
Deterministic Replay for MCAPI Programs

Mohamed Elwakil Zijiang Yang
Department of Computer Science

Western Michigan University
Kalamazoo, MI 49008

Department of Computer Science
Western Michigan University

Kalamazoo, MI 49008

mohamed.elwakil@wmich.edu zijiang.yang@wmich.edu

ABSTRACT
The Multicore Communications API (MCAPI) is a new message
passing API that was released by the Multicore Association.
MCAPI provides an interface designed for closely distributed
embedded systems with multiple cores on a chip and/or chips on
a board. Similar to concurrent programs in other domains,
debugging MCAPI programs is a challenging task due to their
non-deterministic behavior. In this paper we present a tool that
is able to deterministically replay the executions of MCAPI
programs, which provides valuable insight for MCAPI
developers in case of failure.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability

Keywords
MCAPI, message race, multicore programs, debugging,
deterministic replay

1. INTRODUCTION
The Multicore Association has developed the Multicore
Communications API (MCAPI) specification and its reference
implementation to address inter-core communication needs in
multi-core programs. MCAPI is different from the Message
Passing Interface (MPI) [1], a widely used standard for
managing coarse-grained concurrency on distributed computers.
While MPI is intended for inter-computer communication and
needs to be installed on top of an operating system, MCAPI is
intended for inter-core communication and can be installed on
top of an operating system or an extremely thin run-time
environment such as a hypervisor. A major design goal of
MCAPI is to function as a low-latency interface benefiting from
efficient on-chip interconnects in a multi-core chip. Thus,
MCAPI is a light weight API that delivers high performance and
needs a tiny memory footprint that is significantly lower than
that of MPI [2].

In the traditional approach to debugging, a program is repeatedly
executed under the control of a debugger to allow the user to
obtain more information about the program states and
intermediate results. This debugging approach is not viable for
MCAPI programs as they suffer from the irreproducibility effect
[3] due to their intrinsic non-determinism. The fact that two
subsequent runs under the same input are not guaranteed to
behave the same makes debugging MCAPI programs a
challenging task. Such challenges facing MCAPI developers,
however, are certainly not new. Similar to MCAPI, MPI
programs exhibit non-deterministic behaviors. A common
technique for aiding debugging MPI programs is using record
and replay tools. During the recording phase, a program
execution is monitored to record information about the
execution. If an execution fails, the recorded data is retrieved to
replay the program such that the behavior of the program during
the replay phase is equivalent to the behavior observed in the
recording phase.

MPI record and replay tools typically fall into two categories:
data-replay [4] and order-replay [5]. During the recording phase,
data-replay tools record the contents of all received messages at
all processes in a trace. During the replay phase, some processes
are run while others are simulated. The messages sent by the
simulated processes originate from the trace file. Data-replay
allows replaying one process, rather than all processes of a
program, at a cost of large trace files. On the other hand, order-
replay tools record the outcomes of non-deterministic operations
and enforce these outcomes during replay. In the order-replay
approach, all processes must be running during a replay. Since
order-replay tools only record the outcomes of non-deterministic
operations, it records far less data than data-replay tools.

In this paper, we present DR-MCAPI, which allows
Deterministic Replay of MCAPI programs. DR-MCAPI adopts
the order-replay approach due to the following two reasons: (1)
because of the unpredictable nature of MCAPI programs
executions, recording is needed in all executions including
successful ones. In comparison, replaying is needed only when
errors have been discovered and the developers need to
scrutinize the details. Therefore, recording is more sensitive to
performance. In fact, the record and replay technique is most
useful if it could be used in production runs. This can only
happen if the overhead of recording become negligible; (2) for
most concurrency bugs it is desirable to replay all relevant
processes with corresponding message exchanges in correct total
order instead of replaying each process in isolation. In fact,
inferring correct total orders has been the focus of recent studies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PADTAD’11, July 17, 2011, Toronto, ON, Canada

Copyright 2011 ACM 978-1-4503-0809-0/11/07... $10.00.

on hardware based execution replay tools for concurrent systems
(c.f. [6] and [7]).

Although there exist several record and replay tools for MPI
programs, deterministic replay for MCAPI is different due to the
different semantics of its communication primitives. For
example, there is no notion of message source, but only
destination endpoints in MCAPI. Thus unlike MPI applications
it is not possible to identify the source of a received message. To
our best knowledge, DR-MCAPI is the first such tool for
MCAPI programs. The rest of the paper is organized as follows.
In section 2, we briefly explain the MCAPI syntax and highlight
the sources of non-determinism in a MCAPI program. Then in
section 3, we describe the design of DR-MCAPI. The
experimental results are presented in section 4, followed by the
related works in section 5. Finally, section 6 concludes the
paper.

2. NON-DETERMINISM IN MCAPI

PROGRAMS
In MCAPI programs, a core is referred to as a node.
Communication between nodes occurs through endpoints. A
node may have one or more endpoints and an endpoint is
uniquely defined by a node identifier and a port number. The
MCAPI specification supplies APIs for initializing nodes,
creating and deleting endpoints, obtaining addresses of remote
endpoints, and sending and receiving messages. The functions
used for sending and receiving messages are: mcapi_msg_send,
mcapi_msg_send_i, mcapi_msg_recv, and mcapi_msg_recv_i.

The functions mcapi_msg_send and mcapi_msg_send_i send
messages, asynchronously, between two endpoints. While
mcapi_msg_send blocks till the message has been copied from a
program buffer to the MCAPI runtime buffers,
mcapi_msg_send_i is non-blocking and returns immediately
before that data has been completely copied. The functions
mcapi_msg_recv and mcapi_msg_recv_i retrieve messages from
the MCAPI runtime buffers. The function mcapi_msg_recv
blocks till a message has been retrieved from the runtime buffer,
while mcapi_msg_recv_i is non-blocking and returns
immediately even if there are no messages in the buffer. MCAPI
receive calls are called promiscuous as they permit receiving
messages from any source endpoint.

The MCAPI specification provides request variables and the
mcapi_wait, mcapi_wait_any and mcapi_test functions to track
the status of a non-blocking function call. A non-blocking
function takes a request variable as an input and initializes it by
setting its value to pending. Calling mcapi_wait with a request
variable R blocks execution till the non-blocking operation that
initialized R has completed. Invoking mcapi_wait_any with an
array of request variables Rs blocks execution till any of the
operations in Rs has completed. The mcapi_wait_any returns the
index of the completed request. The mcapi_test function
succeeds (i.e. returns true) if its input request has completed,
fails (i.e. returns false) otherwise.

There are two rules that govern the order of messages arrivals at
a destination endpoint: 1) Messages sent from the same source
endpoint to the same destination endpoint are guaranteed to
arrive at their destination according to their transmission order

and 2) Messages sent from different source endpoints will arrive
at their destination in any order, even if these source endpoints
belong to the same node. The second rule combined with the
fact that mcapi_msg_recv and mcapi_msg_recv_i calls don’t
specify the source endpoint, make it possible for message races
to take place. Two or more messages are said to be racing if
their order of arrival at a destination (i.e. an endpoint) is non-
deterministic [8].

Figure 1 shows a MCAPI program with message races. A node
creates a single endpoint (line 3) and sends messages to all other
nodes (lines 4-8) and is expecting to receive a message from all
other nodes (lines 9-10). Assuming there are N nodes, any node
should receive N-1 messages that are racing with each other. The
orders of message arrivals can change across different
executions of the program (i.e. the final values in the Buffer
array will be different with different executions); leading to the
irreproducibility effect.

1 N=NodesCount();
2 mcapi_init_node(ThisNode);
3 LocalEP=mcapi_create_ep(ThisNode,1);
4 for (Index=0;Index<N;Index++){
5 if (Index==ThisNode) continue;
6 RemoteEP=mcapi_get_ep(Index,1);
7 mcapi_msg_send(LocalEP,RemoteEP,&Data[Index]);
8 }

9 for (Index=0;Index<N-1; Index++)
10 mcapi_msg_recv(LocalEP,&Buffer[Index]);
11 mcapi_delete_ep(LocalEP);
12 mcapi_finalize_node(ThisNode);

Figure 1. A MCAPI program with message races

Another source of non-determinism in MCAPI programs is the
mcapi_wait_any call. In Figure 2, a node has two endpoints and
is expecting to receive a message at each endpoint (lines 4-5).
mcapi_wait_any blocks execution until either one of the two
messages is received. Depending on which endpoint receives a
message first, the value of ReqIndex may be different across
executions of the program, which results in different branches of
the switch being selected in different executions.

1 mcapi_init_node(ThisNode);
2 LocalEP1=mcapi_create_ep(ThisNode,1);
3 LocalEP2=mcapi_create_ep(ThisNode,2);
4 mcapi_msg_recv_i(LocalEP1,&Buffer1,Requests[0]);
5 mcapi_msg_recv_i(LocalEP2,&Buffer2,Requests[1]);
6 ReqIndex=mcapi_wait_any(Requests);
7 switch (ReqIndex) {
8 case 0: …
9 case 1: …
10 }
11 mcapi_delete_ep(LocalEP1);
12 mcapi_delete_ep(LocalEP2);
13 mcapi_finalize_node(ThisNode);

Figure 2. A MCAPI program with mcapi_wait_any

Using the non-blocking mcapi_test introduces non-determinism
as well. In Figure 3, a node is expecting to receive a message at
a local endpoint. The function mcapi_test is used to determine
whether the expected message has arrived. The number of times
mcapi_test returns false, and consequently the value of variable
A at line 5, is dependent on uncontrollable factors such as the
current core workload and the inter-core communication latency.

1 mcapi_init_node(ThisNode);
2 LocalEP=mcapi_create_ep(ThisNode,1);
3 mcapi_msg_recv_i(LocalEP,&Buffer,Request);
4 while (!mcapi_test(Request)) A++;
5 func_call(A);

6 mcapi_delete_ep(LocalEP);

7 mcapi_finalize_node(ThisNode);

Figure 3. A MCAPI program with mcapi_test

In summary, besides user inputs and random value generations,
there are three additional sources of non-determinism in MCAPI
programs: 1) mcapi_msg_recv and mcapi_msg_recv_i calls, 2)
mcapi_wait_any calls and 3) mcapi_test calls. Such inherent non-
deterministic behavior does not permit repeated execution as a
reliable mean of debugging MCAPI programs. Hence,
introducing the ability to replay an observed MCAPI program
execution can significantly help MCAPI programs developers.

3. DR-MCAPI
Figure 4 depicts the workflow of our tool for deterministic

replay of MCAPI programs. DR-MCAPI consists of two parts: a

source code instrumenter and a MCAPI library wrapper (DR-

MCAPI Library). The instrumenter replaces calls to the MCAPI

library routines in an input program with calls to the DR-

MCAPI library. Figure 5 shows the result of instrumenting the

program in Figure 1. We use the ROSE compiler [9] to automate

the instrumentation process. It is possible to avoid the

instrumentation process by modifying the MCAPI library itself.

However, such approach reduces the portability of DR-MCAPI

and makes it implementation-specific. That defeats one of the

goals of MCAPI of being an API standard with different

implementations for different platforms. For example, DR-

MCAPI, without any changes, is compatible with the new

OpenMCAPI implementation [10].

Figure 4: DR-MCAPI Workflow

The instrumented program is then compiled into an executable,
which runs in one of two possible modes: record mode or replay
mode. While a program is running in the record mode, calls to
the DR-MCAPI library routines will use internal data structure
to record certain information in addition to invoking the
corresponding MCAPI library routines. For example, a call to
dr_create_ep will add a new endpoint to a list of endpoints

maintained for every node before invoking mcapi_create_ep.
The recorded information is eventually stored to the disk.

1 N=NodesCount();
2 dr_init_node(ThisNode);
3 LocalEP= dr_create_ep(ThisNode,1);
4 for (Index=0;Index<N;Index++){
5 if (Index== ThisNode) continue;
6 RemoteEP= dr_get_ep(Index,1);
6 dr_msg_send(LocalEP,RemoteEP,&Data[Index]);

7 }

8 for (Index=0;Index<N-1; Index++)
9 dr_msg_recv(LocalEP,&Buffer[Index]);
10 dr_delete_ep(LocalEP);
11 dr_finalize_node(ThisNode);

Figure 5. An instrumented MCAPI program

If a MACPI program is executed in the replay mode, the trace
information is loaded into memory and used by DR-MCAPI
library to enforce an execution that is equivalent to the one
observed when the program was running in the record mode.
The replay mode is described in section 3.2

3.1 The Trace Structure
When an instrumented program is run in the record mode, a
separate trace is generated for every MCAPI node. A node’s
trace contains a sequence of records that captures the program
behavior during the execution. There are 7 types of records that
are recorded in the trace.

A ���� record originates from a msg_recv call and is defined as

a tuple: ���� ∈ ���	 × ��������� × ��ℎ . ���	 is the port
number of the receiving endpoint, ��������� is the invocation
order of this particular msg_recv call among other msg_recv
calls at the same node, and ��ℎ is a hash-code of the received
data calculated using the CRC-32 algorithm [11]. Figure 6
depicts three programs and their respective traces. The letters
prefixed to trace records are shorthand for the records types. As
shown in Figure 6a, endpoint with port number 1 at node 3
receives two messages (lines 8-9) that are sent from node 1 and
node 2, respectively. The two records in the trace correspond to
the arrival of two messages. In the first trace record (R:1/0/C0),
1 is the port number of the receiving endpoint, 0 is the order of
the msg_recv call with respect to other msg_recv calls with the
same endpoint and C0 signifies the hash-code of the received
data.

A ���	 record originates from a wait call whose input request
variable was initialized by a call to the function msg_recv_i. It is
defined as ���	 ∈ ������	����� × ��ℎ . ������	����� is
the initialization order of the wait function input request variable
at the current node. In the program shown in Figure 6b, the
request variable R1 was the first request variable initialized in
this node (line 9) and hence its initialization order
(������	�����) is 0. The trace record (W:1/C1), corresponding
to line 19 in the source code indicates that a wait call retrieved a
message with hash-code C1. In this record 1 is the initialization
order of the request variable (R2).

Node 1:
1 LocalEP=create_ep(1,1);
2 RemoteEP=get_ep(3,1);
3 msg_send(LocalEP,RemoteEP,M1);

Node 2:
4 LocalEP=create_ep(2,1);
5 RemoteEP=get_ep(3,1);
6 msg_send(LocalEP,RemoteEP,M2);

Node 3:
7 LocalEP=create_ep(3,1);
8 msg_recv(LocalEP,&D1);
9 msg_recv(LocalEP,&D2);

Node 1:
1 LocalEP=create_ep(1,1);
2 RemoteEP=get_ep(3,1);
3 msg_send(LocalEP,RemoteEP,M1);

Node 2:
4 LocalEP=create_ep(2,1);
5 RemoteEP=get_ep(3,1);
6 msg_send(LocalEP,RemoteEP,M2);

Node 3:
7 LocalEP=create_ep(3,1);
8 A=0;
9 msg_recv_i(LocalEP,&D1,&R1);
10 msg_recv_i(LocalEP,&D2,&R2);
11 while(!test(R1))
12 {do_something();}
13 while(A<5)
14 {
15 if (test(R2)) break;
16 do_something();
17 A++;
18 }
19 if (A==5) wait(R2);

Node 1:
1 LocalEP=create_ep(1,1);
2 RemoteEP=get_ep(3,1);
3 msg_send(LocalEP,RemoteEP,M1);

Node 2:
4 LocalEP=create_ep(2,1);
5 RemoteEP=get_ep(3,1);
6 msg_send(LocalEP,RemoteEP,M2);

Node 3:
7 LocalEP=create_ep(3,1);
8 msg_recv_i(LocalEP,&D1,Rs[0]);
9 msg_recv_i(LocalEP,&D2,Rs[1]);
10 msg_recv_i(LocalEP,&D3,&R);
11 Index=wait_any(Rs);
12 if (Index==0)
13 wait(Rs[1]);
14 else
15 wait(Rs[0]);
16 wait(R);

Trace: Trace: Trace:
R:1/0/C0
R:1/1/C1

T:0/10/C0
N:1/5
W:1/C1

A:0/1/C0
W:0/C1
W:2/C2

(a) (b) (c)

Figure 6. MCAPI programs and their traces

A �������		record originates from a sequence (one or more) of
test calls whose input request variable was initialized by a
msg_recv_i call and does retrieve a message from the runtime
buffers. It is defined as �������		 ∈ ������	����� × ����	 ×

��ℎ, such that ����	 is the number of times the test call had
failed, before succeeding and retrieving a message. In Figure 6b,
the trace record (T:0/10/C0) means that a message with hash-
code C0 was retrieved by the 11th invocation of a test call whose
input request variable was the first to be initialized at this node.

Similarly, a ����������	 record stems from a sequence of test

calls. However, the ����������	 record indicates that no
messages were retrieved from the runtime buffers. That occurs
when the input request variable was initialized by a non-
blocking function other than msg_recv_i or when the input
request variable was initialized by a msg_recv_i call and the
sequence of test calls doesn’t retrieve a message from the
runtime buffers. In the second trace record in Figure 6b (N:1/5),
number 5 means that a test call was invoked five times and
number 1 means that the test call input request variable was the
second request variable to be initialized at this node.

A Recv���� record comes from a wait_any call that returned
the index of a request variable that was initialized by a
msg_recv_i call and is defined as: �������� ∈ ��������� ×

���� × ��ℎ . ��������� is the order of this particular

wait_any call among other wait_any calls at this node. ���� is
the index returned by the wait_any call. The trace record
(A:0/1/C0) in Figure 6c is explained as follows: number 0 means
that this record comes from the first invocation of a wait_any
call at this node, number 1 means that the wait_any call returned
1 and C0 signifies the hash-code of the retrieved message.

The record ����������� is defined as: ����������� ∈

��������� × ���� and indicates that a wait_any call
returned the index of a request variable that was initialized by a
non-blocking function other than msg_recv_i.

A ���� record represents a single invocation of the rand
function and is defined as: ���� ∈ ��������� × !�"�� .

��������� is the invocation order of this particular rand call

among other rand calls at this node. 	!�"�� is the random
number returned by the rand call.

Note that the traces in Figure 6 belong to the third node in the
three programs. Trace records correspond to 1) retrieving a
message from the runtime buffers, 2) test invocations, or 3)
wait_any invocations. None of these appears in nodes 1 and 2.

3.2 The Replay Mode
To realize a correct replay of a program, it is necessary to
associate endpoints, request variables and certain calls that were
observed during the record mode with their counterparts in the
replay mode. An endpoint observed in the replay mode is
associated with the corresponding endpoint in the record mode
via the node identifier and the port number, both of which
remain the same across executions. Request variables are
tracked across executions in the record mode and the replay
mode using their order of initialization in a node. For example,
in Figure 6b, the request variable that was initialized first will
always be the request variable that is passed to the test call in
line 11. Similarly, msg_recv, wait_any and rand calls are tracked
by their invocation order with respect to other msg_recv,
wait_any and rand calls, respectively.

To enable the replay mode, we maintain three data structures. 1)
������� : a list of the trace records (e.g. ���� , ���	…). 2)

������	!����#"��: a list of request variables per node. This list
combines data from the trace and data that are obtained on-the-
fly during the execution in replay mode. When a request
variable is initialized (by being passed to a non-blocking call), a
new item is appended to this list. If the request variable is
initialized by a non-blocking receive call, we keep track of the
receiving endpoint and the destination buffer pointer. If the trace
indicates that test calls were used to check the status of this
request in the record mode, then the number of failed tests is
retrieved from the trace and associated with that request. All
newly initialized requests are flagged as incomplete.
3) 	��������$����%�� : messages that arrive earlier than
expected are stored in this list along with their hash-codes.

The algorithm in Figure 7 handles dr_msg_recv calls. First
RecvCalls is incremented (line 1). RecvCalls keeps track of the
number of dr_msg_recv function invocations at the node.
Second, the GetRecvRecord procedure looks up the ������� list

to fetch the ���� record with ���������=RecvCalls (line 2).
Third, the hash-code of the expected message is retrieved (line
3). Next, ��������$����%�� is looked up for a message whose
hash-code matches the expected hash-code. If such a message is
found, then its data is copied to the program buffer (line 7) and
then removed from ��������$����%�� (line 8). Otherwise, the
mcapi_msg_recv is repeatedly invoked till it retrieves a message
whose hash-code matches the expected hash-code (lines 11-22).
When the excepted message arrives, it is copied to the program
buffer (line 16) and then removed from ��������$����%��
(line 17). All other messages and their hash-codes are appended
to ��������$����%�� (line 21).

dr_msg_recv(Endpoint, &Buffer)
1 RecvCalls++;

2 RecvRecord=GetRecvRecord(RecvCalls);

3 ExpectedCRC=RecvRecord.Hash;

4 for Index=0 to RecievedMessages.size do

5 if (RecievedMessages[Index].CRC==ExpectedCRC)

6 then

7 copy(Buffer, RecievedMessages[Index]);

8 free(RecievedMessages[Index]);

9 return;

10 end-if

11 while(true) do

12 mcapi_msg_recv(Endpoint,&TempBuffer);

13 ArrivedCRC=CalculateCRC(TempBuffer);

14 if (ArrivedCRC==ExpectedCRC)

15 then

16 copy(Buffer, TempBuffer);

17 free(RecievedMessages[Index]);

18 return;

19 end-if

20 else

21 RecievedMessages.Append(TempBuffer, ArrivedCRC);

22 end-while

Figure 7. The dr_msg_recv procedure

In the program in Figure 6a, node 3 receives two messages.
Let’s assume that when running that program in the record

mode, it generates the trace in the figure (i.e. the first msg_recv
call retrieves a message with hash-code C0 and the second
msg_recv call retrieves a message with hash-code C1). Let’s
assume that during running the program in the replay mode, the
message with hash-code C1 arrives first. During the replay mode
execution, when dr_msg_recv is invoked for the first time, the
��������$����%�� list will be empty. Hence, the while loop
(lines 11-22) will iterate twice. In the first iteration, the
mcapi_msg_recv call will retrieve the message with hash-code
C1. Since the retrieved message is not the excepted one, it will
be added to the ��������$����%�� list (line 21). In the second
iteration, the mcapi_msg_recv call will retrieve the message with
hash-code C0, which is the expected message and it will be
delivered to the program (line 16). When dr_msg_recv is
invoked for the second time, the ��������$����%�� list will
contain the expected message (with hash-code C1) and it will be
returned to the program (line 7).

Figure 8 shows the algorithm that handles a dr_wait call whose
input request variable was initialized by a msg_recv_i call. This
algorithm depends on the ������	!����#"�� list that links a
request variable with the endpoint and the program buffer
pointer that were passed to the msg_recv_i call.

dr_wait(Request)
1 if not IsRecvRequest(Request) then

2 return mcapi_wait(Request);

3 end-if
4 InitOrder=GetInitOrder(Request);

5 WaitRecord=GetWaitRecord(InitOrder);

6 ExpectedCRC=WaitRecord.Hash;

7 BufferPtr=GetBufferPtr(Request);

8 Endpoint=GetEndpoint(Request);

9 Requests=GetRequests(CurrentNode);

10 for Index=0 to Requests.size() do

11 if (Requests[Index].isComplete) then continue;

12 mcapi_wait(Requests[Index]);

13 ArrivedData=GetData(Requests[Index]);

14 ArrivedCRC=CalculateCRC(ArrivedData);

15 RecievedMessages.Append(ArrivedData,ArrivedCRC);

16 Requests[Index].setComplete();

17 end-for

18 for Index=0 to RecievedData.size() do

19 if (RecievedMessages[Index].CRC==ExpectedCRC)

20 then

21 copy(BufferPtr, RecievedMessages[Index]);

22 free(RecievedMessages[Index]);

23 return;

24 end-if

25 end-for

Figure 8. The dr_wait procedure

First, if the input request was not initialized by a dr_msg_recv_i
call, then it is forwarded to the MCAPI library (lines 1-3).
Otherwise, the hash-code of the expected message, the endpoint
and the program buffer pointer associated with the input request
variable are retrieved (lines 4-8). Second, mcapi_wait is invoked
for all initialized (but not completed) requests at that node and
retrieved messages and their hash-codes are appended to

��������$����%�� (lines 9-17). Finally, ��������$����%��

is looked up for a message whose hash-code matches the
expected hash-code. When such message is found, it is copied to
the buffer associated with the input request variable (line 21)
and then removed from ��������$����%�� (line 22).

Figure 9 describes how DR-MCAPI handles dr_wait_any calls.
First, WaitanyCalls is incremented (line 1). WaitanyCalls keeps
track of the number of dr_wait_any function invocations at the
node. If the current dr_want_any call retrieves a message, then
the GetRecvWanyRecord procedure looks up the ������� list to

fetch the �������� record with 	��������� =WaitanyCalls

(line 3). In line 4, the ���� in the �������� record is
retrieved and the request in the Requests array at ���� will be
forwarded to dr_wait (line 5). If the current dr_want_any call
doesn’t retrieve a message, then the GetNRecvWanyRecord
procedure looks up the ������� list to fetch the

����������� record with 	��������� =WaitanyCalls (line

7). In line 8, the ���� in the ����������� record is
retrieved and the request in the Requests array at ���� will be

forwarded to mcapi_wait (line 9). Finally, ���� is returned to
the application (line 11).

dr_wait_any(Requests)
1 WaitanyCalls++;

2 if RecvWany(WaitanyCalls) then

3 RecvWanyRecrd=GetRecvWanyRecord(WaitanyCalls);

4 Index=RecvWanyRecord.Index;

5 dr_wait(Requests[Index]);

6 else

7 NRecvWanyRecrd=GetNRecvWanyRecord(WaitanyCalls);

8 Index=NRecvWanyRecrd.Index;

9 mcapi_wait(Requests[Index]);

10 end-if

11 return Index;

Figure 9. The dr_wait_any procedure

In the program in Figure 6c, node 3 receives three messages.
Let’s assume that when running that program in the record
mode, it generates the trace in the figure (i.e. the wait_any call
returns 1 and retrieves a message with hash-code C0, the wait
call in line 15 retrieves a message with hash-code C1, and the
wait call in line 16 retrieves a message with hash-code C2).
Let’s assume that during replay, the messages arrive with a
different order (C2, C0 then C1). When dr_wait_any is invoked,
it is going to determine that the request at index 1 of the array
������	� was initialized by a msg_recv call and will forward
this request to dr_wait. In dr_wait, the first loop (lines 10-17)
will retrieve the three messages via three calls to mcapi_wait

(line 12) and they will be added to the ��������$����%�� list
(line 15). The second loop in dr_wait (lines 18-25) will iterate
through the ��������$����%�� list and will return the message
with hash-code C0 to the application. When dr_wait is invoked
to handle the wait calls at lines 15 and 16 (in Figure 6c), the
messages with hash-codes C1 and C2 will be already in the
��������$����%�� list and will be returned to the application
at the correct order.

A dr_test call is handled by the algorithm in Figure 10. First, the
initialization order of the input request variable (Request) is
retrieved (line 1). If that request variable is associated with an

&�����"���	 record, then the ����	 of this record is reduced by

one (line 4). If ����	 reaches zero, the request is forwarded to
dr_wait and true is returned to the application (lines 8-9). If that
request variable is associated with a ���&�����"���	 record,
then the ����	 of this record is reduced by one (line 13). If

����	 reaches zero, the request is passed to mcapi_wait and true
is returned to the application (lines 17-18).

In the program in Figure 6b, node 2 receives two messages.
Let’s assume that when run in the record mode, this program
generates the trace in the figure (i.e. the test call in line 11 fails
10 times then succeeds and retrieves a message with hash-code
C0 at the 11th invocation, the test call in line 15 fails 5 times and
the wait call in line 12 retrieves a message with hash-code C1).
Let’s assume that during replay, the messages arrive with a
different order (C1 then C0). When dr_test is invoked to handle
the test call at line 11, it will return false for 10 times (lines 5-6)
and after that, it will invoke dr_wait (line 8) to retrieve the
message with hash-code C0. When dr_test is invoked to handle
the test call at line 15, it will return false for 5 times. Finally, the
dr_wait call in (line 19 in Figure 6b) will retrieve the message
with hash-code C1.

bool dr_test(Request)
1 InitOrder=GetInitOrder(Request);

2 if ArrivalTest(InitOrder) then

3 ArrivalTestRecord=GetArrivalTestRecord(Order);

4 ArrivalTestRecord.Count--;

5 if ArrivalTestRecord.Count>0 then

6 return false;

7 else

8 dr_wait(Request);

9 return true;

10 end-if

11 else

12 NArrivalTestRecord=GetNArrivalTestRecord(Order);

13 NArrivalTestRecord.Count--;

14 if NArrivalTestRecord.Count>0 then

15 return false;

16 else

17 mcapi_wait(Request);

18 return true;

19 end-if

20 end-if

Figure 10. The dr_test procedure

4. EXPERIMENTAL EVALUATION
Due to the lack of publicly available MCAPI benchmarks, we
performed experiments on three sets of MCAPI programs
developed internally and a set of programs obtained from an
external source [12]. Our experiments were conducted on a
machine with Core 2 Duo 1.4 GHz CPU and 4GB RAM using
MCAPI runtime V1.063. We evaluate DR-MCAPI using the
following set of programs:
1. Binary tree benchmark: This is a set of 10 programs that

create networks of nodes with sizes from 3 nodes to 21
nodes. Each two nodes send a message to the same parent
node forming a binary tree in which messages travel from
the leaves to the root node. The smallest tree has 3 nodes
and exchanges 20 messages. The largest one has 21 nodes

and exchanges 155 messages. This benchmark has a
master/slave communication pattern.

2. Complete graph benchmark: This is a set of 10 programs
that create networks of nodes with increasing sizes from 2
nodes to 13 nodes. All nodes send and receive messages
to/from each other forming a complete graph. The number
of exchanged messages is between 20 message (for a 2
nodes graphs) and 1560 messages (for a 13 nodes graph).
This benchmark has an all-to-all communication pattern.

3. 10-nodes benchmark: In this benchmark, the number of
nodes is fixed to 10, but the number of messages
exchanged increases with every program. This allows us to
isolate the effect of the number of messages on
performance. There are 10 programs in this benchmark.

4. Bully benchmark: This is a MCAPI implementation of the
Bully leader selection algorithm [13] provided by the V&V
research group at Brigham Young University.

Figure 11 shows the results of the binary tree benchmark. Figure
11a compares the recording, replay time and baseline time of
running the programs of the benchmark. The average percentage
increase in recording time is 49% while the average percentage
increase in replay time is 127%. Figure 11b compares the
memory usage while recording, replaying and in a baseline
execution. The average percentage increase in memory usage in
the recording mode is 167% while it is 174% during replay
mode. Figure 11c shows the size of the trace file with respect to
the number of exchanged messages.

(a)

(b)

(c)

Figure 11. Results of the binary tree benchmark

Figure 12 shows the results of the complete graph benchmark.
The average percentage increase in recording time is 33% while
the average percentage increase in replay time is 84%. The
average percentage increase in memory usage in the recording
mode is 193% while it is 211% during replay mode.

(a)

(b)

(c)

Figure 12. Results of the complete graph benchmark

Figure 13 shows the results of the 10-nodes benchmark. The
average percentage increase in recording time is 32% while the
average percentage increase in replay time is 75%. The average
percentage increase in memory usage in the recording mode is
195% while it is 222% during replay mode.

(a)

(b)

(c)

Figure 13. Results of the 10-nodes benchmark

The single program in the Bully benchmark had a 22% and 51%
time increase in the recording mode and replay mode,
respectively and 99% and 117% memory usage increase in the
recording mode and replay mode, respectively. The experiments
show that the average time increase is 38% in the recording
mode and 96% in the replay mode and that the average memory
usage increase in 184% in the recording mode and 203% in the
replay mode. We are experimenting with check-pointing to
reduce the memory usage increase. In all benchmarks, the log
size increases linearly with respect to the number of messages.

5. RELATED WORK
MPI [1] has been the dominating message-passing software
development standard. Hence, the current literature on replaying
message-passing software is almost limited to MPI programs. In
[4], Kranzlmuller et al. present a record and replay mechanism
for MPI that adopts the order-replay approach and handles both
promiscuous receive calls and test operations. Their approach is
based on modifying the MPICH library source code. Different
than MCAPI, not all MPI receive calls are promiscuous. MPI
receive calls have a source parameter that can be used to state a
specific sender process. If the source parameter is set to
MPI_ANY_SOURCE, then the receive call may receive a
message from any process allowing message races, otherwise,
no message races can take place. Receive calls with
MPI_ANY_SOURCE are handled by storing the identifier of the
source process of the message that was received during the
recording phase. During replay, when the source parameter of a
receive call is MPI_ANY_SOURCE, it is replaced with the
source process identifier obtained during the recording phase.
This approach is not applicable to MCAPI programs since their
receive calls (msg_recv and msg_recv_i) do not specify a source
parameter. Test operations are handled by counting the number
of consecutive failing test operations associated with the same
request variable during the recording phase. In the replay phase,
test operations are forced to fail (i.e. return false) till the

recorded number of failed tests has reached. They report a
200% time increase in the recording phase. Also, this approach
is library-dependent (based on the MPICH library) which limits
its portability to other MPI implementations.

In [5], the authors disabuse the impracticality of data-replay and
argue that the ability to replay one process justifies the excessive
logging overhead. They implement their data-replay mechanism
as a layer between the application and the MPI library. Recorded
data includes: MPI function calls return values and the contents
and the source processes identifiers of received messages.
During replay, when the application posts a receive call; the
data-replay layer returns the data recorded at the corresponding
receive call during the recording phase. In other words, receive
calls are simulated rather than being executed. As expected, the
log size is 100’s of times larger than when order-replay is used.
In one experiment, the data log was 907MB while an order-
replay would produce 0.84MB for the same program. The disk
space requirement of this approach is prohibitively large for
long-running applications. Unfortunately the approaches
described in [4] and [5] don’t capture all forms of non-
determinism in MPI programs, making it difficult to ensure a
completely faithful replay.

The authors of [14] propose subgroup-reproducible replay
(SRR) which combines order-replay and data-replay. During the
recording phase, disjoint groups of processes are formed and the
contents of messages crossing group boundaries are recorded.
The contents of the messages that are sent and received within a
group are not recorded, but the order of arrival of such messages
is recorded. This approach allows replaying a specific group of
processes independently of other groups. During replay of a
group, messages coming from outside that group are reproduced
from the log; inter-group messages are produced through direct
execution. Setting the size and the membership of groups can be
done manually by the user or automated based on
communication locality. Performance evaluation of the SRR
approach shows that it increases the runtime by an average of
120% during the recording phase and generates a log that is half
the size of the log generated by a pure data-replay approach.
Also this work handles all non-determinism sources in MPI
programs.

Another related tool is MCC [15] which implements an
automated approach for verifying MCAPI programs. MCC
creates a scheduling layer above the MCAPI runtime layer that
allows intercepting MCAPI calls and discovering potentially
matching send/receive ones. This allows MCC to explore all
possible execution scenarios resulting from different orders of
messages’ arrival. MCC uses DPOR [16] technique to reduce
the number of examined execution scenarios. MCC handles only
promiscuous receive calls making it unsuitable for any programs
using mcapi_test and mcapi_wait_any calls.

6. CONCLUSION
To the best of our knowledge, DR-MCAPI is the first replay tool
that considers all non-determinism sources in MCAPI programs.
DR-MCAPI introduces deterministic replay capabilities to
MCAPI developers, thus, allowing detecting bugs induced by
message-races and time-dependent events via cyclic debugging
[17]. During a recording phase, an unobstructed execution of the
input program is monitored to produce a trace that contains the

outcomes of non-deterministic MCAPI operations. During a
replay phase, the stored trace is used to enforce an execution that
is equivalent to the one observed in the recording phase. This
allows the programmer to repeatedly execute the program under
supervision of a debugger to catch flaws. Our approach imposes
an average of 38% and 96% time overhead in the recording
phase and replay phase, respectively. We are currently
developing an Eclipse plugin that uses the replay mechanism as
a back-end to allow the user to perform interactive debugging.
Also, we plan to reduce the memory usage by using check-
pointing and compression techniques.

ACKNOWLEGEMENT: We would like to thank Dr. Eric
Mercer and his group for providing us the Bully benchmark. The
work was supported in part by NSF under contract CCF-
0811287, and by ONR under Grant N000140910740.

7. REFRENCES
[1] “MPI: A Message-Passing Interface Standard,”

http://www.mpi-forum.org/docs/mpi-2.2/index.htm, [Online;

accessed 28-April-2011].

[2] S. Brehmer, “The Multicore Association Communications

API,” http://www.multicore-

association.org/workgroup/mcapi.php, March 2010, [Online;

accessed 28-April-2011].

[3] D. F. Snelling and G.-R. Hoffmann, “A comparative study

of libraries for parallel processing,” Parallel Computing, vol. 8,

no. 1-3, pp. 255 – 266, 1988, proceedings of the International

Conference on Vector and Parallel Processors in Computational

Science III.

[4] D. Kranzlmüller, C. Schaubschläger, and J. Volkert, “An

integrated record&replay mechanism for nondeterministic

message passing programs,” in Proceedings of the 8th European

PVM/MPI Users’ Group Meeting on Recent Advances in

Parallel Virtual Machine and Message Passing Interface.

London, UK: Springer-Verlag, 2001, pp. 192–200.

[5] M. Maruyama, T. Tsumura, and H. Nakashima, “Parallel

program debugging based on data-replay.” in IASTED

PDCS’05, 2005, pp. 151–156.

[6] D. Lee, M. Said, S. Narayanasamy, Z. Yang, and C. Pereira,

“Offline symbolic analysis for multi-processor execution

replay,” in Proceedings of the 42nd Annual IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO 42.

New York, NY, USA: ACM, 2009, pp. 564–575. [Online].

Available: http://doi.acm.org/10.1145/1669112.1669182

[7] D. Lee, M. Said, S. Narayanasamy, and Z. Yang, “Offline

symbolic analysis to infer total store order,” in High

Performance Computer Architecture (HPCA), 2011 IEEE 17th

International Symposium on, feb. 2011, pp. 357 –358.

[8] R. H. B. Netzer, T. W. Brennan, and S. K. Damodaran-

Kamal, “Debugging race conditions in message-passing

programs,” in Proceedings of the SIGMETRICS symposium on

Parallel and distributed tools, ser. SPDT ’96. New York, NY,

USA: ACM, 1996, pp. 31–40.

[9] D. J. Quinlan, “ROSE: Compiler Support for Object-

Oriented Frameworks,” Parallel Processing Letters, vol. 10, no.

2/3, pp. 215–226, 2000.

[10] M. Levy, “Mentor Releases Open Source of MCAPI for

Multicore,” http://www.multicore-

association.org/press/030211.html, March 2011, [Online;

accessed 28-April-2011].

[11] Ross Williams, “A Painless Guide to CRC Error Detection

Algorithms V3.00,” http://www.ross.net/crc/crcpaper.html,

April 2010, [Online; accessed 28-April-2011].

[12] E. Mercer, “Verification and Validation Laboratory at

Brigham Young University,” http://facwiki.cs.byu.edu/vv-

lab/index.php, April 2011, [Online; accessed 28-April-2011].

[13] H. Garcia-Molina, “Elections in a distributed computing

system,” IEEE Trans. Comput., vol. 31, pp. 48–59, January

1982.

[14] R. Xue, X. Liu, M. Wu, Z. Guo, W. Chen, W. Zheng,

Z. Zhang, and G. Voelker, “MPIWiz: subgroup reproducible

replay of MPI applications,” in Proceedings of the 14th ACM

SIGPLAN symposium on Principles and practice of parallel

programming, ser. PPoPP ’09. New York, NY, USA: ACM,

2009, pp. 251–260.

[15] S. Sharma, G. Gopalakrishnan, E. Mercer, and J. Holt,

“MCC: A runtime verification tool for MCAPI user

applications,” in FMCAD. IEEE, 2009, pp. 41–44.

[16] C. Flanagan and P. Godefroid, “Dynamic partial-order

reduction for model checking software,” SIGPLAN Not., vol. 40,

pp. 110–121, January 2005.

[17] M. Ronsse, M. Christiaens, and K. D. Bosschere, “Cyclic

debugging using execution replay,” in Proceedings of the

International Conference on Computational Science-Part II, ser.

ICCS ’01. London, UK, UK: Springer-Verlag, 2001, pp. 851–

860.

