Integrating SAT with Multiway Decision Graphs for
Efficient Model Checking

Sa’ed Abed*, Otmane Ait Mohamed*, Zijiang Yang and Ghiath Al Sammane*
*ECE Department, Concordia University, Canada
Email: {s_abed, ait, sammane}@ece.concordia.ca
 Western Michigan University, U.S.A.
Email: zijiang.yang@wmich.edu

Abstract— Multiway Decision Graphs (MDGs) are special de-
cision diagrams that subsume Binary Decision Diagrams (BDDs)
and extend them by a first-order formulae suitable for model
checking of data path circuits. Satisfiability Checking (SAT) has
emerged recently as an alternative for decision graphs. Their
performance is less sensitive to the problem sizes and they do
not suffer from state space explosion. In this paper, we propose
a model checking methodology that allows to combine tightly
MDGs and SAT. We use a rewriting based SAT solver to prune
the transition relation of the circuits to produce a smaller one
that is fed to the MDG model checker. We support our reduction
methodology by experimental results executed on benchmark
properties.

I. INTRODUCTION

Model checking is an important formal verification tech-
nique that starts integrating digital system designs. It aims by
exploring the reachable state space of a model to verify that an
implementation satisfies a specification [1]. Binary Decision
Diagram (BDD) [2], [3] is a canonical representation for
Boolean functions that addresses this problem by providing an
efficient encoding for the state space at the Boolean level. This
representation allows model checkers to verify large systems.
Still, most model checkers face the state space explosion
problems while verifying large systems even using Symbolic
Model Checking.

Multiway Decision Graph (MDG) [4] is an extension for
BDD in the sense that it represents and manipulates a subset of
first-order logic formulae suitable for large data path circuits.
With MDGs, a data value is represented by a single variable
of an abstract type and operations on data are represented
in terms of an uninterpreted functions. The MDG operations
and verification procedures are packaged as a set of tools and
implemented in Prolog [5] providing facilities for hardware
verification: invariant checking, equivalence checking and
model checking.

An alternative for decision graphs is to represent the tran-
sition relation in Conjunctive Normal Form (CNF) and use
Satisfiability Checking (SAT) with several properties that make
them attractive compared to BDDs. Their performance is less
sensitive to the problem sizes and they do not suffer from
state space explosion. As a result, various researchers have
developed routines for performing Bounded Model Checking
(BMC) [6] and [7] using SAT. The common theme is to
convert the problem of interest into a SAT problem, by

978-1-4244-1847-3/07/$25.00 ©2007 IEEE

devising the appropriate propositional Boolean formula, and
to utilize other non-canonical representations of state sets.
However, they all exploit the known ability of SAT solvers
to find a single satisfying solution when it exists.

In this paper, we propose a model checking methodology
that allows to tightly combine MDGs and SAT. We use a
rewriting based SAT solver to prune the transition relation
of the circuits to produce a smaller one that is fed to the
MDG model checker. We support our reduction methodology
by experimental results executed on benchmark properties.

II. RELATED WORK

The idea of combining BDDs and SAT for verification has
been the subject of several research. Given that both techniques
perform an implicit search on the underlying Boolean space,
it is no surprise that many different ways of combining them
have been explored recently, frequently suited to the target
application. Their relative benefits have been combined in
many verification applications such as BMC [6], [7] and
model checking [8].

In [9], the authors used BDDs to represent state sets, and
a CNF formula to represent the transition relation. All valid
next state combinations are enumerated using a backtracking
search algorithm for SAT that exhaustively visits the entire
space of primary input, present state and next state variables.
However, rather than using SAT to enumerate each solution
all the way down to a leaf, they invoked BDD-based image
computation at intermediate points within the SAT decision
procedure, which effectively obtains all solutions below that
point in the search tree. In a sense, their approach can be
regarded as SAT providing a disjunctive decomposition of the
image computation into many subproblems, each of which is
handled in the standard way using BDDs.

Reducing the space requirement in model checking has been
suggested in several works like [10] and [11]. These studies
suggest partitioning the problem in several ways. The work
in [10] shows how to parallelize the model checker based
on explicit state enumeration. They achieve it by partitioning
the state table for reached states into several processing nodes.
The work in [11] discusses techniques to parallelize the BDD-
based reachability analysis. The state space on which reach-
ability is performed is partitioned into disjoint slices, where

IEEE ICM - December 2007

each slice is owned by one process. The process performs a
reachability algorithm on its own slice.

In [12], the authors proposed a technique to construct a
reduced MDG model for circuits described at system level in
VHDL. The simplified model can be obtained using a high
level symbolic simulator called TheoSim, and by running an
appropriate symbolic simulation patterns. The work here pro-
vides another technique based on SAT solver. A comparison
and case study are part of an ongoing large project that aims
to develop a complete system level verification flow.

III. BACKGROUND

A. Boolean Satisfiability

The Boolean Satisfiability (SAT) problem is a well-known
constraint satisfaction problem with many applications in
computer-aided design, such as test generation, logic veri-
fication and timing analysis. Given a Boolean formula, the
objective is to either find an assignment of 0-1 values to the
variables so that the formula evaluates to true, or establish that
such an assignment does not exist. The Boolean formula is
typically expressed in CNF, also called product-of-sums form.
Each sum term (clause) in the CNF is a sum of single literals,
where a literal is a variable or its negation. An n-clause is a
clause with n literals. For example, (v; +v’;+vy,) is a 3-clause.
In order for the entire formula to evaluate to 1, each clause
must be satisfied, i.e. evaluate to 1.

In practice, most of the current SAT solvers are based on
the Davis-Putnam algorithm [13]. The basic algorithm begins
from an empty assignment, and proceeds by assigning a 0 or
1 value to one free variable at a time. After each assignment,
the algorithm determines the direct and transitive implications
of that assignment on other variables, typically called Boolean
Constraint Propagation (BCP). If no contradiction is detected
during the implication procedure, the algorithm picks the next
free variable, and repeats the procedure. A conflict occurs
when implications for setting the same variable to both 1
and 0 are produced. Otherwise, the algorithm attempts a
new partial assignment by complementing the most recently
assigned variable for which only one value has been tried so
far. This step is called backtracking. The algorithm terminates
either when all clauses have been satisfied and a solution
has been found, or when all possible assignments have been
exhausted. The algorithm is complete in that it will find a
solution if it exists.

B. Model Checking using Multiway Decision Graph

MDG is a finite Directed Acyclic Graph (DAG) with one
root, whose leaves are labeled by formulae of the logic True
(T). The internal nodes are labeled by terms, and the edges
issuing from an internal node v are labeled by terms of
the same sort as the label of v. Such graph is a canonical
representation of a certain quantifier-free formulae, called a
Directed Formulae (DF). Each term in a DF belongs to either
a concrete or abstract sort. Concrete sorts have enumerations,
while abstract sorts do not.

A directed formula DF of type U — V is a formula in
Disjunctive Normal Form (DNF) plus T (truth) and L (false),
where U and V are two disjoint sets of variables. Just as
ROBDD must be reduced and ordered, MDGs must obey a
set of well-formedness conditions given in [4]. DFs are used
for two distinct purposes: to represent relations (transition and
output relations) and to represent sets (sets of states as well
as sets of input vectors and output vectors).

The input language of the MDG-tool is a Prolog-style
hardware description language (MDG-HDL), which supports
structural specification, behavioral specification or a mixture
of both. A structural specification is usually a netlist of com-
ponents connected by signals, and a behavioral specification
is given by a tabular representation of transition relations or a
truth table.

In MDG model checking, the properties to be verified are
expressed by formulas in £y;pg. Lyrpe atomic formulae are
Boolean constants True and False, or equations of the form
t1 = to, where t; is a variable (input, output or state variable)
and t9 is either a variable, an individual constant, an ordinary
variable or a function of ordinary variables. Ordinary variables
are defined to remember the values of the variables in the
current state. The basic formulas (called Next let _formulas)
in which only the temporal operator X (next time) is allowed
as follows [14]:

o Each atomic formula is a Next let_formulas;

o If p, q are Next let_formulas, then so are: !p (not p),
p&q (p and q), plq (p or q), p — q (p implies q), Xp
(next-time p) and LET (v=t) IN p, where t is a system
variable and v an ordinary variable.

Using the temporal operators AG (always), AF (eventually)
and AU (until), the properties allowed in L j;pe can have
the following forms:

Property := A(Neat.let_formula)

| AG(Next let_formula)
| AF (Nextlet_formula)
| A(Nextlet_formula) U (Next_let_formula)
| AG(Nextlet_formula) = F(Next_let_formula)
| AG((Next_let_formula) =
((Nextlet_formula) U Next_let_formula)))

Model checking in the MDG system is carried out by
building automatically additional circuit that represents the
Next_let_formulas appearing in the property to be verified,
compose it with the original circuit, and then check a simpler
property on the composite machine [15].

IV. COMBINING SAT AND MDG

We start with a system level design and a set of properties
written in £7pg. As shown in Figure 1, we extract form the
behavioral design a transition relation in terms of DF. Then we
apply an abstraction technique to create a CNF formula and a
set of associated truth assignments constraints: B pp. During
this step we introduce Boolean variables for every clause
in the transition relation with suitable arguments (primary
variables (LHS) and uninterpreted function arguments). Also

IEEE ICM - December 2007

System Level Design

!

Transition Relation
DF

l

Transition Relation SAT
Bpr Solver

-—

Variables Properties

Reduced By
MDG
Reduced DF Model Checker

Fig. 1. Overview of the Methodology

we specify additional constraints between clauses with similar
arguments to be mutual. From the properties, we extract
the set of reduction variables and feed them with the Bpp
to the rewriting based SAT solver which will decide the
truth assignment and the implication of this assignment and
produce a reduced transition relation: Reduced B pr. Then, we
transform again the Reduced Bpr to the reduced transition
relation in term of DF. The obtained DF with the £ /pa
properties will be fed to the MDG Model Checker. The formal
verification is performed then on this obtained reduced MDG
using the existing MDG package.

A. Abstracting CNF from DF

Algorithm 1 CREATECNFFORMULA(SYSTEM)

1: Formula = CreateLogicFormula(System);

BoolFormula = replace each term in Formula with a predicate;
Infer constraints between predicates;

Transform predicate to Boolean variable;

CNFFormula = ConvertToCNF(BoolFormula);

Return CNFFormula;

AN

Algorithm 1 shows a sketch on how to obtain a transition
relation in CNF. It first creates the transition relation in a
general format at line 1. Assume the formula is

(z=3)A(y=2)V(z=5A(y=4)

Line 2 will then introduce n predicates for every
clause with LHS argument, so in the above formula
we need four predicates and the formula becomes
(bi(z) A ba(y)) V (bs(x) A ba(y)). Line 3 introduces
additional constraints such that clauses with a similar LHS
argument must be mutual. In this example we know that
b1(z) and bs(x) cannot be true at the same time. Meanwhile,
one of them has to be true, otherwise the formula cannot be
satisfied (by(x)@®bs(x)). Similar constraints can be applied to
ba(y) and by(y). Therefore, the Boolean formula B(Tr pr)
and the truth assignment constraints are shown below:

B(Trpr): (bi(x) Aba(y)) V (bs(2) A ba(y))
Constraints : (b1(z) ® b3(x))
(b2(y) @ ba(y))

In line 4, we have resolved all dependencies and the
predicates will be transformed to Boolean variables (i.e.
b1 (x) becomes b1,). Note the Boolean formula is not in CNF
yet. There exists linear algorithm to convert any Boolean
formula to CNF [16], with additional variables introduced.
As mentioned in line 5, the CNF representation for the above
formula is:

B(TT‘DF) : (blz V bgm) A (be \Y bgm)/\
(b1z V b4y) A (b2y v b4y)
Constraints : (bh, V0,) A (b1g V bsg)
(b V b)) A (b2y V bay)

B. Extracting Variables from Properties

Our approach to select a variable and assign it a value is
based on (assumption) extracted from the dependent variables
on the property and hence the resulting transition relation will
be much smaller. In fact, in large systems where the design
can be expressed as a conjunction of the individual transition
relations of the state variables, it consumes large memory and
time to verify a property. Our approach gives the possibility to
assign a concrete variables to the inputs of the system. Thus,
an important reduction is gained on the resulting transition
relation which improves the performance of the MDG model
checker in terms of memory and CPU time.

Just as an example, if we assume that P1 is dependent on
b1z, then if the SAT solver decides b1, to be true, then the
implication we can get is:

B (TT D F) : b2y
Constraints : (b, V by,) A (bay V bay)
which represents a very smaiyl transition relation consisting
of only 1 clause compared to the original one of 4 clauses,
and hence improve the performance.

V. APPLICATION AND RESULTS

The MDG tool has been demonstrated on the example of the
Island Tunnel Controller (ITC) in [17], which was originally
introduced by Fisler and Johnson [18]. The ITC controls the
traffic lights at both ends of a tunnel based on the information
collected by sensors installed at both ends of the tunnel: there
is one lane tunnel connecting the mainland to an island. At
each end of the tunnel, there is a traffic light as depicted in
Figure 2.

The ITC is composed of five modules: The Island Light
Controller (ILC), the Tunnel Controller (TC), the Mainland
Light Controller (MLC), the Island Counter and the Tunnel
Counter (refer to [18] for the state transition diagrams of each
component).

We use the same case study and we consider the ITC with its
properties as a benchmark in order to measure the influence of
our method on the MDG model checking performance. Table
1 compares the verification results with and without reduction
for five properties, run on a Sun enterprize server with Solaris
5.7 OS and 6.0 GB memory. We give the CPU time measured
in seconds and the memory measured in MB that are used in
building the reduced machine and checking the property.

IEEE ICM - December 2007

TABLE 1
COMPARING MODEL CHECKING RESULTS WITH & WITHOUT REDUCTION

Benchmark Without Reduction With Reduction
Properties | Time | Memory | Nodes | Time | Memory | Nodes
P1 65.35 50.1 123080 | 53.65 47.6 121060
P2 0.12 0.57 263 0.10 0.4 211
P3 65.45 48.6 123085 | 9.73 5.24 12292
P4 65.61 46.4 123082 | 35.05 26.11 63419
P5 65.89 48.3 123080 | 48.42 34.95 69966
[Average [5248 | 3879 | 98518 | 2939 | 22.86 | 53389 |
challenging industrial benchmark in order to compare results
with commercial model checking tools.
mr mu iy i REFERENCES
mgl Mainland mr | Tunnel ki Island gl [1] E. M. Clarke, O. Grumberg, and D. E. Long, Model Checking. In
& L'St’ht" Controller CL'?ht" Nato ASI, vol. 152 of F, Springer-Verlag, 1996.
me. ool mg (o) ig_,[“OnONer le [2] R.Bryant, Graph-Based Algorith Boolean Function Manipulati
(MLC) (ILC) . Bryant, Graph-Base gorithms for Boolean Function Manipulation.
mx oy iv o IEEE Transactions in Computer Systems, 35(8): 677-691, August 1986.
[3] R. Bryant, Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams. ACM Computing Systems, 24(8): 293-318, 1992.
[4] F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny, Multiway

S

’ Island Counter ‘

tcT tc+l tc—l mtc+i mtc-i

Tunnel Counter

Fig. 2. Island Tunnel Controller Structure

We note that the reduction gain depends on the properties.
The best gain in performance is obtained with property P3
where the time is reduced by 6.7 times the original one and
the memory is reduced by a factor of 9.3 times. The worst case
is the property P1 where the time is reduced by 1.2 times the
original one and the memory reduction is not profitable.

In the case of property P1 the assumptions and the function-
ality tested needs several runs (when using our SAT reduction
as case splitting). The sum of these runs for this particular
case is a little bit lower to a single run without reduction.
For P3, case splitting was really much more efficient. These
differences show the sensitivity of the reduction technique
to the property verified. Despite these fluctuations, the gain
average in performance is a factor of 2 which is considered
as a good result in the case of model checking approaches.

VI. CONCLUSIONS

We have proposed a reduction technique to integrate SAT
solvers within the MDG model checking tool. We have used
the specification of the design provided as properties to extract
a reduced model that is verified by the MDG-tool. In fact,
the SAT solver reduces the control aspects of the design
while MDG abstracts the data aspect in order to targets
the formal verification of increasingly larger designs. The
obtained performance is promising as it has been shown in
the experimental results. However, the approach still in its
early stages. Future work includes further applications using

Decision Graphs for Automated Hardware Verification. Formal
Methods in System Design, 10(1): 7-46, 1997.

W. Clocksin and C. Mellish. Programming in Prolog. Springer-Verlag,
3rd edition, 1987.

M. Ganai and A. Aziz, Improved SAT-based Bounded Reachability
Analysis. In Proceedings of VLSI Design Conference, 2002.

P. A. Abdulla, P. Bjesse, and N. Een, Symbolic Reachability Analysis
based on SAT-Solvers. In Proc. of Workshop on Tools and Algorithms
for the Analysis and Construction of Systems (TACAS), 2000.

A. Gupta, M. Ganai, Chao Wang, Zijiang Yang, and P. Ashar, Learning
from BDDs in SAT-based bounded model checking. Design Automation
Conference, 2003. Proc., Vol., Iss., 2-6 June 2003, pp. 824- 829.

A. Gupta, Z. Yang, P. Ashar, and A. Gupta, SAT Based State Reachability
Analysis and Model Checking. 3rd International Conference on Formal
Methods in Computer-Aided Design (FMCAD), 2000.
U. Stern, and D.L. Dill, Parallelizing the Murphi Verifier.
at Computer-Aided Verification, 1997.

T. Heyman, D. Geist, O. Grumberg and A. Schuster, Achieving scala-
bility in parallel reachability analysis of very large circuits. Presented
at Computer-Aided Verification, 2000.

G. Al Sammane, S. Abed, and O. Ait Mohamed, High level reduction
technique for multiway decision graphs based model checking. In First
International Workshop on Verification and Evaluation of Computer and
Communication Systems (VEC0S’07), British Computer Society 2007.
M. Davis and H. Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7:201205, 1960.

O. Ait Mohamed, X. Song, and E. Cerny. On the non-termination
of MDG-Based Abstract State Enumeration. Theoretical Computer
Science Journal, 1-3(300): 161-179 ,2003.

Y. Xu, E. Cerny, X. Song, F. Corella and O. Ait Mohamed. Model
Checking for a First-order Temporal Logic Using Multiway Decision
Graphs. In Proc. Conf. on Computer-Aided Verification (CAV’98), pp.
219-231, volume 1427 of Lecture Notes in Computer Science, Springer-
Verlag, Vancouver, Canada, July 1998.

Miroslav N. Velev. Efficient translation of boolean formulas to CNF in
formal verification of microprocessors. In Proceedings of the 2004
conference on Asia South Pacific design automation (ASP-DAC ’04),
pp. 310-315, IEEE Press, Yokohama, Japan, 2004.

Z. Zhou, X. Song, S. Tahar, E. Cerny, F. Corella, and M. Langevin.
Formal verification of the island tunnel controller using multiway
decision graphs. In Formal Methods in Computer Aided Design
(FMCAD), 1996.

K. Fisler and S. Johnson. Integrating design and Verification Envi-
ronments Through A Logic Supporting Hardware Diagrams. In
Proc. of IFIP Conference on Hardware Description Languages and their
Applications (CHDL’95), Chiba, Japan, August 1995.

[3]
[6]
(7]

(8]

[9]

[10] In Presented

(1]

(12]

[13]

[14]

[15]

(16]

[17]

(18]

IEEE ICM - December 2007

