Mixed Symbolic Representations for Model Checking Softwage Programs

Zijiang Yang! ChaoWang Aarti Gupta® Franjo lvanci¢

1 Western Michigan University, Kalamazoo, Michigan, USA
2 NEC Laboratories America, Princeton, New Jersey, USA

Abstract Although modeling all variables as bit-vectors is accurate
such a high precision approach is often not needed and may
We present an efficient symbolic search algorithm for generate models of very large sizes.

software model checking. The algorithm combines multiple |n [9, 28], Bultanet al. proposed a composite symbolic
symbolic representations to efficiently represent the-tran representation in an infinite-state model checker by com-
sition relation and reachable states and uses a combina-pining the relative strengths of two symbolic representa-
tion of decision procedures for Boolean and integer rep- tions: they used BDDs to represent Boolean formulas and
resentations. Our main contributions include: (1) mixed union of po|yhedrons to represent formulas in Presburger
symbolic representations to model C programs with rich arithmetic. Their approach has the advantage of represent-
data types and complex expressions; and (2) new symboliGng both bit-level and word-level expressions uniformly at
search strategies and optimization techniques specifie40 s the suitable abstraction levels. However, the technique in
quential programs that can significantly improve the scal- jts original form was not aimed at directly handling large
ablllty of model CheCking algorithms. Our controlled ex- Sequentia| programs written in a genera| purpose program-
periments on real-world software programs show that the ming language. In [9, 28], one needs to specify the modelin
new symbolic search algorithm can achieve several orders-3 domain-specific input format called action language, and
of-magnitude improvements over existing methods. Thethe published experimental evaluations of their symbdiic a

proposed techniques are extremely competitive in handlinggorithms were on relatively small concurrent protocols.
sequential models of non-trivial sizes, and also compare

favorably to popular Boolean-level model checking algo-
rithms based on BDDs and SAT.

In this paper, we follow the general framework of [9, 28]
in combining multiple symbolic representations. However,
our focus is on improving the scalability of the composite
) model checking algorithms, with the application to verify-
1 Introduction ing source code level sequential programs. The number of

program variables is often orders-of-magnitude largen tha

Model checking as an automatic verification technique in previous studies [9]. We differentiate our work from
has been successfully used in the design of complex cir-the prior art primarily in the following aspects: (1) we use
cuits and communication protocols [10, 20]. The procedure Mixed symbolic representations to model programs with
normally uses an exhaustive search of the state space of théignificantly richer data types and more complex expres-
considered system to determine whether a specification isSions; and (2) we develop new search strategies and op-
true or false. Various symbolic representation and manipu-timizations specific to sequential programs to improve the
lation techniques [20, 6] have been proposed to improve thescalability of model checking algorithms. In particulag w
scalability of the procedure. While symbolic model check- derive high-level information of the software model using
ing has been extensively studied for hardware verification @ Static control flow analysis, and use it to decompose and
in industrial settings, its application to analyzing saurc Minimize the transition relations and to improve the perfor
code programs written in modern programming languagesmance of symbolic fixpoint computation.

(as opposed to specialized modeling languages) is relative Linear constraint representations and polyhedral analy-
new [26]. Existing symbolic model checking tools in this sis have also been used in the verification of real-time and
category, including [4, 11, 18], often restrict their regen- hybrid systems [15, 3]. These systems are often specified
tations in the pure Boolean domain; that is, they extract aas timed or hybrid automata with variables of infinite data
Boolean-level model from the given program and then ap- types and continuous dynamics. A state set is represented
ply symbolic decision procedures such as Binary Decision symbolically as a polyhedron as opposed to a disjunctive
Diagrams (BDDs) [7] and SAT [12] to perform verification. set of polyhedrons; the union of two state sets is approxi-

mated into their convex union. Since a convex hullis often 2.1 Software Modeling
expensive to compute, this approach is also known to have
scalability problems. The Symbolic Analysis Laboratory F-SorFT begins with a program in full-fledged C and
(SAL) [5] also provides a method for combining different applies a series of source-to-source transformations into
decision procedures. However, it is different from our ap- smaller subsets of C, until the program state is represented
proach in the sense that the different search engines and veras a collection of simple scalar variables and each pro-
ification tools of SAL are glued together loosely at a very gram step is represented as a set of parallel assignments
high level by a specification language that models concur-to these variables. Below are details relevant to the
rent systems in a compositional manner. Word-level model construction of a mixed symbolic model (for a comprehen-
for C programs has also been used in linear programs whergive description of the transformations, please refer7¢)[1
program variables can range over a numeric domain [1, 2].
However, our work emphasizes the combination of different Pointer and Memory Modeling. One difficulty in model-
modeling techniques such that each domain can be solvedng C programs lies in modeling indirect memory accesses
by the most efficient verification engine. via pointers, such as=* (p+i) andq[]j] =y. We replace

We have implemented the proposed techniques in our Call indirect accesses with equivalent expressions innglvi
model checking tool F-S8FT[18, 17], and compare ournew only direct variable accesses, by introducing appropriate
method with the related work [28] in a set of controlled ex- conditional expressions as described below.
periments. Our experimental results show that the new al- - i) . i
gorithm significantly outperforms existing methodsinterm ~ ® To facilitate the modeling of pointer arithmetic, we

of both CPU time and memory usage. We note that the per- ~ build an internal memory representation of the pro-

formance gains achieved by our new method do not come ~ 9ram by assigning to each variable a unique natural
from improvement of any elementary symbolic engines, but ~ Number representing its memory address. Adjacent
is a result of combining the individual engingsitablyfor variables in C program memory (e.g., elements of an
the particular task of verifying sequential programs. Our array) are given consecutive memory addresses.

experimental study also shows that the new algorithm is sig-
nificantly more scalable than pure Boolean-level algorghm
based on BDDs and SAT, indicating that it is advantageous
to raise abstraction levels in symbolic model checking.

The remainder of this paper is organized as follows. We
introduce our software modeling approach in Section 2, by
explaining the transformation from C programs into mixed
symbolic models. We also review the basic set-theoretic
operations on composite formulas and the corresponding e For reads via pointers (pointer-deref), we adopt an
model checking procedure. In Section 3, we present our approach from hardware synthesis [24] and for each
software specific optimization techniques in decomposing pointer variablep create a new variabl8TAR p rep-

e We perform a points-to analysis [16] to determine, for
each indirect memory access, the set of variables that
may be accessed (called theints-to set If a pointer
can point to a set of variables at a given program loca-
tion, we rewrite a pointer read as a conditional assign-
ment expression using the numeric memory addresses
assigned to the variables.

and minimizing the transition relation representations. | resenting the current value ep. Each read ofp is

Section 4, we present two new strategies for symbolic fix- then rewritten as simply a read 8TARp. (Reads of

point computation in order to exploit the unique character- the form* (p+i) continue to be handled as described

istic of sequential models. We give the experimental result earlier.) To keeBTAR p up-to-date, after each assign-

in Section 5 and then conclude in Section 6. mentp=q we add aninferred assignmensTARp =
STAR g. Furthermore, we need to adtlasing assign-

2 Preliminaries mentgo the model that keepTAR p up-to-date, when

the value may have been changed by an assignment

. . . N through+ g or some other variable ip’s points-to set.
In this section, we review the software modeling in F- gh=q psp

SOFT [18, 17] relevant to the automatic construction of a Unbounded Data, Recursion and Function.The C lan-
mixed symbolic model. F-8FT is a tool for analyzing guage specification does not bound heap or stack size, but
safety properties in C programs, by checking whether cer-our focus is on generating a bounded model &nfjhere-

tain labeled statements are reachable from an entry poinfore, we model the heap as a finite array, adding a sim-
of the program. A large set of programming bugs, such asple implementation ofral | oc() that returns pointers into
array bound violations, use of uninitialized variablespme Tour bourded model works wel I

ory leaks, lacking rule violations, and division by zeronca L0 0l ol es and embedded software in poelices,

be formulated into reachablllty problems by addmg suabl although it may not be suitable for programs in some apjtinadomains
property monitors to the given program. such as scientific computing and memory management.

tnt foo(int s){ basic block with a set of parallel assignments, where

int t=s+2; . .
: f (t>6) 3 represents the set of all possible C expressions.
t -=3; |
el se xsa (.. e § : & — X is a labeling function that labels each
tees 00 AL) edge with a conditional C expression. These condi-
) returnt; ./ xt v tionals are based on conditions in the C code as part
Jof T=y; | paramet l-=j@1 ofi f-then- el se or whi | e expressions
! passing o ! .
voi d bar(){ L,,}?I",‘{,EI‘E?,‘??,,,J
int x=3; l We denote a valuation of all variables X by #, and
int y=x-3; /o e T gl R the set of all valuations byt'. The state space of the entire
whil e (x<=4){ a ; . .
i |) program isQ = B x X. we define a state to be a tuple
et | Upseting t<6 | - o \
x = foo(x); | valies | Y Y 3 g = (b,¥) € Q. The initial states of the program are in
} | L <—@® the initial basic blockb; with an arbitrary data valuation,
} y = foo(y); = "= foo denoted byQo = {(bs, T)|[7 € X'} C Q. The set of parallel
”””””” assignments in eadh € B, denoted by (b;), can be writ-
tenasey,...,x, < e1,...,e,, Where{zy,...,2,} C X
Figure 1. Sample code and its graph representation and{ey,...,e,} C 3.

For checking reachability properties, we define a sub-

set By, C B of blocks to be unsafe; model checking is

this array. We also add a bounded depth stack.as anothe{hen used to prove or disprove that these basic blocks can
global array in order to handle bounded recursion, along be reached. Lef; — ¢, denote a valid transition between
with code to save and restore local state for recursive func—the two statesyi, ¢, € Q. We define a path in the state

tions only. S o
. . N space(@ to be a sequence of statéls), ©g), . . ., (b, Tk
As a running example, Figure 1 shows a simplified con- sEch tcriat(l_f 2 qu and for aﬁlfg /I<0) - (kk_xkl)
trol flow graph structure obtained from the C program on -~ 0; %0 0 = ’

the left-hand side. The example pictorially shows how non- (b“fi_) = (bis, mﬁfl)_‘ A counterexample is a path that

recursive function calls are included in the control flow of €nds in an unsafe basic blobk € B,

the calling function. A preprocessing analysis determines

that functionf oo is not called in a recursive manner. The 2.2 Composite Symbolic Formulas

two return points are recorded by an encoding that passes a

unique return location as a special parameter using the vari \We now review the definition of composite symbolic for-

ablertr. mulas and the corresponding set theoretic operationsZ Let
Each rectangle of the right-hand side graph is a basicbe the set of integer numbers aRde the set of real num-

block consisting of a set of parallel assignments. The edgesers. An integer linear constraint is denoted byahy < b,

are labeled by conditional expressions, e.g., the tramsiti wherex, a; € Z" are vectors and € Z is a scalar. Simi-

from block 1to block 2is guarded by < 4. Incase anedge larly, a real linear constraint is denoted &y < d, where

is not labeled by any condition, the default condition i®tru y, c; € R™ are vectors and € R is a scalar. A formula in

Finally, block 0 is the entry block and block 8 is the one Presburger arithmetic is an arbitrary Boolean combination

that leaves the analysis scope. Formally, the transfoomsiti of integer linear constraints, which can be represented as a

produce a simplified program that can be represented as aunion of polyhedrons.

labeled transition graph.

Definition 2 (c.f. [9]). The composite symbolic formula
Definition 1. A labeled transition graphG is a 5-tuple is defined as follows,
(B,E, X,4,0), wherein
F:=FANF|-F|FB|FI|F |
e B = {by,...,b,} is a finite non-empty set of basic | | [

blocks.b, € B is an initial basic block. where FB, F! and F% are formulas in Boolean logic,

Presburger arithmetic, and Boolean combination of real

e [/ C B x B is a set of edges representing transitions . .
linear constraints, respectively.

between basic blocks.

e X is a finite set of variables that consists of actual The above definition extends the one in [9] by introducing

source variables and auxiliary variables added for ©N€ more elementary formula type, Boolean combination
modeling and property monitoring of linear constraints on reals. A formulation of compos-

ite symbolic representation for arbitrary number of types i
e § : B — 2% is a labeling function that labels each given in [8]. A composite symbolic formula can be put into

the Disjunctive Normal Form (DNFas follows Their next-state values are represented bypitimed ver-
sion P and X’. The verification model is represented by
F=\/FEP nFINF] (T, I), whereinT (P, X, P, X') is the transition relation
i and I(P, X) is the initial state predicate. An evaluation
of the characteristic functioff (b, Z, ',) is true if and

Assume that all expressions in a composite formula are)) = 00
only if there is a transition from the statg, &) to the state

type-consistent, then subformulas of different types ehar

no common variables. (', 7). Similarly, the evaluation of functioh(b, %) is true
if and only if (b, ¥) is an initial state.
Basic Set-Theoretic OperationsThe general approach of We choose to represent expressions related to PC vari-

carrying out set-theoretic operations on composite syimbol ables as Boolean formulas. That is, we allocate a finite set
formulas is to rewrite the operands into DNF, process the of Boolean variable®® = {p1, ps,....px} So that, for in-
corresponding subformulas with suitable engines, and as-stance(P = 5) is encoded afs A —p2 Ap1). Thisis based
semble the result back into DNF. One can use CUDD [25] on the observation that formulas involving the PC variable
to represent Boolean formulas, the Omega library [22] to are often control-intensive, for which the representatibn
represent Presburger formulas, and the Parma Polyhedrdinear constraints is ill-suited. On the other hand, we use
Library [13] to represent linear constraints on reals. Ehes integer and real linear constraints to model the data-path.
underlying manipulation packages all support set-th@oret Individual expressions in(b;) such agz), = e;;) are rep-
operations such as uniox), conjoin (\), negation {), and resented either by a Boolean formula, Presburger formula,

guantification f). or polyhedrons on real, depending on the type of the vari-
The union of two composite formulas is simply the ablez).
union of their subformulas. The conjunction of two com- Reachable states are also represented disjunctively as the
posite formulas is the union of pair-wise conjunctions of union of subformula. For instance, given a set of initialval
their subformulas. Let” = \/I7, FP A Ff A Fand ues{z; = eq1;...;vm = eom} and the entry block,, we
G=\i< GP ANGiAGE;then he_lve the initial prgdicaté = (P= bs)/_/\;f‘zl(xk = eok)-
Given a composite formula representing an arbitrary state
NG set, we can easily partition the conjuncts and convert it to
B B I I R R
FAG= \/ (FPAGPYNEIANGHANFEEAGE) . DNFE
i=1,j=1

Handling Non-Linear Operators Since non-linear oper-
ators on integer and real variables cannot be modeled by
polyhedrons, they need special treatment. If all operands
are of integer type and of bounded size, we can model a non-
linear operation as Boolean-level operations throughrihe i
stantiation of predefined logic components such as multi-
pliers. However, not all non-linear operations can be han-
dled this way: if a bounded integer variabieis treated
as a fixed-length bit-vector, then (1) any operationaon
must be treated as a bit-vector operation; and (2) any other
operand of the same bit-vector operation must be treated
as a bit-vector. Therefore, the definition of bit-vectorivar
able is transitive. If a non-linear operation involves both
nr fixed-length bit-vectors and unbounded integers, it cannot
P 0 o P =\ (@P . FP)AE0" F))A@" . F]?) , be modeled in pure Boolean logic. The requirement of dis-
i=1 allowing common variables shared among different sym-

Since there is no common variable shared, F7, and
F, subformulas in different domains do not interfere with
each other. The negation of a composite formula can be
implemented in a way similar to conjunction. Note that the
DNF representation is not canonical, and there are hewristi
algorithms [9] to make the result more compact. Although
the number of mixed terms can be as largéas x n¢) for
conjunction 8™* for negation), such a worst-case blowup
rarely happens in our application domain.

Existential quantification distributes not only over
unions (which is true in the pure Boolean domain) but also
over conjunctions of subformulas of different types; tisat i

o bolic engines clearly differentiates this modeling apptoa
due to the fact that”, v', andv™ are disjoint sets. from the Nelson-Oppen framework for cooperating decision
. . procedures [21].
Symbolic Representation of the Model. Let P denote If the above requirement is not satisfied, we resort to ap-
the set of program counter (PC) variables for encoding theproximate modeling. A straightforward way is to assume

set3 of basic blocks (or program location$thenP and hat the result of a non-linear operation takes an arbitrary
X form the complete set of state variables of the model. 5,6 For instance, the assignmept— x; * z; becomes

2p consists of log | B|] Boolean variables in a pure bit-level represen- Lk < W, Wher.ew is a nondete'rminStipseUdQ_inpuvari'
tation, or a single integer variable in a word-level repnéstion. able of the suitable type. During post-condition computa-

tion w will be existentially quantified out, therefore model- Note that the partitioning of” into 73; is independent of
ing the fact thatr;, can take an arbitrary value. If an upper any symbolic representation. When we use composite for-
and/or lower bound on the values of its operands is known,mulas to represent eadl;, there will be another level of
we can improve the approximation by estimating the output decomposition which further partitions each comporgnt
value range of the non-linear operation. For instance rgive into individual conjuncts based on their formula typessilt i
1 <z; <4and2 < z; <5, we can impose the additional worth pointing out that these two levels of decomposition
constraint2 < w < 20. The bound information of vari- are different, and indeed complementary.

ablesr; andz; may come from arange analysis [17], which Given a transition relatioi” and a setZ of states, the
determines a conservative value range of each variable inpost-condition oimageof Z with respect tdl” consists of
the given program. Also, the user can "sharpen” the over-all the successors of in the state transition graph. Let
approximation with the help of pre- and post-conditions (or f(x,x+, denote the substitution of’ variables inf by the
asserts and assumes) in such cases. correspondingX. Then

3 Mixed Symbolic Transition Relations post(T, 2) = (3X, P . TN Z)(x/x',p/p)

-~ o The post-condition computation can be decomposed into a
Now we present our software specific optimizations that get of easier steps as follows,
decompose and simplify mixed symbolic representations of
the transition relation and the reachable state set. _ ()
t(T,D) = (3X,P. vep Lij ND
post() Vi vyer Tij (X/X' P/ P

3.1 Disjunctive Transition Relations =Vupyer GX P . Ty AD) x50 p/pry
From the labeled transition graph (LTG) of a given pro-
gram, we construct the symbolic representation of its veri- Computing post-condition subsets individually is often

fication model as follows. We define transition relation of more efficient than computing the entire set on a monolithic

the entire model as

d e
T =V, p)erti NG

wheret; denotes the transition of control flow framto b;,
andt¢ denotes the data assignments inside blgclGiven
a transition fromb; to b; under the conditiod(b;, b;), the
transition relatiortf; is defined as follows,

£, = (P =1i) A (P = j) AO(bs, b))

Given a blockb; € B, t¢ describes the conjunction of all
assignments if(b;), and therefore is defined as follows,

1X]

t=(P=i)n N\ = ea)
k=1

Inside a bloclky;, for each variable;, € X, the elementary
transition relation isz), = e;;, such that

e . &
ik T

A disjunctively partitioned!” is naturally suited for se-
quential software programs. L&t = \/T;; andT;; =

td A ti;; thenT;; corresponds to a transition in the LTG.

s if (th = 6) S (5(b7) s
, otherwise

1X]

Ti; = (P =i) A (P = j) NO(bi, bj) A N (2}, = eir)
k=1

transition relation, since it reduces the peak size of syimbo
representations for intermediate products.
Reachability analysis is a least fixpoint computation,

R=uZ . .1Upost(T,Z) .

Here ;1 denotes the least fixpoint and is an auxiliary
variable for iteration. Reachability fixpoint computation
starts from the initial state set and repeatedly adds thie pos
condition of already reached states until convergence.

3.2 Simplifying Transition Relations

The main reason for state explosion inside symbolic
model checking is the exponential dependency of the state
space on the number of state variables of the model. For
many realistic C programs, the number of variables of the
verification model can easily be in the hundreds (including
those added for modeling indirect memory accesses, func-
tion calls, and encoding properties), which is well abowe th
capacity of state-of-the-art BDD and polyhedral analysis
algorithms. Although all elementary decision procedures
can dynamically simplify representations—variable siiti
in CUDD andsi npl i fy in the Omega library—they are
time-consuming in the presence of many variables.

The symbolic model checking algorithm as outlined up
to this point still suffers from performance problems. In
a normal reachability fixpoint computation, it is often the
case that both the number and the size of polyhedronsin the

code fragment live variables able analysis for the following optimization. During the
construction of the transition relatidh;, if a certain vari-

L1 x=y=0; {1} ablex;, is not alive in the destination blodk, we remove

I|:§ ;(;)7(}X{ x}. = e, from the trar_wsition r(_alat_ion component since the
L4 y= 8’; (s} value ofz;, would pe |mmater|al in the destination block:
L5 s=s+y; {sy} The next-state variable; in this case can assume an arbi-
L6: if (s) goto L2; {s} trary value thereby providing an abstraction of the search
L7: ERROR: {3 state space. Note that the live variable analysis can aghiev

significantly more reduction of the transition relationesiz
than a simple program slicing. In Fig. 2, for instance, we
Figure 2. An example of live variables. can remove the implicit assignments= = from the tran-
sition relations at Lines 4-6 wheteis not live; however,
a property dependent program slicing along cannot remove
lying polyhedral libraries. th_em. Our experien_ce_s_hows that in pract_ice, Iivg variables
Our observation is that most variables in sequential pro- With réspect to any individual block comprise typicallyses

grams are inherently local, and therefore should be consid—than 30% of the entire program va_1r|ables_Xn . .

ered as state-holding only when they affect the control flow M OUr previous work [27], the live variable information

or the data-path. In our previous work [27], we have suc- was used to existentially quantify dead variables out of im-
cessfully exploited this characteristic of sequentiagpeon ~ 29€ results at each iteration. In this paper, however, we use
to simplify BDD-based image computation, and have ob- live variables to directly simplify the mixed symbolic rep-
tained significant performance improvement. Here we ex- resentations of individual transition relation comporsent
tend the technique to simplify the transition relation a8 we This prevents transition relations of dead variables frem b

as reachable state sets for model checking using mixed repind involved in the often costly post-condition computatio
resentations. Existential quantification of dead variables from the post-

condition results, as was done in [27], is avoided since dead

Definition 3. Variabler € X islive in blockb; € Bifand variables never appear in the result in the first place.
only if there exists an execution path frépto b; such that, Removing dead variables not only reduces the sizes of
the symbolic representations, but also leads to a poten-
tially faster convergence of reachability analysis. Tdie t
code fragment in Fig. 2 as an example. With the live vari-
e 1 does not appear in the left-hand side of an assign- able based simplification, one can declare the termination

ment in any block betweén andb; along the path. of reachability fixpoint computation after going from L1
through L6 only once. This is because the post-condition
of L6 is (P = 2 A s = 15), which has already been cov-
ered by(P = 2), the post-condition of L1 (whereincan
take any value). However, if andy are assumed to be live
everywhere, we will have much larger polyhedrons to rep-
resent in the reachable states at each location. In addition
we can no longer declare convergence after L6, since the
rbost-conditior(P =2As=15Ax=T7Ay = 8)isnot
covered by(P =2 Az = 0Ay = 0), the post-condition of
L1. As a result, we need a few more iterations in order to
declare convergence.

reachable state set quickly become too large for the under

e 1 appears either irf(b;, by) or in the right-hand side
of an assignment if(b;);

In our reachability procedure, we associate a reachalite sta
subset with each basic block (i.e., a disjunctive partitbn
the reachable state set). From the above definition, ité&s cle
that if « is not live in blockb;, there is no need to record its
value in the associated reachable state subset.

Locally defined variables are live only inside the pro-
gram scopes in which they are defined; these variables ca
be identified syntactically. However, we note that even
globally defined variables may not be live (according to our
definition) at all basic blocks. We use the code fragment in
Fig. 2 to show that global variables are often live at a lim-
ited number of locations. Assume thaty, ands are global o))
variables but do not appear elsewhere in the program. Therft Specialized Symbolic Search Strategies
none of them are live at program locations 1 and 2 since
their values will not affect the control flow and data-path. Let R"—! and R’ be two reachable state sets at two con-
Variable z is considered live at L3 because its value will secutive steps; in computing ™!, one can uspost (T, R*\

be assigned te, and similarly fory at L5. We consides R~ instead ofpost(T, R?) if the symbolic representation
as live at L6 because its value may affect the control flow. of (R* \ R‘~1) is smaller than that of. In BDD based
(Fig. 2 is for illustration purposes only.) symbolic model checking, the s&’ \ Ri~! is called the

Finding the set of blocks in which variableis live is a frontier set[23]. However, in order to detect convergence,
standard program analysis problem. We use the live vari-one still needs to store the entire reachable stat&s¢n

Algorithm 1 REACH_FRONTIER(T,I,Err,Spa)
» 1. F=1I,
- 2: S =1nNSpa;
o2 3: while F' # () do
. / \ 4 if (F N Err) # 0 then
g 5: returnfalse;
; 6 endif
. il 7 F = (post(T, F)\ F)\ S
. Y ® 8 S=SU(FnNSpa);
‘ - 9: end while
» %\\ 10: returntrue;
® @
Figure 3. Removing back edges to break cycles Our new reachability procedure in Algorithm 1 takes as

parameters the symbolic mod@l, I), the state subspace

Err = Bg,, x X associated with a set of error blocks
order to stop as soon & ! = RY). Bgr, as well as the state subspattye: associated with tail

We have observed that maintaining the entire reachableblocks of back edgeg&},.,.. We use seb to represent the

state set?’ at every iteration is costly. In symbolic model subset of already reached states that falls inSjgte When
checking, it is a known fact that the size of symbolic rep- we defineSpa = true, the algorithm becomes the same as
resentation ofR’ often increases in the middle stages of the ordinary reachability analysis procedure.
fixpoint computation and then decreases when it is close Finally, we note that even the ordinary reachability anal-
to convergence. The case becomes even more severe witlisis procedure may not converge since program verification
polyhedrons in our mixed representations, which is largely in general is undecidable in the polyhedral abstract domain
due to the fact that composite formula representation is However, what we can guarantee is that, our Frontier proce-
not canonical — after being propagated through various dure is able to terminate as long as the ordinary procedure
branching and re-converging points, polyhedrons are frag-terminates.

mented more easily into smaller pieces.)
Theorem 1. Let D be the longest path starting from the en-

try block in the LTG after the removal of back edges. Then
REACH_FRONTIER terminates with at mosb more itera-

o . tions after the conventional reachability analysis progesd
We propose a specialized symbolic search strategy callederminates.

REACH_FRONTIER to improve reachability fixpoint com-

putation. The idea is to avoid storing the entire reachable Note that by definition, we havg = RN Spa and there-
state set at each iteration, but use an augmented frontier sgore S* = R’ N Spa. It follows that if R* \ R*~! is empty,

to detect convergence. In reachability computation, a-fron thenS*\ S'~" is also empty. The sef* may not become
tier set consists of all the new states reached at the previouempty immediately afteR*\ R*~*, butit will never add any
iteration; that is,F* = I, F" = post(T, Fi=1) \ Fi~1 new state insid&*. Therefore, the frontier séf is guaran-
For straight-line code (without loops and backward gotos in teed to become empty after going through all the forward
the LTG), we can declare convergence whHéhbecomes €dges one more time. Also note that if we remove all the
empty (and the set is guaranteed to become empty|dfter back edges inF,..x, the LTG becomes a directed acyclic
iterations). However, in the presence of loops (cycle®), th graph with a maximal depth.

frontier set may never become empty—an example would

4.1 The Frontier Strategy

be any program with an infinite loop. 4.2 The Lock-Step Strategy
In the presence of cycles, we need to identify a set of
back edges..r € E in the LTG, whose removal will Our frontier search strategy can significantly reduce the

make the graph acyclic (an example is given in Fig. 3). Let peak memory usage in the middle stages of fixpoint com-
Spa C @ denote the state subspace associated with tailputation. However, there are still cases for which even the
blocks of those back edges. In Fig. 3, for instance, the sub-mixed representation of’ becomes too large. When an

space is represented Sya = (P =5V P =7V P =8). LTG has multiple cycles of different lengths and the cycles
If we record all the reached states falling insigje:, which are not well synchronized at the re-convergence points, new
is.S = RN Spa, then the emptiness of the gét\ RN .Spa) states (in frontier set) may easily scatter in a large number

can be used to detect convergence. of basic blocks. Since this often means a larger number of

polyhedrons (and more linear constraints), the gain by ourParma Polyhedral library [13]. At this time the integration
frontier strategy gradually evaporates. with CUDD and Omega has been completed, whereas the
To address this problem, we propose another searchinterface to Parma is still work in progress. We are able to
strategy called RACH_LOCKSTER which is an improve- evaluate the proposed techniques by comparing to the best
ment of the frontier procedure in Algorithm 1. The idea known composite model checking algorithmin [28], as well
is to synchronize multiple cycles by controlling the time as pure Boolean level algorithm using BDDs and SAT. Our
when new states are propagated through back edges. Foexperiments were conducted on a workstation with 2.8 GHz
this we bi-partition the transition relatidfiinto 7y and7y, Xeon processors and 4GB of RAM running Red Hat Linux
such thatl’; consists of forward edges only afid con- 7.2. We set the CPU time limit to one hour for all runs.
sists of back edges only. We conduct reachability analysis Our benchmarks are control intensive C programs from
in lock-step, by first propagating the frontier set throdgh public domain as well as industry (e.g., device drivers, em-
until convergence, and then feeding back theiget Spa bedded software of portable devices). For all test examples
throughT,. Note that this may introduce some stuttering we check reachability properties expressing the absence of
steps, where propagation from some cycles is delayed. out-of-bound array and pointer accesses. Among the eleven
test casedyakeryis a C model of Leslie Lamport’s bakery

Algorithm 2 REACH_LOCKSTERT',13,1,Err,Spa) protocol; tcasis an air traffic control and avionic system;
1. F=1; ppp is C public domain implementation of the Point-to-
2: S = Spew = (I N Spa); Point protocol. The examples starting wittcf are from an
3: while F' # () do industry embedded software of a portable device, for which
4 if (FNErr)#(then we only have the verification models but no source code in-
5: returnfalse; formation (such as the lines of C code). Tiyed examples
6: endif are from the FTP daemon code in Linux.

7. F=(post(Ty, F)\ F)\ S,
8 S=5U(FNSpa); 5.1 Comparing Search Strategies
9 Snew = Snew U (F N Spa),

10: if £ = (then

First, we evaluate the proposed techniques by compar-
11 F = post(Ty, Snew) \ S; prop q y P

ing the performance of composite model checking with and

12 i".;w =0 without the new features (i.e., program-specific optimiza-
s enat tions and search strategies). We note that without all these
14: end while

new features, our implementation of the underlying com-
posite model checking algorithm becomes comparable to
))) the action language verifier of [28].

The new procedure in Algorithm 2 takes as inputs the The results are given in Table 1, wherein for each test
symbolic model(T, Ty, I), the state subspadeérr asso- example, we list in Columns 1-4 the name, the lines of C
ciated with error blocks, as well as the state subspgee ode, the number of variables, and the number of blocks.
associated with tail blocks of back edges. It terminateg onl cgjumns 5-8 compare the runtime performance of the four
when no new state is reached by post-condition computa-jmplementations, whereld denotes the baseline algorithm,
tions on bothT’y and ;. By synchronizing the propaga- |ive denotes the live variable based simplificatitant de-
tion through back edges, we can significantly reduce the notes the one augmented with frontier search strategy, and
size of . Note that with the lock-step strategy, we may |siepdenotes the lockstep strategy. Columns 9-12 compare
get longer counterexamples due to the addition of stutter-yne neak number of linear equalities and inequalities used i
ing steps. This may be a disadvantage considering the fachmega library. We omit the peak BDD sizes since for these
that counterexamples may take more iterations to generateex&mwes the BDD sizes are all very small.

However, we shall show that there are some examples 0N of the 11 examples, the baseline reachability algorithm
which the frontier strategy takes much longer runtime or -, complete only 2, while the one with our optimizations
may not even finish in the allocated time; in these cases, the; 4 the new lock-step strategy completes all. For the cases

15: returntrue;

lockstep strategy becomes a viable option. where all methods can do a complete traversal, the perfor-
) mance gained by our optimizations can be several orders-
5 Experiments of-magnitude. The results clearly show that exploiting se-

guentiality and variable locality is a key to making symboli
We have implemented the new techniques on the F-software model checking scalable. The comparison of the
SoFT verification platform [18, 17]. Our implementation number of linear constraints at each iteration shows thiat ou
builds upon CUDD [25], the Omega library [22], and the proposed techniques are also extremely effective in reduc-

Table 1. Comparing search strategies in reachability fixpoint cotatan

Test Program Total CPU Time (s) Peak GEQ Formulas
name | loc]vars|blks]| old] live [front] Istep]| old [live | front] Istep
bakery 94] 10| 26| T/O] 755| 35| 13 -[1518] 264] 128
icas-1a 1652| 59| 133 T/O| T/O| TIO| 374 . - - 17656
tcas-any 1652| 65| 215 T/O| T/IO| T/O| 415 - - - | 14920
ppp 2623 91| 720 T/O| T/lO| T/IO| 51 - - - | 3782
mcflas | 92| 921 2475 57 3 213394 355| 45 45
mcf2 afr - | 126] 155| TIO| 91 7 5 - | 344| 110| 165
mcf3.mrr -| 80| 299 TIO| 79 4 4 - | 407| 55 55
bftpd_useringrp 1115| 242 | 13 12 1 1 1 829 6 4 4
bftpd chkuser 2584 591 175|| MO | 59| 20| 20 - | 187 57 57
bftpd chkshell 2931 674 364 || M/IO | 576 | 47| 48 - | 995| 358| 358
bftpd chkpasspwd 1166 | 547 | 463 || M/O | 681| 760| 760 - | 579 2362| 2362
ing the size of the mixed symbolic representation. example driven predicate abstraction algorithm [19]. 8inc
the predicate abstraction procedure was designed for eheck
5.2 Comparison with Boolean Engines ing one property at a time, whereas all the other methods

used in our experimental study can check multiple proper-

We also give the comparison wiix-lockstegainst pure tigs simultaneously in one run, a fair comparison_was pos-
Boolean-level symbolic engines, including BDD-based sible only on the first four examples (each of which has a

model checking and SAT-based bounded model checking.Single property). The results are as follows: (1) predicate

Both of these two Boolean level engines are based on ma_abstractlon completetiakery tcas-13 andtcas-anyin 1

tured techniques and have been fine-tuned for handling se-SeCC_m(_j‘ 137 seconds, and 836 st_acpnd_s, respectively; (2) on
quential programs [17, 27]. In particular, the BDD-based pppit “”?ed out after__one hour. Th_|s |nd|cat_es that our exact
algorithm also uses decomposition and simplification basedCoMposite reachability computation algorlthm has alread'y
on live variables. better performance than an advanceql predlcatg abstraction
The results are given in Table 2. Columns 1-3 give the procedure. Note that the procedgre n .[19] bqllds upon a
name of the program, the number of bit variables in the pure Bool_ean_-level mode_l. We_belleve itis possible to com-
Boolean model, and the sequential depth at which pointblne predication abstraction with our mixed symbolic algo-

all given properties can be decided. Columns 4-6 show”thm’ which we leave as a future work.

for each of the three methods whether verification can be .

completed, and the maximum reached depth for the incom-6 ~ Conclusions

plete cases. Note that the BDD-based methods may time

out before the transition relation is built, in which cades t We have presented a symbolic model checking algorithm

maximum reached depth is 0. Finally, Columns 7-9 list the that combines multiple decision procedures for verifying

run time of each method in seconds. Sometimes the com-sequential programs. We apply mixed symbolic represen-

parison may not be entirely fair, since BDD/SAT models tations to programs with significantly richer data types and

non-linear operations as bit-vector operations (maxim@m 3 more complex expressions, and develop optimizations and

bits), while the new method may approximate them. When new symbolic search strategies to improve the scalability o

approximation happens, we put a star in the last column. model checking algorithms. Our experimental results show
Table 2 shows that our new algorithmix-locksteps the that these proposed techniques can significantly reduce the

only method that can complete traversal in all examples.run time and peak memory usage required in fixpoint com-

This, we believe, is due to the fact that mix-lockstep mod- putation. It also compares favorably to pure Boolean level

els the different behaviors of the system at the right levels search engines using BDDs and SAT. For future work, we

of abstractions. Note that our method is significantly diffe ~ wantto explore various approximate state space traversal a

ent from static analysis based on the polyhedral abstract do gorithms and extend our method to handle concurrent soft-

main [14]. Although both methods use polyhedral represen-ware programs.

tations, we are conducting an exact state space exploration

— none of our results relies on convex hull based approxi- References

mation or widening; when a property fails, we can generate

a concrete counterexample trace. [1] A. Armando, M. Benerecetti, and J. Mantovani. Model
We also checked the same test examples with a counter- checking linear programs with array&lectr. Notes Theor.

(2]

(3]

(4]

(5]

(6]

(7]

[8] T. Bultan, R. Gerber, and C. League.

Table 2. Comparing Mix-LockStep with Pure Boolean-level algorithm

Test Program Completed CPU Time (s) non
name | bvars]| depth || bdd-mc]| sat-bmc| mix-Is || bdd-mc] sat-bmc[mix-Is || -lin
bakery 84 172 Y (68) Y 2 T/O 13
tcas-la 307 119 Y (103) Y 433 T/O 374
tcas-any 362 | 181 (103) (100) Y T/O T/O 415
) 1435| 132 Y (84) Y 687 T/IO 51
mcflas 500 | 192 Y (98) Y 150 T/O 2] =
mcf2_afr 508 211 Y (60) Y 110 T/O 5
mcf3.mrr 1212 148 Y (43) Y 190 T/O 4
bftpd_useringrp 1163 11 Y Y Y 1 1 1
bftpd_chkuser 5000 75 (0) (70) Y T/O T/O 20
bftpd_chkshell 7849 94 (0) (44) Y T/O T/O 48
bftpd_chkpasspwd 2826| 147 (10) (13) Y T/O T/O 760

Comput. Scj.144(3):79-94, 2006. [15] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: the

A. Armando, J. Mantovani, and L. Platania. Bounded model
checking of software using smt solvers instead of sat selver
In SPIN pages 146-162, 2006.

E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate
reachability analysis of piecewise-linear dynamical syst.

In Hybrid Systems: Computation and Controages 21-31.
Springer-Verlag, 2000. LNCS 1790.

T. Ball and S. K. Rajamani. Bebop: A symbolic model
checker for Boolean programs. Rroc. of the SPIN Work-
shop pages 113-130. Springer-Verlag, 2000. LNCS 1885.
S. Bensalem, V. Ganesh, Y. Lakhnech, C. Munoz, S. Owre,
H. Rueb, J. Rushby, V. Rusu, H. Saidi, N. Shankar,
E. Singerman, and A. Tiwari. An overview of SAL. Rroc.

of the Fifth Langley Formal Methods Workshdan. 2000.

A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic
model checking without BDDs. Iifools and Algorithms
for Construction and Analysis of Systermpsges 193-207,
Mar. 1999. LNCS 1579.

R. E. Bryant. Graph-based algorithms for Boolean fumcti
manipulation.|EEE Trans. on ComputeC-35(8):677—691,
Aug. 1986.

Composite model
checking: Verification with type-specific symbolic represe
tations. ACM Transactions on Software Engineering and
Methodology 9(1):3-50, Jan 2000.

[9] T. Bultan and T. Yavuz-Kahveci. Action language verifier

(13]

(14]

In International Conference on Automated Software Engi-
neering pages 382-386, 2001.

E. Clarke, O. Grumberg, and D. Peledodel checking
MIT Press, 2000.

E. Clarke, D. Kroening, and F. Lerda. A tool for checking
ANSI-C programs. InTools and Algorithms for the Con-
struction and Analysis of Systenpsiges 168—176. Springer,
2004. LNCS 2988.

M. Davis, G. Logemann, and D. Loveland. A machine pro-
gram for theorem proving.Communications of the ACM
5:394-397, 1962.

T. C. S. Group.The Parma Polyhedra LibraryUniversity

of Parma, Italy, http://www.cs.unipr.it/ppl/.

N. Halbwachs, Y. E. Proy, and P. Roumanoff. Verification
of real-time systems using linear relation analydtermal
Methods in Systems Desijdiil(2):157-185, 1997.

[16]

[17]

(18]

[19]

[20]
[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

next generation. INEEE Real-Time Systems Symposium
pages 56-65, 1995.

M. Hind and A. Pioli. Evaluating the effectiveness ofiter
alias analysesSci. Comput. Program39(1):31-55, 2001.

F. lvancic, I. Shlyakhter, A. Gupta, M. Ganai, V. Kah|

C. Wang, and Z. Yang. Model checking C programs using
F-Soft. InIEEE International Conference on Computer De-
sign, pages 297-308, San Jose, CA, Oct. 2005.

F. lvanc€ic, Z. Yang, |. Shlyakhter, M. Ganai, A. Gupta
and P. Ashar. F-8FT: Software verification platform.
In Computer-Aided Verificatigrnpages 301-306. Springer-
Verlag, 2005. LNCS 3576.

H. Jain, F. lvanci¢, A. Gupta, and M. Ganai. Localipat
and register sharing for predicate abstraction.Tdols and
Algorithms for the Construction and Analysis of Systems
pages 394-409. Springer-Verlag, 2005. LNCS 3440.

K. L. McMillan. Symbolic Model CheckingKluwer Aca-
demic Publishers, Boston, MA, 1994.

G. Nelson. Combining satisfiability procedures by dijya
sharing.Contemporary Mathematic29:201-211, 1984.

W. Pugh and et alThe Omega ProjectUniversity of Mary-
land, http://www. cs.umd.edu/projects/omegal.

R. K. Ranjan, A. Aziz, R. K. Brayton, B. F. Plessier, and
C. Pixley. Efficient BDD algorithms for FSM synthesis and
verification. Presented at IWLS95, May 1995.

L. Seméria and G. D. Micheli. Spc: synthesis of poigti&

c: application of pointer analysis to the behavioral synthe
sis from c. Ininternational Conference on Computer-aided
design pages 340346, 1998.

F. Somenzi.CUDD: CU Decision Diagram PackageJni-
versity of Colorado at Boulder, ftp://visi.colorado.eplub/.

W. Visser, K. Havelund, G. Brat, and S. Park. Model check
ing programs. Innternational Conference on Automated
Software Engineeringpages 3—12, 2000.

C. Wang, Z. Yang, F. Ivancic, and A. Gupta. Disjunctive
image computation for emebedded software verification. In
Design, Automation and Test in Europe (DATE'@@unich,
Germany, Mar. 2006.

T. Yavuz-Kahveci, C. Bartzis, and T. Bultan. Action fan
guage verifier, extended. @omputer Aided Verificatign
pages 413-416. Springer-Verlag, July 2005. LNCS 3576.

