.

δ(o, oi) = φ(o, oi)·ϕ(o.d)·Σw∈o.d(#oi.d.w·#O2
w·ψ(w)·ρ(oi.d))

(1)
The term φ(o, oi) is a score factor that treats each word in o.d
is regarded as a query term. Its value depends on the frequency
of the words of o.d appearing in oi.d, as shown in Equation 2.
In Equation 2, #o.d.w denotes the frequency of w appearing
in o.d and |oi.d| gives the number of words in the description
of oi.

φ(o, oi) = Σw|w∈oi.d∩o.d#o.d.w/|oi.d| (2)

For example, if o.d = software engineering and
oi.d = software developer look for help from
StackOverflow, the number of common words is 1. Since
the number of words in the query text o.d is 2, we have
φ(o, oi) = 1/2.

The term ϕ(o.d) is a query normalization factor that is
computed by Equation 3.

ϕ(o.d) = 1/
√
ψ(o.d)2 · Σw∈o.d(#S′

w · ψ(w))2 (3)

In both Equations 1 and 3, ψ(w) denotes the weight of the
word w and ψ(o.d) the weight of the query text o.d. We can
set the weight to make a word or a query text more important
than others. Although in our experiment we treat all words
and queries the same weight, software developers can adjust
the values.

The term #oi.d.w denotes the frequency of w occurring in
oi.d, which can be easily obtained by searching the dictionary
constructed by TagMulRec. The term #S′

w is the number of
the software objects whose description includes w. This can be
obtained by retrieving the length of the linked list associated
with w in the dictionary D.

The term ρ(oi.d), computed by Equation 4, is a standardized
parameter of δ(o, oi).

ρ(oi.d) = ψ(oi.d)/
√

|oi.d| (4)

In Equation 4, ψ(oi.d) is the weight of the software object
description and |oi.d| is the size of the desciption.

Based on Equation 1, TagMulRec is able to compute the
similarity score between the new software object o and oi ∈
S′. This produces a target candidate set Ck

o that contains k
software objects that has the highest similarity scores with o.
The size of the target candidate set, k, can be adjusted. We
use Lucene6 to implement the Indexing and Similarity Score
Computation.

D. Multi-Classification of Software Objects

Given a target candidate set Ck
o of the software object o, let

cmax and cmin be the maximum and minimum scores in Ck
o .

TagMulRec normalize the similarity score δ(o, oi) of oi ∈ Ck
o

by using Equation 5, which results in a normalized score value
within the range of [0,1].

δnorm(o, oi) = (δ(o, oi)− cmin)/(cmax − cmin) (5)

Let Ti be the set of tags of oi ∈ Ck
o . The tags of

all the software objects in the target candidate set is thus
T k
o = ∪|Ck

o |
i=1 Ti. For each tag tj ∈ T k

o , we compute the score
of tj using Equation 6:

δ(tj) = Σ
|Ck

o |
i=1 (#oi.tj) · δ

norm(o, oi), (6)

where #oi.tj denotes the frequency of tag tj in oi. We rank all
tags in T k

o by their scores and obtain a ranked list TL. The list
TLtopK with K highest score tags in TL are recommended
to software developers for the software object o.

V. EXPERIMENTS

In this section, we first shows the experimental settings,
then evaluation metrics are presented. Last, we answer some
research questions based on experimental results.

A. Experiment Setup

We evaluate TagMulRec on four software information
sites, StackOverflow, AskUbuntu, AskDifferent
and Freecode. We further divide StackOverflow into
two dataset with different sizes: StackOverflow@small
contains the software objects posted form July 1st, 2008 to
December 10th, 2008; StackOverflow@large contains
all the software objects posted before July 1st, 2012. For
AskUbuntu and AskDifferent, we consider all the software
objects posted before April 30th, 2012. Finally for Freecode,
all the posted software objects are considered. All the selected
data have been published for relatively long time to ensure
that their tags are stable. Such experimental setup leads
to four small-scale datasets StackOverflow@small,
AskUbuntu, AskDifferent, Freecode and
one large-scale dataset StackOverflow@large.
StackOverflow@small, AskUbuntu, AskDifferent
and StackOverflow@large can be collected by

6http://www.lucene.apache.org/

TABLE I: Statistics of the five datasets

Dataset #software object #tags #final software object #final tags
StackOverflow@small 50000 9243 47814 438
StackOverflow@large 11203032 44265 10421906 427

AskUbuntu 36868 1784 24941 344
AskDifferent 14836 824 11459 178
Freecode 47978 9018 43644 274

StackExchange Data Explorer7. Freecode can be
acquired by crawling web data of the Freecode website8.

For the four small-scale datasets, we remove those tags that
occur 50 times or less. In order to maintain similar ratios
between the the threshold value and the size of software infor-
mation site, we set the threshold to 10000 for the much larger
dataset StackOverflow@large. A software object is removed if
the frequencies of all its tags are below the threshold. Table I
summarizes the statistics of the five datasets. Columns 2 and
3 give the number of software objects and tags. Columns 4
and 5 list the software objects and tags after removing the
low-frequency software objects and tags.

For each of the five datasets, we randomly select 10000
software objects and treat them as a validation set V .
For each software object o ∈ V , we compute ten tags
and use Recall@k, Precision@k and F1-score@k as e-
valuation metrics. We compare TagMulRec against EnTa-
gRec, a state-of-the-art tag recommendation method [2],
on the four small-scale datasets. EnTagRec cannot handle
StackOverflow@large so we conduct experiments on the
large dataset with TagMulRec only. All the experiments were
conducted on an Ubuntu 16.04 computer with Intel Core i7
3.6G and 8G RAM.

B. Evaluation Metrics

To evaluate TagMulRec, we use the metrics
Recall@k, Precision@k, and F1-score@k, all of which
are frequently used to evaluate recommendation systems or
classification tasks in software engineering literature [30],
[31], [32], [33]. In particular, Precision@k and Recall@k
were used to evaluate EnTagRec.

• Recall@k: Recall@ki is the percentage of tags selected
out of the recommended lists TLtopK in the software
object’s true tags. For a software object oi, Recall@ki
is computed by Equation 7. Recall@k, computed by
Equation 8, is the mean Recall@ki values of the software
objects in the validation set V .

Recall@Ki =

| Ti |> K,Recall@K =
|TLtopK

i ∩Ti|
K

| Ti |≤ K,Recall@K =
|TLtopK

i ∩Ti|
|Ti|

(7)

Recall@K =

∑|V |
i=1Recall@Ki

| V |
(8)

7http://www.data.stackexchange.com/
8http://www.freecode.com

• Precision@k: Precision@ki is the percentage of soft-
ware object’s truth tags in the recommended list-
s TLtopK . For a software object oi, Precision@ki
is defined by Equation 9. Precision@k is the mean
Precision@ki values of the software objects in the
validation set V , as defined by Equation 10.

Precision@Ki =
| TLtopK

i ∩ Ti |
K

(9)

Precision@K =

∑|V |
i=1 Precision@Ki

| V |
(10)

• F1-score@k: this metric combines Precision@k and
Recall@k. For a software object oi, F1-score@ki is
defined by Equation 11. F1-score@k is the mean of F1-
score@ki, as defined by Equation 12.

F1− score@ki = 2 · Precision@Ki −Recall@Ki

Precision@Ki +Recall@Ki
(11)

F1− score@K =

∑|V |
i=1 F1− score@Ki

| V |
(12)

We also compare the efficiency between the two tools.
EnTagRec runtime includes the training time and the predict-
ing time. We use the average predicting time to evaluate the
efficiency of EnTagRec. TagMulRec runtime includes the time
to construct the candidate set and the time to recommend tags.
Because TagMulRec constructs candidate set dynamically,
we use the average running time of tag recommendation to
evaluate the efficiency of TagMulRec.

C. Research Questions

We are interested in the following four research questions.
RQ1: how effective and efficient is TagMulRec in recom-

mending tags for small-scale software information sites?
To answer RQ1, we compare TagMulRec against

EnTagRec [2] on four software information sites,
StackOverflow@small, AskUbuntu, AskDifferent
and Freecode. We evaluate them using the metrics
Recall@k, Precision@k, F1-score@k with two k values, 5
and 10. Time usage is also recorded.

Table II gives the experimental results. It can be
observed that TagMulRec outperforms EnTagRec in terms
of Precision@k and F1-score@k. Since Recall@k,
Precision@k and F1-score@k are defined as mean values,
we compared their distributions using test procedure T̃ [2],
[34] to gain more insight. Across the four small-scale
datasets, the corresponding p-value is very small (<0.01),

TABLE II: TagMulRec vs. EnTagRec using metrics Recall@k, Precision@k, and F1-score@k

Recall@5 Precision@5 F1−score@5 Time(ms)
Dataset TagMulRec EnTagRec TagMulRec EnTagRec TagMulRec EnTagRec TagMulRec EnTagRec

StackOverflow@small 0.680 0.805 0.284 0.346 0.454 0.482 0.045 294
AskUbuntu 0.700 0.815 0.383 0.358 0.497 0.495 0.025 247

AskDifferent 0.715 0.880 0.421 0.369 0.531 0.518 0.016 128
Freecode 0.659 0.640 0.383 0.382 0.485 0.477 0.042 187

Average 0.687 0.785 0.368 0.363 0.482 0.483 0.032 214
Recall@10 Precision@10 F1−score@10 Time(ms)

Dataset TagMulRec EnTagRec TagMulRec EnTagRec TagMulRec EnTagRec TagMulRec EnTagRec
StackOverflow@small 0.777 0.868 0.165 0.187 0.293 0.300 0.045 294

AskUbuntu 0.821 0.876 0.229 0.193 0.360 0.314 0.025 247
AskDifferent 0.845 0.944 0.257 0.200 0.394 0.329 0.016 128

Freecode 0.758 0.753 0.245 0.240 0.364 0.361 0.042 187
Average 0.800 0.860 0.224 0.205 0.353 0.326 0.032 214

which shows the significance of the difference in the
Recall@k, Precision@k and F1-score@k values between
TagMulRec and EnTagRec.

The total time to compute 10 tags by EnTagRec and Tag-
MulRec for the 10000 software objects is about 21400 seconds
and 32 seconds, respectly. Table II gives the average time
to compute a single tag. It can be observed that TagMulRec
achieves a three orders of magnitude speedup.

RQ2: how effective and efficient is TagMulRec in recom-
mending tags for large-scale software information sites?

In order to investigate the performance of TagMulRec
on large-scale software information sites, we attempted
to compare TagMulRec against EnTagRec on the dataset
StackOverflow@large. However, after spending more
than three months of training time, EnTagRec does not return
any results. This is due to the fact that EnTagRec utilizes all
information in software information site to train model. When
the scale of a software information site is large, EnTagRec
may not able to obtain a trained model within an acceptable
time period.

As a result, we can measure the performance of Tag-
MulRec only. Table III shows the Recall@k, Precision@k,
and F1-score@k values (k = 5 and 10) on both
StackOverflow@large and StackOverflow@small.
In particular, TagMulRec achieves a F1-score@5 s-
core of 0.449 and a F1-score@10 score of 0.294 on
the large-scale dataset StackOverflow@large. Because
StackOverflow suggests three to five tags per software
object and developer may likely pay attention to the top
few recommended tags only,, the metric F1-score@5 is
more important than F1-score@10. It can be observed that
the time consumption per tag is significantly higher for
StackOverflow@large. However, the total time to com-
pute ten tags each for all the 10000 software objects is less
still than 16000 seconds. Therefore, we claim that TagMulRec
can be both effective and efficient for large-scale software
information sites.

RQ3: does the size of target candidate set C affect the
performance of TagMulRec?

The size of target candidate set C affects experiment results.
In order to answer RQ3, we first investigate the tag coverage

rate of the target candidate set on the five datasets, then we
evaluate how Recall@k and Precision@k changes with the
size of target candidate sets.

• TagCovi is the percentage of tags selected out of candi-
date set in the software object’s truth tags. Equation 13
shows how to compute the tag coverage rate TagCovi of
target candidate set for a software object oi. The average
tag coverage rate of the validation set V can be computed
by Equation 14.

TagCovi =
| T k

oi ∩ Ti |
| Ti |

(13)

TagCov =

∑|V |
i=1 TagCovi

| V |
(14)

Figure 8 depicts the change of tag coverage rate along
with the size of the target candidate set. The x-axis and
y-axis denote the size of the candidate set and the tag
coverage rate. The data for the five data sets Freecode,
StackOverflow@small, AskUbuntu, AskDifferent
and StackOverflow@large are given by blue, red, green,
cyan and black lines, respectively. It can be observed that (1)
with the size of candidate set increasing, the tag coverage
rate increases as well and tends to be stable finally, and (2)
with the size of candidate set increasing, the growth rate of
tags coverage rate decreases and tends to be 0 finally. The
reason that the tag coverage rate tends to be stable is that
some noise data are introduced with the enlargement of the
target candidate set.

For the four small-scale datasets
StackOverflow@small, AskUbuntu, AskDifferent
and Freecode, Figures 9, 10, 11, 12, 13, and 14 depict
the values of Recall@5, Recall@10, Precision@5,
Precision@10, F1-score@5 and F1-score@10 respectively,
along the size of the candidate set. In addition to Freecode,
higher tag coverage rates correspond to higher values of
Recall@5, Recall@10, Precision@5, Precision@10, F1-
score@5 and F1-score@10 in the small-scale datasets. For
StackOverflow@small and StackOverflow@large,
Figures 15 shows Recall@5 and Recall@10 values along
with the size of the candidate set, Figures 16 shows

TABLE III: Recall@k, Precision@k, and F1-score@k values of TagMulRec on large and small scale StackOverflow

Dataset Recall@5 Precision@5 F1-score@5 Recall@10 Precision@10 F1-score@10 Time(ms)
StackOverflow@small 0.680 0.284 0.400 0.777 0.165 0.272 0.045
StackOverflow@large 0.809 0.310 0.449 0.892 0.176 0.294 160

0 50 100 150

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

The size of candidate set

T
h
e
 t
a
g
 c

o
v
e
ra

g
e
 r

a
te

Fig. 8: Effect of candidate set size on five datasets Freecode
(blue), StackOverflow@small (red), AskUbuntu (green),
AskDifferent (cyan) and StackOverflow@large (black).

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

The size of candidate set

R
e
c
a
ll
@

5

Fig. 9: Recall@5 values: Freecode (blue),
StackOverflow@small (red), AskUbuntu (green), and
AskDifferent (cyan).

Precision@5 and Precision@10 values and Figures 17
shows F1-score@5 and F1-score@10 values. It can be
observed that: (1) Recall@5, Recall@10, P recision@5,
Precision@10, F1-score@5 and F1-score@10 values tend
to be more stable as the size of candidate set increases, and
(2) Recall@5, Recall@10, P recision@5, Precision@10,
F1-score@5 and F1-score@10 values are related to tag
coverage rate in most cases.

RQ4: does the tag threshold value affect the perfor-
mance of TagMulRec?

In our approach we filter tags whose frequency is less
than the tag threshold value. For the small-scale software

0 50 100 150
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

The size of candidate set

R
e
c
a
ll
@

1
0

Fig. 10: Recall@10 values: Freecode (blue),
StackOverflow@small (red), AskUbuntu (green), and
AskDifferent (cyan).

0 20 40 60 80 100
0.2

0.25

0.3

0.35

0.4

0.45

The size of candidate set

P
re

c
is

io
n
@

5

Fig. 11: Precision@5 values: Freecode (blue),
StackOverflow@small (red), AskUbuntu (green), and
AskDifferent (cyan).

information sites, we set the threshold value to 50, which has
also been used in previous works [1], [2]. Considering the
size of software information sites, we set the threshold value
to 10000 for the large-scale software information site. In this
group of experiments, we investigate whether the tag threshold
value affect the performance of TagMulRec on the large-
scale software information site. To this end, we evaluate the
change of Recall@k, Precision@k and F1-score@k values
by setting the tag threshold values to both 50 and 10000.

Table IV compares the Recall@k, Precision@k and F1-
score@k values after using tag threshold values 50 and 10000.
It can be observed that a threshold value of 10000 achieves

TABLE IV: Recall@k, Precision@k, and F1-score@k value and time consumption of TagMulRec on StackOverflow@large

Threshold Recall@5 Precision@5 F1-score@5 Recall@10 Precision@10 F1-score@10 Time(ms)
50 0.640 0.343 0.444 0.749 0.205 0.310 162

10000 0.809 0.310 0.449 0.892 0.176 0.294 160

0 50 100 150
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

The size of candidate set

P
re

c
is

io
n
@

1
0

Fig. 12: Precision@10 values: Freecode (blue),
StackOverflow@small (red), AskUbuntu (green), and
AskDifferent (cyan).

0 20 40 60 80 100
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

The size of candidate set

F
1
−

s
c
o
re

@
5

Fig. 13: F1-score@5 values: Freecode (blue),
StackOverflow@small (red), AskUbuntu (green), and
AskDifferent (cyan).

a slight higher Recall@k values, while a threshold value of
50 achieves a slight higher Precision@k values. As for F1-
score@k and time consumption, there is almost no difference.
Based on the experiments, we conclude that the performance
of TagMulRec does not depend on the preset tag threshold
values.

VI. THREATS TO VALIDITY

There are serval threats that can potentially affect the
validity of our research results.

1) Potentially Biased Results. Our tag recommendation as-
sumes that existing tags in a software information site

0 50 100 150
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

The size of candidate set

F
1
−

s
c
o
re

@
1
0

Fig. 14: F1-score@10 values: Freecode (blue),
StackOverflow@small (red), AskUbuntu (green), and
AskDifferent (cyan).

0 50 100 150
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

The size of candidate set

R
e
c
a
ll

Fig. 15: Recall@5 values: StackOverflow@small
(red solid) and StackOverflow@large (black solid);
Recall@5 values: StackOverflow@small (red dotted)
and StackOverflow@large (black dotted) .

are correct. However, human errors are inevitable. We do
apply some filtering rules, such as time interval of dataset,
to alleviate the problem. These filtering rules have also
been used in past research [1], [2]. However, this issue,
such as how to deal with large number of synonymous
tags, cannot be completely solved. we reimplemented the
EnTagRec method, which may not be the same as the
original EntagRec [2].

2) Generalizability of Algorithms. In this paper, we evaluate
TagMulRec on five software information sites. There are
more than 120000 software objects in the four small-scale

0 50 100 150
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

The size of candidate set

P
re

c
is

io
n

Fig. 16: Precision@5 values: StackOverflow@small
(red solid) and StackOverflow@large (black solid);
Precision@10 values: StackOverflow@small (red dotted) and
StackOverflow@large (black dotted) .

0 50 100 150
0.2

0.25

0.3

0.35

0.4

0.45

The size of candidate set

F
1
−

s
c
o
re

Fig. 17: F1-score@5 values: StackOverflow@small
(red solid) and StackOverflow@large (black solid); F1-
score@10 values: StackOverflow@small (red dotted) and
StackOverflow@large (black dotted) .

datasets and more than 11 million software objects in the
large-scale dataset. Even so, more case studies are needed
to generalize our findings. In the future, more software
information sites will be used to evaluate TagMulRec.

3) Suitability of Evaluation Metrics. In this paper,
Recall@k, Precision@k and F1-score@k are used as
our evaluation metrics. Recall@k and Precision@k
have been used in the past to evaluate the performance
of tag recommendation for software information sites [1],
[2], [3] and for social media and network [35], [36], [37],
[38]. Time usage is also used in this paper. Because of dif-
ferences in operating systems, hardware, the development
environment and others, time usage may be not suitability
in repeated our experiments. It is possible that more
suitable metrics can be adopted. For example, since our
tag recommendation is a multi-classification process [39],

the evaluation metrics of multi-label classification [40],
[41] will be used in our future work.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new software object multi-
classification method. To the best of our knowledge, TagMul-
Rec is the first tool to automatically recommend tags for large-
scale evolving software information sites. TagMulRec achieves
effectiveness and efficiency by (1) creating index for software
object descriptions, (2) constructing target candidate sets that
include software objects semantically similar to the given soft-
ware object, and (3) utilizing multi-classification algorithms
to rank tags in the target candidate set. We evaluated the
performance of TagMulRec on four software information sites
with large number of software objects and tags. Our empirical
study confirmed that our method is promising.

Our current work is based on text only. In the future, we plan
to consider code snippets to make our tag recommendation
more accurate. We will also conduct experiments on more
software information sites with more evaluation metrics.

ACKNOWLEDGMENT

Jin Liu and Zijiang Yang are the corresponding authors. We
would like to thank Xin Xia for his constructive comments,
which helped us to improve the manuscript. This work is
partly supported by National Natural Science Foundation of
China (NSFC) (grant No. 61572374, U163620068, U1135005,
71161015, 61462056, 61472318, 61632015), the Academic
Team Building Plan from Wuhan University and National
Science Foundation (NSF) (grant No. DGE-1522883).

REFERENCES

[1] X. Xia, D. Lo, X. Wang, and B. Zhou, “Tag recommendation in software
information sites,” in Proceedings of the 10th Working Conference on
Mining Software Repositories. IEEE Press, 2013, pp. 287–296.

[2] S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik, “Entagrec: An
enhanced tag recommendation system for software information sites.”
in ICSME, 2014, pp. 291–300.

[3] J. M. Al-Kofahi, A. Tamrawi, T. T. Nguyen, H. A. Nguyen, and
T. N. Nguyen, “Fuzzy set approach for automatic tagging in evolving
software,” in Software Maintenance (ICSM), 2010 IEEE International
Conference on. IEEE, 2010, pp. 1–10.

[4] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng, “The impact
of social media on software engineering practices and tools,” in Pro-
ceedings of the FSE/SDP workshop on Future of software engineering
research. ACM, 2010, pp. 359–364.

[5] A. Begel, R. DeLine, and T. Zimmermann, “Social media for software
engineering,” in Proceedings of the FSE/SDP workshop on Future of
software engineering research. ACM, 2010, pp. 33–38.

[6] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, 2009, pp. 1589–1598.

[7] L. Guerrouj, S. Azad, and P. C. Rigby, “The influence of app churn on
app success and stackoverflow discussions,” in 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, 2015, pp. 321–330.

[8] C. Treude and M.-A. Storey, “Work item tagging: Communicating
concerns in collaborative software development,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 19–34, 2012.

[9] B. Vasilescu, V. Filkov, and A. Serebrenik, “Stackoverflow and github:
Associations between software development and crowdsourced knowl-
edge,” in Social Computing (SocialCom), 2013 International Conference
on. IEEE, 2013, pp. 188–195.

[10] B. Vasilescu, A. Serebrenik, P. Devanbu, and V. Filkov, “How social
q&a sites are changing knowledge sharing in open source software
communities,” in Proceedings of the 17th ACM conference on Computer
supported cooperative work & social computing. ACM, 2014, pp. 342–
354.

[11] S. Gottipati, D. Lo, and J. Jiang, “Finding relevant answers in software
forums,” in Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering. IEEE Computer
Society, 2011, pp. 323–332.

[12] O. Kononenko, D. Dietrich, R. Sharma, and R. Holmes, “Automatically
locating relevant programming help online,” in 2012 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
2012, pp. 127–134.

[13] W. Feng and J. Wang, “Incorporating heterogeneous information for
personalized tag recommendation in social tagging systems,” in Proceed-
ings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2012, pp. 1276–1284.

[14] J. Liu, Z. Li, J. Tang, Y. Jiang, and H. Lu, “Personalized geo-specific
tag recommendation for photos on social websites,” IEEE Transactions
on Multimedia, vol. 16, no. 3, pp. 588–600, 2014.

[15] S. Sood, S. Owsley, K. J. Hammond, and L. Birnbaum, “Tagassist:
Automatic tag suggestion for blog posts.” in ICWSM, 2007.

[16] H. Wang, X. Shi, and D.-Y. Yeung, “Relational stacked denoising
autoencoder for tag recommendation.” in AAAI, 2015, pp. 3052–3058.

[17] X. Fang, R. Pan, G. Cao, X. He, and W. Dai, “Personalized tag
recommendation through nonlinear tensor factorization using gaussian
kernel.” in AAAI, 2015, pp. 439–445.

[18] X. Cai, J. Zhu, B. Shen, and Y. Chen, “Greta: Graph-based tag assign-
ment for github repositories,” in Computer Software and Applications
Conference (COMPSAC), 2016 IEEE 40th Annual, vol. 1. IEEE, 2016,
pp. 63–72.

[19] S. A. Golder and B. A. Huberman, “Usage patterns of collaborative
tagging systems,” Journal of information science, vol. 32, no. 2, pp.
198–208, 2006.

[20] B. Sigurbjörnsson and R. Van Zwol, “Flickr tag recommendation based
on collective knowledge,” in Proceedings of the 17th international
conference on World Wide Web. ACM, 2008, pp. 327–336.

[21] S. Rendle and L. Schmidt-Thieme, “Pairwise interaction tensor factoriza-
tion for personalized tag recommendation,” in Proceedings of the third
ACM international conference on Web search and data mining. ACM,
2010, pp. 81–90.

[22] D. Yin, Z. Xue, L. Hong, and B. D. Davison, “A probabilistic model for
personalized tag prediction,” in Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2010, pp. 959–968.

[23] Q. Wang, L. Ruan, Z. Zhang, and L. Si, “Learning compact hashing
codes for efficient tag completion and prediction,” in Proceedings of
the 22nd ACM international conference on Information & Knowledge
Management. ACM, 2013, pp. 1789–1794.

[24] R. Jäschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme,
“Tag recommendations in folksonomies,” in European Conference on
Principles of Data Mining and Knowledge Discovery. Springer, 2007,
pp. 506–514.

[25] C. Treude and M.-A. Storey, “How tagging helps bridge the gap between
social and technical aspects in software development,” in Proceedings

of the 31st International Conference on Software Engineering. IEEE
Computer Society, 2009, pp. 12–22.

[26] F. Thung, D. Lo, and L. Jiang, “Detecting similar applications with
collaborative tagging,” in Software Maintenance (ICSM), 2012 28th
IEEE International Conference on. IEEE, 2012, pp. 600–603.

[27] S. Wang, D. Lo, and L. Jiang, “Inferring semantically related software
terms and their taxonomy by leveraging collaborative tagging,” in Soft-
ware Maintenance (ICSM), 2012 28th IEEE International Conference
on. IEEE, 2012, pp. 604–607.

[28] S. Tatikonda, B. B. Cambazoglu, and F. P. Junqueira, “Posting list
intersection on multicore architectures,” in Proceedings of the 34th
international ACM SIGIR conference on Research and development in
Information Retrieval. ACM, 2011, pp. 963–972.

[29] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling secure and efficient
ranked keyword search over outsourced cloud data,” IEEE Transactions
on parallel and distributed systems, vol. 23, no. 8, pp. 1467–1479, 2012.

[30] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang,
“Improving automated bug triaging with specialized topic model,” IEEE
Transactions on Software Engineering, 2016, accpted.

[31] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang, “Hydra: Mas-
sively compositional model for cross-project defect prediction,” IEEE
Transactions on Software Engineering, 2016, accpted.

[32] X. Xia, D. Lo, X. Wang, and X. Yang, “Collective personalized
change classification with multi-objective search,” IEEE Transactions
on Reliability, 2016.

[33] X. Xia, D. Lo, X. Wang, and B. Zhou, “Dual analysis for recommending
developers to resolve bugs,” J. Softw. Evol. Process, vol. 27, no. 3, pp.
195–220, Mar. 2015.

[34] B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens, “On the
variation and specialisation of workload–a case study of the gnome
ecosystem community,” Empirical Softw. Engg., vol. 19, no. 4, pp. 955–
1008, Aug. 2014.

[35] E. Zangerle, W. Gassler, and G. Specht, “Using tag recommendations to
homogenize folksonomies in microblogging environments,” in Interna-
tional Conference on Social Informatics. Springer, 2011, pp. 113–126.

[36] H. Wang, B. Chen, and W.-J. Li, “Collaborative topic regression with
social regularization for tag recommendation.” in IJCAI, 2013.

[37] D. Yang, Y. Xiao, H. Tong, J. Zhang, and W. Wang, “An integrated
tag recommendation algorithm towards weibo user profiling,” in Inter-
national Conference on Database Systems for Advanced Applications.
Springer, 2015, pp. 353–373.

[38] D. Yang, Y. Xiao, Y. Song, J. Zhang, K. Zhang, and W. Wang, “Tag
propagation based recommendation across diverse social media,” in
Proceedings of the 23rd International Conference on World Wide Web.
ACM, 2014, pp. 407–408.

[39] L. Cai, G. Zhou, K. Liu, and J. Zhao, “Large-scale question classification
in cqa by leveraging wikipedia semantic knowledge,” in Proceedings of
the 20th ACM international conference on Information and knowledge
management. ACM, 2011, pp. 1321–1330.

[40] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”
Dept. of Informatics, Aristotle University of Thessaloniki, Greece, 2006.

[41] M.-L. Zhang and Z.-H. Zhou, “Ml-knn: A lazy learning approach to
multi-label learning,” Pattern recognition, vol. 40, no. 7, pp. 2038–2048,
2007.

