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ABSTRACT 
The Multicore Communications API (MCAPI) is a new message 
passing API that was released by the Multicore Association. 
MCAPI provides an interface designed for closely distributed 
embedded systems with multiple cores on a chip and/or chips on 
a board. Similar to concurrent programs in other domains, 
debugging MCAPI programs is a challenging task due to their 
non-deterministic behavior. In this paper we present a tool that 
is able to deterministically replay the executions of MCAPI 
programs, which provides valuable insight for MCAPI 
developers in case of failure. 
 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging 
 

General Terms 
Reliability  
 

Keywords 
MCAPI, message race, multicore programs, debugging, 
deterministic replay 

1. INTRODUCTION 
The Multicore Association has developed the Multicore 
Communications API (MCAPI) specification and its reference 
implementation to address inter-core communication needs in 
multi-core programs. MCAPI is different from the Message 
Passing Interface (MPI) [1], a widely used standard for 
managing coarse-grained concurrency on distributed computers. 
While MPI is intended for inter-computer communication and 
needs to be installed on top of an operating system, MCAPI is 
intended for inter-core communication and can be installed on 
top of an operating system or an extremely thin run-time 
environment such as a hypervisor. A major design goal of 
MCAPI is to function as a low-latency interface benefiting from 
efficient on-chip interconnects in a multi-core chip. Thus, 
MCAPI is a light weight API that delivers high performance and 
needs a tiny memory footprint that is significantly lower than 
that of MPI [2]. 

 
 
 
 
In the traditional approach to debugging, a program is repeatedly 
executed under the control of a debugger to allow the user to 
obtain more information about the program states and 
intermediate results. This debugging approach is not viable for 
MCAPI programs as they suffer from the irreproducibility effect 
[3] due to their intrinsic non-determinism. The fact that two 
subsequent runs under the same input are not guaranteed to 
behave the same makes debugging MCAPI programs a 
challenging task. Such challenges facing MCAPI developers, 
however, are certainly not new. Similar to MCAPI, MPI 
programs exhibit non-deterministic behaviors. A common 
technique for aiding debugging MPI programs is using record 
and replay tools. During the recording phase, a program 
execution is monitored to record information about the 
execution. If an execution fails, the recorded data is retrieved to 
replay the program such that the behavior of the program during 
the replay phase is equivalent to the behavior observed in the 
recording phase.  
 
MPI record and replay tools typically fall into two categories: 
data-replay [4] and order-replay [5]. During the recording phase, 
data-replay tools record the contents of all received messages at 
all processes in a trace. During the replay phase, some processes 
are run while others are simulated. The messages sent by the 
simulated processes originate from the trace file. Data-replay 
allows replaying one process, rather than all processes of a 
program, at a cost of large trace files. On the other hand, order-
replay tools record the outcomes of non-deterministic operations 
and enforce these outcomes during replay. In the order-replay 
approach, all processes must be running during a replay. Since 
order-replay tools only record the outcomes of non-deterministic 
operations, it records far less data than data-replay tools. 
 
In this paper, we present DR-MCAPI, which allows 
Deterministic Replay of MCAPI programs. DR-MCAPI adopts 
the order-replay approach due to the following two reasons: (1) 
because of the unpredictable nature of MCAPI programs 
executions, recording is needed in all executions including 
successful ones. In comparison, replaying is needed only when 
errors have been discovered and the developers need to 
scrutinize the details. Therefore, recording is more sensitive to 
performance. In fact, the record and replay technique is most 
useful if it could be used in production runs. This can only 
happen if the overhead of recording become negligible; (2) for 
most concurrency bugs it is desirable to replay all relevant 
processes with corresponding message exchanges in correct total 
order instead of replaying each process in isolation. In fact, 
inferring correct total orders has been the focus of recent studies 
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on hardware based execution replay tools for concurrent systems 
(c.f. [6] and [7]). 
 
Although there exist several record and replay tools for MPI 
programs, deterministic replay for MCAPI is different due to the 
different semantics of its communication primitives. For 
example, there is no notion of message source, but only 
destination endpoints in MCAPI. Thus unlike MPI applications 
it is not possible to identify the source of a received message. To 
our best knowledge, DR-MCAPI is the first such tool for 
MCAPI programs. The rest of the paper is organized as follows. 
In section 2, we briefly explain the MCAPI syntax and highlight 
the sources of non-determinism in a MCAPI program. Then in 
section 3, we describe the design of DR-MCAPI. The 
experimental results are presented in section 4, followed by the 
related works in section 5. Finally, section 6 concludes the 
paper. 

2. NON-DETERMINISM IN MCAPI 

PROGRAMS 
In MCAPI programs, a core is referred to as a node. 
Communication between nodes occurs through endpoints. A 
node may have one or more endpoints and an endpoint is 
uniquely defined by a node identifier and a port number. The 
MCAPI specification supplies APIs for initializing nodes, 
creating and deleting endpoints, obtaining addresses of remote 
endpoints, and sending and receiving messages. The functions 
used for sending and receiving messages are: mcapi_msg_send, 
mcapi_msg_send_i, mcapi_msg_recv, and mcapi_msg_recv_i. 
 
The functions mcapi_msg_send and mcapi_msg_send_i send 
messages, asynchronously, between two endpoints. While 
mcapi_msg_send blocks till the message has been copied from a 
program buffer to the MCAPI runtime buffers, 
mcapi_msg_send_i is non-blocking and returns immediately 
before that data has been completely copied. The functions 
mcapi_msg_recv and mcapi_msg_recv_i retrieve messages from 
the MCAPI runtime buffers. The function mcapi_msg_recv 
blocks till a message has been retrieved from the runtime buffer, 
while mcapi_msg_recv_i is non-blocking and returns 
immediately even if there are no messages in the buffer. MCAPI 
receive calls are called promiscuous as they permit receiving 
messages from any source endpoint. 
 
The MCAPI specification provides request variables and the 
mcapi_wait, mcapi_wait_any and mcapi_test functions to track 
the status of a non-blocking function call. A non-blocking 
function takes a request variable as an input and initializes it by 
setting its value to pending. Calling mcapi_wait with a request 
variable R blocks execution till the non-blocking operation that 
initialized R has completed. Invoking mcapi_wait_any with an 
array of request variables Rs blocks execution till any of the 
operations in Rs has completed. The mcapi_wait_any returns the 
index of the completed request. The mcapi_test function 
succeeds (i.e. returns true) if its input request has completed, 
fails (i.e. returns false) otherwise. 
 
There are two rules that govern the order of messages arrivals at 
a destination endpoint: 1) Messages sent from the same source 
endpoint to the same destination endpoint are guaranteed to 
arrive at their destination according to their transmission order 

and 2) Messages sent from different source endpoints will arrive 
at their destination in any order, even if these source endpoints 
belong to the same node. The second rule combined with the 
fact that mcapi_msg_recv and mcapi_msg_recv_i calls don’t 
specify the source endpoint, make it possible for message races 
to take place. Two or more messages are said to be racing if 
their order of arrival at a destination (i.e. an endpoint) is non-
deterministic [8].  
 
Figure 1 shows a MCAPI program with message races. A node 
creates a single endpoint (line 3) and sends messages to all other 
nodes (lines 4-8) and is expecting to receive a message from all 
other nodes (lines 9-10). Assuming there are N nodes, any node 
should receive N-1 messages that are racing with each other. The 
orders of message arrivals can change across different 
executions of the program (i.e. the final values in the Buffer 
array will be different with different executions); leading to the 
irreproducibility effect. 
   

1 N=NodesCount(); 
2 mcapi_init_node(ThisNode); 
3 LocalEP=mcapi_create_ep(ThisNode,1); 
4 for (Index=0;Index<N;Index++){ 
5   if (Index==ThisNode) continue; 
6   RemoteEP=mcapi_get_ep(Index,1); 
7  mcapi_msg_send(LocalEP,RemoteEP,&Data[Index]); 
8 } 

9 for (Index=0;Index<N-1; Index++) 
10   mcapi_msg_recv(LocalEP,&Buffer[Index]); 
11 mcapi_delete_ep(LocalEP); 
12 mcapi_finalize_node(ThisNode); 

Figure 1. A MCAPI program with message races 

 

Another source of non-determinism in MCAPI programs is the 
mcapi_wait_any call. In Figure 2, a node has two endpoints and 
is expecting to receive a message at each endpoint (lines 4-5). 
mcapi_wait_any blocks execution until either one of the two 
messages is received. Depending on which endpoint receives a 
message first, the value of ReqIndex may be different across 
executions of the program, which results in different branches of 
the switch being selected in different executions. 
 

1 mcapi_init_node(ThisNode); 
2 LocalEP1=mcapi_create_ep(ThisNode,1); 
3 LocalEP2=mcapi_create_ep(ThisNode,2); 
4 mcapi_msg_recv_i(LocalEP1,&Buffer1,Requests[0]); 
5 mcapi_msg_recv_i(LocalEP2,&Buffer2,Requests[1]); 
6 ReqIndex=mcapi_wait_any(Requests); 
7 switch (ReqIndex) { 
8   case 0: … 
9   case 1: … 
10 } 
11 mcapi_delete_ep(LocalEP1); 
12 mcapi_delete_ep(LocalEP2); 
13 mcapi_finalize_node(ThisNode); 

Figure 2. A MCAPI program with mcapi_wait_any 

 
Using the non-blocking mcapi_test introduces non-determinism 
as well. In Figure 3, a node is expecting to receive a message at 
a local endpoint. The function mcapi_test is used to determine 
whether the expected message has arrived. The number of times 
mcapi_test returns false, and consequently the value of variable 
A at line 5, is dependent on uncontrollable factors such as the 
current core workload and the inter-core communication latency. 



1 mcapi_init_node(ThisNode); 
2 LocalEP=mcapi_create_ep(ThisNode,1); 
3 mcapi_msg_recv_i(LocalEP,&Buffer,Request); 
4 while (!mcapi_test(Request)) A++; 
5 func_call(A); 

6 mcapi_delete_ep(LocalEP); 

7 mcapi_finalize_node(ThisNode); 

Figure 3. A MCAPI program with mcapi_test 

 
In summary, besides user inputs and random value generations, 
there are three additional sources of non-determinism in MCAPI 
programs: 1) mcapi_msg_recv and mcapi_msg_recv_i calls, 2) 
mcapi_wait_any calls and 3) mcapi_test calls. Such inherent non-
deterministic behavior does not permit repeated execution as a 
reliable mean of debugging MCAPI programs. Hence, 
introducing the ability to replay an observed MCAPI program 
execution can significantly help MCAPI programs developers. 

3. DR-MCAPI  
Figure 4 depicts the workflow of our tool for deterministic 

replay of MCAPI programs. DR-MCAPI consists of two parts: a 

source code instrumenter and a MCAPI library wrapper (DR-

MCAPI Library). The instrumenter replaces calls to the MCAPI 

library routines in an input program with calls to the DR-

MCAPI library. Figure 5 shows the result of instrumenting the 

program in Figure 1. We use the ROSE compiler [9] to automate 

the instrumentation process. It is possible to avoid the 

instrumentation process by modifying the MCAPI library itself. 

However, such approach reduces the portability of DR-MCAPI 

and makes it implementation-specific. That defeats one of the 

goals of MCAPI of being an API standard with different 

implementations for different platforms. For example, DR-

MCAPI, without any changes, is compatible with the new 

OpenMCAPI implementation [10].  

 

Figure 4: DR-MCAPI Workflow 
 
The instrumented program is then compiled into an executable, 
which runs in one of two possible modes: record mode or replay 
mode. While a program is running in the record mode, calls to 
the DR-MCAPI library routines will use internal data structure 
to record certain information in addition to invoking the 
corresponding MCAPI library routines. For example, a call to 
dr_create_ep will add a new endpoint to a list of endpoints 

maintained for every node before invoking mcapi_create_ep. 
The recorded information is eventually stored to the disk. 
 

1 N=NodesCount(); 
2 dr_init_node(ThisNode); 
3 LocalEP= dr_create_ep(ThisNode,1); 
4 for (Index=0;Index<N;Index++){ 
5   if (Index== ThisNode) continue; 
6   RemoteEP= dr_get_ep(Index,1); 
6   dr_msg_send(LocalEP,RemoteEP,&Data[Index]); 

7 } 

8 for (Index=0;Index<N-1; Index++) 
9   dr_msg_recv(LocalEP,&Buffer[Index]); 
10 dr_delete_ep(LocalEP); 
11 dr_finalize_node(ThisNode); 

Figure 5. An instrumented MCAPI program 

 
If a MACPI program is executed in the replay mode, the trace 
information is loaded into memory and used by DR-MCAPI 
library to enforce an execution that is equivalent to the one 
observed when the program was running in the record mode. 
The replay mode is described in section 3.2 

3.1 The Trace Structure 
When an instrumented program is run in the record mode, a 
separate trace is generated for every MCAPI node. A node’s 
trace contains a sequence of records that captures the program 
behavior during the execution. There are 7 types of records that 
are recorded in the trace.  
 
A ���� record originates from a msg_recv call and is defined as 

a tuple: ���� ∈ ���	 × ��������� × ��ℎ . ���	  is the port 
number of the receiving endpoint, ��������� is the invocation 
order of this particular msg_recv call among other msg_recv 
calls at the same node, and ��ℎ is a hash-code of the received 
data calculated using the CRC-32 algorithm [11]. Figure 6 
depicts three programs and their respective traces. The letters 
prefixed to trace records are shorthand for the records types. As 
shown in Figure 6a, endpoint with port number 1 at node 3 
receives two messages (lines 8-9) that are sent from node 1 and 
node 2, respectively. The two records in the trace correspond to 
the arrival of two messages. In the first trace record (R:1/0/C0), 
1 is the port number of the receiving endpoint, 0 is the order of 
the msg_recv call with respect to other msg_recv calls with the 
same endpoint and C0 signifies the hash-code of the received 
data. 
 
A ���	 record originates from a wait call whose input request 
variable was initialized by a call to the function msg_recv_i. It is 
defined as ���	 ∈ ������	����� × ��ℎ . ������	�����  is 
the initialization order of the wait function input request variable 
at the current node. In the program shown in Figure 6b, the 
request variable R1 was the first request variable initialized in 
this node (line 9) and hence its initialization order 
(������	�����) is 0. The trace record (W:1/C1), corresponding 
to line 19 in the source code indicates that a wait call retrieved a 
message with hash-code C1. In this record 1 is the initialization 
order of the request variable (R2). 
 
 
 
 



Node 1: 
1 LocalEP=create_ep(1,1); 
2 RemoteEP=get_ep(3,1); 
3 msg_send(LocalEP,RemoteEP,M1); 
  
Node 2: 
4 LocalEP=create_ep(2,1); 
5 RemoteEP=get_ep(3,1); 
6 msg_send(LocalEP,RemoteEP,M2); 
  
Node 3: 
7 LocalEP=create_ep(3,1); 
8 msg_recv(LocalEP,&D1); 
9 msg_recv(LocalEP,&D2); 

 

Node 1: 
1 LocalEP=create_ep(1,1); 
2 RemoteEP=get_ep(3,1); 
3 msg_send(LocalEP,RemoteEP,M1); 

  
Node 2: 
4 LocalEP=create_ep(2,1); 
5 RemoteEP=get_ep(3,1); 
6 msg_send(LocalEP,RemoteEP,M2); 

  
Node 3: 
7 LocalEP=create_ep(3,1); 
8 A=0; 
9 msg_recv_i(LocalEP,&D1,&R1); 
10 msg_recv_i(LocalEP,&D2,&R2); 
11 while(!test(R1)) 
12  {do_something();} 
13 while(A<5) 
14  { 
15    if (test(R2)) break; 
16    do_something(); 
17    A++; 
18  } 
19 if (A==5) wait(R2); 

 

Node 1: 
1 LocalEP=create_ep(1,1); 
2 RemoteEP=get_ep(3,1); 
3 msg_send(LocalEP,RemoteEP,M1); 

  
Node 2: 
4 LocalEP=create_ep(2,1); 
5 RemoteEP=get_ep(3,1); 
6 msg_send(LocalEP,RemoteEP,M2); 

  
Node 3: 
7 LocalEP=create_ep(3,1); 
8 msg_recv_i(LocalEP,&D1,Rs[0]); 
9 msg_recv_i(LocalEP,&D2,Rs[1]); 
10 msg_recv_i(LocalEP,&D3,&R); 
11 Index=wait_any(Rs); 
12 if (Index==0)  
13  wait(Rs[1]);  
14 else 
15  wait(Rs[0]); 
16 wait(R); 

 

Trace: Trace: Trace: 
R:1/0/C0 
R:1/1/C1 

 

T:0/10/C0 
N:1/5 
W:1/C1 

 

A:0/1/C0 
W:0/C1 
W:2/C2 

 

(a) (b) (c) 

Figure 6. MCAPI programs and their traces 

 
A �������		record originates from a sequence (one or more) of 
test calls whose input request variable was initialized by a 
msg_recv_i call and does retrieve a message from the runtime 
buffers. It is defined as �������		 ∈ ������	����� × ����	 ×

��ℎ, such that ����	 is the number of times the test call had 
failed, before succeeding and retrieving a message. In Figure 6b, 
the trace record (T:0/10/C0) means that a message with hash-
code C0 was retrieved by the 11th invocation of a test call whose 
input request variable was the first to be initialized at this node. 
 
Similarly, a ����������	 record stems from a sequence of test 

calls. However, the ����������	  record indicates that no 
messages were retrieved from the runtime buffers. That occurs 
when the input request variable was initialized by a non-
blocking function other than msg_recv_i or when the input 
request variable was initialized by a msg_recv_i call and the 
sequence of test calls doesn’t retrieve a message from the 
runtime buffers. In the second trace record in Figure 6b (N:1/5), 
number 5 means that a test call was invoked five times and 
number 1 means that the test call input request variable was the 
second request variable to be initialized at this node. 
 
A Recv���� record comes from a wait_any call that returned 
the index of a request variable that was initialized by a 
msg_recv_i call and is defined as: �������� ∈ ��������� ×

���� × ��ℎ . ���������  is the order of this particular 

wait_any call among other wait_any calls at this node. ����  is 
the index returned by the wait_any call.  The trace record 
(A:0/1/C0) in Figure 6c is explained as follows: number 0 means 
that this record comes from the first invocation of a wait_any 
call at this node, number 1 means that the wait_any call returned 
1 and C0 signifies the hash-code of the retrieved message.  

The record �����������  is defined as: ����������� ∈

��������� × ����  and indicates that a wait_any call 
returned the index of a request variable that was initialized by a 
non-blocking function other than msg_recv_i. 
 
A ����  record represents a single invocation of the rand 
function and is defined as: ���� ∈ ��������� × !�"�� . 

��������� is the invocation order of this particular rand call 

among other rand calls at this node. 	!�"��  is the random 
number returned by the rand call. 
 
Note that the traces in Figure 6 belong to the third node in the 
three programs. Trace records correspond to 1) retrieving a 
message from the runtime buffers, 2) test invocations, or 3) 
wait_any invocations. None of these appears in nodes 1 and 2. 

3.2 The Replay Mode 
To realize a correct replay of a program, it is necessary to 
associate endpoints, request variables and certain calls that were 
observed during the record mode with their counterparts in the 
replay mode. An endpoint observed in the replay mode is 
associated with the corresponding endpoint in the record mode 
via the node identifier and the port number, both of which 
remain the same across executions. Request variables are 
tracked across executions in the record mode and the replay 
mode using their order of initialization in a node. For example, 
in Figure 6b, the request variable that was initialized first will 
always be the request variable that is passed to the test call in 
line 11. Similarly, msg_recv, wait_any and rand calls are tracked 
by their invocation order with respect to other msg_recv, 
wait_any and rand calls, respectively. 
 



To enable the replay mode, we maintain three data structures. 1) 
������� : a list of the trace records (e.g. ���� , ���	…). 2) 

������	!����#"��: a list of request variables per node. This list 
combines data from the trace and data that are obtained on-the-
fly during the execution in replay mode. When a request 
variable is initialized (by being passed to a non-blocking call), a 
new item is appended to this list. If the request variable is 
initialized by a non-blocking receive call, we keep track of the 
receiving endpoint and the destination buffer pointer. If the trace 
indicates that test calls were used to check the status of this 
request in the record mode, then the number of failed tests is 
retrieved from the trace and associated with that request. All 
newly initialized requests are flagged as incomplete. 
3) 	��������$����%�� : messages that arrive earlier than 
expected are stored in this list along with their hash-codes. 
 
The algorithm in Figure 7 handles dr_msg_recv calls. First 
RecvCalls is incremented (line 1). RecvCalls keeps track of the 
number of dr_msg_recv function invocations at the node. 
Second, the GetRecvRecord procedure looks up the ������� list 

to fetch the ����  record with ���������=RecvCalls (line 2). 
Third, the hash-code of the expected message is retrieved (line 
3). Next, ��������$����%�� is looked up for a message whose 
hash-code matches the expected hash-code. If such a message is 
found, then its data is copied to the program buffer (line 7) and 
then removed from ��������$����%�� (line 8). Otherwise, the 
mcapi_msg_recv is repeatedly invoked till it retrieves a message 
whose hash-code matches the expected hash-code (lines 11-22). 
When the excepted message arrives, it is copied to the program 
buffer (line 16) and then removed from ��������$����%�� 
(line 17). All other messages and their hash-codes are appended 
to ��������$����%�� (line 21). 
 

dr_msg_recv(Endpoint, &Buffer)  
1 RecvCalls++; 

2 RecvRecord=GetRecvRecord(RecvCalls); 

3 ExpectedCRC=RecvRecord.Hash; 

4 for Index=0 to RecievedMessages.size do 

5   if (RecievedMessages[Index].CRC==ExpectedCRC) 

6    then 

7     copy(Buffer, RecievedMessages[Index]); 

8     free(RecievedMessages[Index]); 

9     return; 

10   end-if 

11 while(true) do 

12   mcapi_msg_recv(Endpoint,&TempBuffer); 

13   ArrivedCRC=CalculateCRC(TempBuffer); 

14   if (ArrivedCRC==ExpectedCRC)  

15    then 

16     copy(Buffer, TempBuffer); 

17     free(RecievedMessages[Index]); 

18     return; 

19    end-if 

20   else 

21    RecievedMessages.Append(TempBuffer, ArrivedCRC); 

22 end-while 

Figure 7. The dr_msg_recv procedure 

 
In the program in Figure 6a, node 3 receives two messages. 
Let’s assume that when running that program in the record 

mode, it generates the trace in the figure (i.e. the first msg_recv 
call retrieves a message with hash-code C0 and the second 
msg_recv call retrieves a message with hash-code C1). Let’s 
assume that during running the program in the replay mode, the 
message with hash-code C1 arrives first. During the replay mode 
execution, when dr_msg_recv is invoked for the first time, the 
��������$����%�� list will be empty. Hence, the while loop 
(lines 11-22) will iterate twice. In the first iteration, the 
mcapi_msg_recv call will retrieve the message with hash-code 
C1. Since the retrieved message is not the excepted one, it will 
be added to the ��������$����%�� list (line 21). In the second 
iteration, the mcapi_msg_recv call will retrieve the message with 
hash-code C0, which is the expected message and it will be 
delivered to the program (line 16). When dr_msg_recv is 
invoked for the second time, the ��������$����%�� list will 
contain the expected message (with hash-code C1) and it will be 
returned to the program (line 7). 
 
Figure 8 shows the algorithm that handles a dr_wait call whose 
input request variable was initialized by a msg_recv_i call. This 
algorithm depends on the ������	!����#"��  list that links a 
request variable with the endpoint and the program buffer 
pointer that were passed to the msg_recv_i call.  
 

dr_wait(Request)  
1 if not IsRecvRequest(Request) then 

2   return mcapi_wait(Request); 

3 end-if 
4 InitOrder=GetInitOrder(Request); 

5 WaitRecord=GetWaitRecord(InitOrder); 

6 ExpectedCRC=WaitRecord.Hash; 

7 BufferPtr=GetBufferPtr(Request); 

8 Endpoint=GetEndpoint(Request); 

9 Requests=GetRequests(CurrentNode); 

10 for Index=0 to Requests.size() do 

11  if (Requests[Index].isComplete)  then continue; 

12  mcapi_wait(Requests[Index]); 

13  ArrivedData=GetData(Requests[Index]); 

14  ArrivedCRC=CalculateCRC(ArrivedData); 

15  RecievedMessages.Append(ArrivedData,ArrivedCRC); 

16  Requests[Index].setComplete(); 

17  end-for 

18 for Index=0 to RecievedData.size() do 

19   if (RecievedMessages[Index].CRC==ExpectedCRC)  

20     then 

21     copy(BufferPtr, RecievedMessages[Index]); 

22     free(RecievedMessages[Index]); 

23     return; 

24   end-if 

25 end-for 

Figure 8. The dr_wait procedure 

 
First, if the input request was not initialized by a dr_msg_recv_i 
call, then it is forwarded to the MCAPI library (lines 1-3). 
Otherwise, the hash-code of the expected message, the endpoint 
and the program buffer pointer associated with the input request 
variable are retrieved (lines 4-8). Second, mcapi_wait is invoked 
for all initialized (but not completed) requests at that node and 
retrieved messages and their hash-codes are appended to 

��������$����%�� (lines 9-17). Finally, ��������$����%�� 



is looked up for a message whose hash-code matches the 
expected hash-code. When such message is found, it is copied to 
the buffer associated with the input request variable (line 21) 
and then removed from ��������$����%�� (line 22). 
 
Figure 9 describes how DR-MCAPI handles dr_wait_any calls. 
First, WaitanyCalls is incremented (line 1). WaitanyCalls keeps 
track of the number of dr_wait_any function invocations at the 
node. If the current dr_want_any call retrieves a message, then 
the GetRecvWanyRecord procedure looks up the ������� list to 

fetch the ��������  record with 	��������� =WaitanyCalls 

(line 3). In line 4, the ����  in the ��������  record is 
retrieved and the request in the Requests array at ����  will be 
forwarded to  dr_wait (line 5). If the current dr_want_any call 
doesn’t retrieve a message, then the GetNRecvWanyRecord 
procedure looks up the �������  list to fetch the 

�����������  record with 	��������� =WaitanyCalls (line 

7). In line 8, the ����  in the �����������  record is 
retrieved and the request in the Requests array at ����  will be 

forwarded to mcapi_wait (line 9). Finally, ����  is returned to 
the application (line 11). 
 
dr_wait_any(Requests)  
1 WaitanyCalls++; 

2 if RecvWany(WaitanyCalls) then 

3  RecvWanyRecrd=GetRecvWanyRecord(WaitanyCalls); 

4  Index=RecvWanyRecord.Index; 

5  dr_wait(Requests[Index]); 

6 else 

7  NRecvWanyRecrd=GetNRecvWanyRecord(WaitanyCalls); 

8  Index=NRecvWanyRecrd.Index; 

9  mcapi_wait(Requests[Index]); 

10 end-if 

11 return Index; 

Figure 9. The dr_wait_any procedure 

 
In the program in Figure 6c, node 3 receives three messages. 
Let’s assume that when running that program in the record 
mode, it generates the trace in the figure (i.e. the wait_any call 
returns 1 and retrieves a message with hash-code C0, the wait 
call in line 15 retrieves a message with hash-code C1, and the 
wait call in line 16 retrieves a message with hash-code C2). 
Let’s assume that during replay, the messages arrive with a 
different order (C2, C0 then C1). When dr_wait_any is invoked, 
it is going to determine that the request at index 1 of the array 
������	� was initialized by a msg_recv call and will forward 
this request to dr_wait. In dr_wait, the first loop (lines 10-17) 
will retrieve the three messages via three calls to mcapi_wait 

(line 12) and they will be added to the ��������$����%�� list 
(line 15). The second loop in dr_wait (lines 18-25) will iterate 
through the ��������$����%�� list and will return the message 
with hash-code C0 to the application. When dr_wait is invoked 
to handle the wait calls at lines 15 and 16 (in Figure 6c), the 
messages with hash-codes C1 and C2 will be already in the 
��������$����%�� list and will be returned to the application 
at the correct order. 
 
A dr_test call is handled by the algorithm in Figure 10. First, the 
initialization order of the input request variable (Request) is 
retrieved (line 1). If that request variable is associated with an 

&�����"���	 record, then the ����	 of this record is reduced by 

one (line 4). If ����	 reaches zero, the request is forwarded to 
dr_wait and true is returned to the application (lines 8-9). If that 
request variable is associated with a ���&�����"���	  record, 
then the ����	 of this record is reduced by one (line 13). If 

����	 reaches zero, the request is passed to mcapi_wait and true 
is returned to the application (lines 17-18). 
 
In the program in Figure 6b, node 2 receives two messages. 
Let’s assume that when run in the record mode, this program 
generates the trace in the figure (i.e. the test call in line 11 fails 
10 times then succeeds and retrieves a message with hash-code 
C0 at the 11th invocation, the test call in line 15 fails 5 times and 
the wait call in line 12 retrieves a message with hash-code C1). 
Let’s assume that during replay, the messages arrive with a 
different order (C1 then C0). When dr_test is invoked to handle 
the test call at line 11, it will return false for 10 times (lines 5-6) 
and after that, it will invoke dr_wait (line 8) to retrieve the 
message with hash-code C0. When dr_test is invoked to handle 
the test call at line 15, it will return false for 5 times. Finally, the 
dr_wait call in (line 19 in Figure 6b) will retrieve the message 
with hash-code C1. 
 

bool dr_test(Request) 
1 InitOrder=GetInitOrder(Request); 

2 if ArrivalTest(InitOrder) then 

3  ArrivalTestRecord=GetArrivalTestRecord(Order); 

4  ArrivalTestRecord.Count--; 

5  if ArrivalTestRecord.Count>0 then  

6   return false; 

7  else 

8   dr_wait(Request); 

9   return true; 

10  end-if 

11 else 

12  NArrivalTestRecord=GetNArrivalTestRecord(Order); 

13  NArrivalTestRecord.Count--; 

14  if NArrivalTestRecord.Count>0 then  

15   return false; 

16  else 

17   mcapi_wait(Request); 

18   return true; 

19  end-if 

20 end-if 

Figure 10. The dr_test procedure 

4. EXPERIMENTAL EVALUATION 
Due to the lack of publicly available MCAPI benchmarks, we 
performed experiments on three sets of MCAPI programs 
developed internally and a set of programs obtained from an 
external source [12]. Our experiments were conducted on a 
machine with Core 2 Duo 1.4 GHz CPU and 4GB RAM using 
MCAPI runtime V1.063. We evaluate DR-MCAPI using the 
following set of programs: 
1. Binary tree benchmark: This is a set of 10 programs that 

create networks of nodes with sizes from 3 nodes to 21 
nodes. Each two nodes send a message to the same parent 
node forming a binary tree in which messages travel from 
the leaves to the root node. The smallest tree has 3 nodes 
and exchanges 20 messages. The largest one has 21 nodes 



and exchanges 155 messages. This benchmark has a 
master/slave communication pattern. 

2. Complete graph benchmark: This is a set of 10 programs 
that create networks of nodes with increasing sizes from 2 
nodes to 13 nodes. All nodes send and receive messages 
to/from each other forming a complete graph. The number 
of exchanged messages is between 20 message (for a 2 
nodes graphs) and 1560 messages (for a 13 nodes graph). 
This benchmark has an all-to-all communication pattern. 

3. 10-nodes benchmark: In this benchmark, the number of 
nodes is fixed to 10, but the number of messages 
exchanged increases with every program. This allows us to 
isolate the effect of the number of messages on 
performance. There are 10 programs in this benchmark. 

4. Bully benchmark: This is a MCAPI implementation of the 
Bully leader selection algorithm [13] provided by the V&V 
research group at Brigham Young University. 
 

Figure 11 shows the results of the binary tree benchmark. Figure 
11a compares the recording, replay time and baseline time of 
running the programs of the benchmark. The average percentage 
increase in recording time is 49% while the average percentage 
increase in replay time is 127%. Figure 11b compares the 
memory usage while recording, replaying and in a baseline 
execution. The average percentage increase in memory usage in 
the recording mode is 167% while it is 174% during replay 
mode. Figure 11c shows the size of the trace file with respect to 
the number of exchanged messages. 
 

 
(a) 

 
(b) 

 

(c) 

Figure 11. Results of the binary tree benchmark 
 
Figure 12 shows the results of the complete graph benchmark. 
The average percentage increase in recording time is 33% while 
the average percentage increase in replay time is 84%. The 
average percentage increase in memory usage in the recording 
mode is 193% while it is 211% during replay mode.   
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Figure 12. Results of the complete graph benchmark 
 
Figure 13 shows the results of the 10-nodes benchmark. The 
average percentage increase in recording time is 32% while the 
average percentage increase in replay time is 75%. The average 
percentage increase in memory usage in the recording mode is 
195% while it is 222% during replay mode.   
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Figure 13. Results of the 10-nodes benchmark 
 
The single program in the Bully benchmark had a 22% and 51% 
time increase in the recording mode and replay mode, 
respectively and 99% and 117% memory usage increase in the 
recording mode and replay mode, respectively. The experiments 
show that the average time increase is 38% in the recording 
mode and 96% in the replay mode and that the average memory 
usage increase in 184% in the recording mode and 203% in the 
replay mode. We are experimenting with check-pointing to 
reduce the memory usage increase. In all benchmarks, the log 
size increases linearly with respect to the number of messages.  

5. RELATED WORK 
MPI [1] has been the dominating message-passing software 
development standard. Hence, the current literature on replaying 
message-passing software is almost limited to MPI programs. In 
[4], Kranzlmuller et al. present a record and replay mechanism 
for MPI that adopts the order-replay approach and handles both 
promiscuous receive calls and test operations. Their approach is 
based on modifying the MPICH library source code. Different 
than MCAPI, not all MPI receive calls are promiscuous. MPI 
receive calls have a source parameter that can be used to state a 
specific sender process. If the source parameter is set to 
MPI_ANY_SOURCE, then the receive call may receive a 
message from any process allowing message races, otherwise, 
no message races can take place. Receive calls with 
MPI_ANY_SOURCE are handled by storing the identifier of the 
source process of the message that was received during the 
recording phase. During replay, when the source parameter of a 
receive call is MPI_ANY_SOURCE, it is replaced with the 
source process identifier obtained during the recording phase. 
This approach is not applicable to MCAPI programs since their 
receive calls (msg_recv and msg_recv_i) do not specify a source 
parameter.  Test operations are handled by counting the number 
of consecutive failing test operations associated with the same 
request variable during the recording phase. In the replay phase, 
test operations are forced to fail (i.e. return false) till the 

recorded number of failed tests has reached. They report a  
200% time increase in the recording phase. Also, this approach 
is library-dependent (based on the MPICH library) which limits 
its portability to other MPI implementations. 
 
In [5], the authors disabuse the impracticality of data-replay and 
argue that the ability to replay one process justifies the excessive 
logging overhead. They implement their data-replay mechanism 
as a layer between the application and the MPI library. Recorded 
data includes: MPI function calls return values and the contents 
and the source processes identifiers of received messages. 
During replay, when the application posts a receive call; the 
data-replay layer returns the data recorded at the corresponding 
receive call during the recording phase. In other words, receive 
calls are simulated rather than being executed. As expected, the 
log size is 100’s of times larger than when order-replay is used. 
In one experiment, the data log was 907MB while an order-
replay would produce 0.84MB for the same program. The disk 
space requirement of this approach is prohibitively large for 
long-running applications. Unfortunately the approaches 
described in [4] and [5] don’t capture all forms of non-
determinism in MPI programs, making it difficult to ensure a 
completely faithful replay.  
 
The authors of [14] propose subgroup-reproducible replay 
(SRR) which combines order-replay and data-replay. During the 
recording phase, disjoint groups of processes are formed and the 
contents of messages crossing group boundaries are recorded. 
The contents of the messages that are sent and received within a 
group are not recorded, but the order of arrival of such messages 
is recorded. This approach allows replaying a specific group of 
processes independently of other groups. During replay of a 
group, messages coming from outside that group are reproduced 
from the log; inter-group messages are produced through direct 
execution. Setting the size and the membership of groups can be 
done manually by the user or automated based on 
communication locality. Performance evaluation of the SRR 
approach shows that it increases the runtime by an average of 
120% during the recording phase and generates a log that is half 
the size of the log generated by a pure data-replay approach. 
Also this work handles all non-determinism sources in MPI 
programs.  
 
Another related tool is MCC [15] which implements an 
automated approach for verifying MCAPI programs. MCC 
creates a scheduling layer above the MCAPI runtime layer that 
allows intercepting MCAPI calls and discovering potentially 
matching send/receive ones. This allows MCC to explore all 
possible execution scenarios resulting from different orders of 
messages’ arrival. MCC uses DPOR [16] technique to reduce 
the number of examined execution scenarios. MCC handles only 
promiscuous receive calls making it unsuitable for any programs 
using mcapi_test and mcapi_wait_any calls. 

6. CONCLUSION 
To the best of our knowledge, DR-MCAPI is the first replay tool 
that considers all non-determinism sources in MCAPI programs. 
DR-MCAPI introduces deterministic replay capabilities to 
MCAPI developers, thus, allowing detecting bugs induced by 
message-races and time-dependent events via cyclic debugging 
[17]. During a recording phase, an unobstructed execution of the 
input program is monitored to produce a trace that contains the 



outcomes of non-deterministic MCAPI operations. During a 
replay phase, the stored trace is used to enforce an execution that 
is equivalent to the one observed in the recording phase. This 
allows the programmer to repeatedly execute the program under 
supervision of a debugger to catch flaws. Our approach imposes 
an average of 38% and 96% time overhead in the recording 
phase and replay phase, respectively. We are currently 
developing an Eclipse plugin that uses the replay mechanism as 
a back-end to allow the user to perform interactive debugging.  
Also, we plan to reduce the memory usage by using check-
pointing and compression techniques.  
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