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Highlights 
 A novel probabilistic graphical model called Bayesian Network based Program Dependence Graph (BNPDG) is 

proposed.  

 A BNPDG-based fault localization approach is proposed.  

 An empirical study is conducted on the Siemens suite and Space.  

 The results show that our approach is effective for fault localization.  
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Abstract—Fault localization is an important and expensive task in software debugging. Some probabilistic graphical models such as 

probabilistic program dependence graph (PPDG) have been used in fault localization. However, PPDG is insufficient to reason across 

nonadjacent nodes and only support making inference about local anomaly. In this paper, we propose a novel probabilistic graphical 

model called Bayesian Network based Program Dependence Graph (BNPDG) that has the excellent inference capability for reasoning 

across nonadjacent nodes. We focus on applying the BNPDG to fault localization. Compared with the PPDG, our BNPDG-based fault 

localization approach overcomes the reasoning limitation across nonadjacent nodes and provides more precise fault localization by 

taking its output nodes as the common conditions to calculate the conditional probability of each non-output node. The experimental 

results show that our BNPDG-based fault localization approach can significantly improve the effectiveness of fault localization. 

Keywords—Fault localization; Bayesian Network; Program Analysis 

1.  INTRODUCTION  

As software systems today are larger and more complex than ever before, the potential software defects are increasing [1-2]. 
Consequently, debugging, which is one of the most important tasks during software lifecycle, is facing greater challenges. To fix 
the software defect, one must first be able to locate the fault [3-4]. Known as fault localization, this task can be extremely difficult 
and costly [5-6]. In recent years, there have been considerable approaches for automated fault localization, including program 
slicing, statistical models, and probabilistic graphical models. 

Baah et.al [7] proposed Probabilistic Program Dependence Graph (PPDG) to capture the conditional statistical dependence and 

independence relationship among program elements. The ability of probabilistic reasoning about program behaviors make PPDGs 

valuable for fault localization. However, PPDG is insufficient to reason across nonadjacent nodes and only support making 

inference about the local anomaly, and the reason for this is twofold. First, PPDG is based on the dependency network that does 

not support bidirectional reasoning between two adjacent nodes and transitive reasoning that compare two nodes via intermediate 

network nodes. Second, PPDG assumes that the fault nodes can be located according to the comparison of the conditional 

probabilities of nodes given the states of their parent nodes, which reflects how the parent nodes influence their children nodes. 

This assumption is valid when faults occur just between child nodes and their adjacent parent nodes. But the validation of this 

assumption cannot be guaranteed when faults occur across nonadjacent nodes. 
In this paper, we propose a novel probabilistic graphical model called Bayesian Network based Program Dependence Graph 

(BNPDG).  Our technique produces the BNPDG for a program by augmenting its program dependence graph automatically. Each 
node in BNPNG is associated with a conditional probability table (CPT) that indicates the conditional probability distribution. CPT 
relates the state of the node to the state of its parents. Since a PDG containing cycles violates the acyclic assumption of Bayesian 
network (BN), we apply the short-cycle-first heuristic and the Maximal Information Coefficient (MIC) to eliminate cycles. 
Compared to PPDG, BNPDG is able to reason across nonadjacent nodes, because it is a directed acyclic graph with bidirectional 
inference ability. That is, BNPDG can calculate the conditional probability of a node X given the states of any nonadjacent nodes.  

Since the reasoning ability of BNPDG makes it possible to perform more challenging tasks such as fault localization in fault 
diagnosis, we focus on applying the BNPDG to fault localization. PPDG [7] assumes that the faulty nodes can be located based on 
the comparison of the conditional probabilities of the node given the state of their parents, which is valid only when faults occur 
just between the children nodes and their adjacent parent nodes. Compared with the PPDG, the BNPDG overcomes this reasoning 
limitation and provides more precise fault localization by taking its output nodes as the common conditions to calculate the 
conditional probability of each non-output node. 

To summarize, we mainly make the following contributions: 

(1) We propose a Bayesian network based probabilistic graphical model that has better reasoning capability than its rivals.  

(2) We propose a BNPDG-based fault localization approach. 
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(3) We experimentally evaluate our approach and five other existing fault localization methods on publically available 
benchmarks that include SOBER, Tarantula, and RankCP. The experimental results show that our approach is more accurate and 
more scalable.  

The remainder of the paper is organized as follows. Section 2 presents necessary background on models on which the BNPDG 
is based. Section 3 presents the details of the construction of the BNPDG. Section 4 explains our BNPDG-based fault localization 
approach and Section 5 conducts empirical studies to evaluate the performance. Section 6 discusses the potential threats to validity 
and Section 7 describes related work. Finally, Section 8 concludes the paper with a discussion of the future work. 

2. BACKGOUND 

In this section, we briefly review the three models that form the basis for the BNPDG. The first is the program dependence 
graph (PDG) that abstracts the dependence relationship between statements into a graph. The second is the Bayesian network (BN) 
that represents a joint probability distribution over a set of stochastic variables. The third is the Maximal Information Coefficient 
(MIC) that measures the correlation between two variables. 

2.1. Program Dependence Graph 

PDG abstracts the dependence relationship of a program into a graph, where each node denotes a statement and each edge 
presents the control or data dependence between statements [8, 9]. Figure 1 shows the PDG for program findmax [7] that finds the 
maximum number from a set of integers. The solid and dashed edges present the control and the data dependence, respectively. For 
example, in Figure 1, node 6 is control-dependent on node 4 and data-dependent on nodes 3, 5, and 7. A control dependence edge 
may be further labeled with “T” that indicates the execution is taken along the edge if the condition is true. The data dependence 
edges are labeled with the variables on which there exists data dependence.  For example, the data dependence edge between node 
3 and node 5 has the label “max”, which indicates that the value of variable max at node 3 flows to node 6. 
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 0. void findmax() {

 1.    int i = 0;

 2.    int n = read_int();

 3.    int max=0;

 4.    while( i < n){

 5.       int v = read_int();

 6.       if(v > max)

 7.          max = v;

 8.       i++;

 9.    }

10.    printf(max);

11. }

 
 

The example program 

 

Fig. 1. A typical example of the PDG that corresponds to the program “findmax”  

2.2.  Bayesian Network  

BN characterizes uncertain knowledge based on the probability theory and the graph theory. It can be used to represent the 
causal information and discover the potential variable relationship [10, 11].  The construction of a BN consists of the procedures of 
structure learning and parameter estimation. Structure learning elucidates the structure of BN. Parameter estimation calculates the 
Conditional Probability Tables (CPTs) of a BN. For each node in a BN, it is necessary to estimate its conditional probability given 
their parents. Taking advantage of the PDG, our approach applies expert knowledge to structure learning in constructing a BN. 
During parameter estimation, we establish the CPTs by analyzing the frequency of the samples. The most important ability of a BN 

is the Bayesian inference that supports the process of answering the queries. A query represented as p(Y|E=e)=
      

    
 

   |      

    
 

indicates the posterior probability distribution of the variable Y given the condition of the variable E=e. Many algorithms 
implement the Bayesian inference. Our approach adopts junction tree propagation [11] to query the posterior probability 
distribution in fault location.  

2.3. Maximal Information Coefficient 

The maximal information coefficient (MIC) measures dependence between two variables and quantifies the relevance based on 
large datasets [12]. Compared with other statistics, MIC facilitates discovering various types of relationships such as the linear 
function, the nonlinear function and the non-functional relationship [12]. MIC is based on the theory of mutual information; hence 
we briefly describe the theory before introducing MIC.  

Let X be a random variable with discrete values. The entropy of X is defined as 

      ∑                                         (1) 
where p(x) is the probability density function of X. The joint entropy H(X,Y) of two the random variables X and Y is defined as 
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        ∑ ∑                                  (2) 

To quantify the reduction in uncertainty about variable X (Y after observing variable Y, or by symmetry, the reduction in 
uncertainty about Y after observing X, the mutual information is defined as follows. 

                                         (3) 

i.e.,                     ∑ ∑          
      

                         (4) 

Mutual information is a measure of dependence. Based on the above formula, the value of I(X;Y) is 0 if variables X and Y are 
independent; otherwise, the value is greater than zero. The greater the value is, the more relevant the two variables are. MIC is 
designed by the following principle: if there exists a correlation between two variables X and Y, a grid can be drawn on the scatter 
diagram of the two variables to make most of the data points fall into several cells of the grid. By searching for the optimal grid, 
MIC calculates correlation of two variables by counting the cells.  

Given a finite dataset D, let X and Y be two variables with a sample size n. Suppose that the values of the two variables are 
divided into x bins and y bins, respectively, we call this partition as an x-by-y grid. Let D|G denote the distribution of the points in D 
on the cells of a grid G. For each cell of G, the probability mass of the cell is the percentage of points falling into the cell. Thus for 
different x-by-y partitions, we can obtain different distributions of D|G . 

For a specific  -by-  partition, the maximum mutual information of  |  is defined as  

  ∗        max    |    (5) 

where    |   denotes the mutual information of  | . That is,  ∗        is the maximum value of    |   for all cells of the grid. 
For different  -by-  partitions, we can obtain different values of  ∗       . Then, under different  -by-  partitions, a 

characteristic matrix      can be constructed by choosing  ∗        of each  -by-  partition as 

         
𝐼∗ 𝐷     

log  min {   } 
  (6) 

where normalizing by          {   }  can make the entries of the matrix range from zero to one and guarantee that all noiseless 
functions get perfect mutual information scores. Furthermore, the MIC value can be defined as 

 MIC(    )  max  <𝐵 𝑛 {       }  (7) 

where      is the upper bound of the grid size. In this paper, we follow [12] to set           as the default value. 

 

3. BAYESIAN NETWORK BASED PROGRAM DEPENDENCE GRAPH 

 BNPDG can be produced by transforming the PDG of a program into a BN. There are two reasons that we choose BN instead 
of other probabilistic graphical models to establish our target model. First, BN is a directed graph, which is more suitable than other 
undirected probabilistic graphical models to represent the directed control and data dependencies between nodes in the PDGs. 
Second, BN is acyclic, which has stronger inference ability than directed dependency network with cycles. 

Definition 1. The Bayesian Network based Program Dependence Graph (BNPDG) for program P is a triple (G, S, Q), where 

G=(N, E) is the transformed PDG of P.  N represents the program components of the program P and E represents the control and 

data dependence in P. S is the mapping from nodes to states, and Q is the mapping from nodes to conditional probability 

distributions.  
The construction of the BNPDG contains of three steps: node splitting and state specification, cycle elimination and parameter 

estimation. We present an in-depth discussion of these steps below. 

3.1. Node Splitting and State Specification 

Our approach takes each node in the BNPDG as a random variable that corresponds to a set of mutually exclusive states. All 
states of a node describe various cases for this node when the program executes. A node in a PDG is a predicate node when it 
represents a branch predicate. A node is a non-predicate node when it represents a program statement that uses one or more 
variables. Before specifying the state for a PDG node, it is necessary to clarify the type of this node because the ways that specify 
the state for a predicate node and a non-predicate node are different. Moreover, for a node contains two state components, our 
approach splits it into a predicate node that represents the predicate component and a non-predicate node that represents the 
component of data dependence. For the immediate predecessor of the split node, the newly generated non-predicate node will be its 
immediate successor. For the immediate successors of the split node, the newly generated predicate node will be its immediate 
predecessor. Thus, the newly generated non-predicate node becomes the immediate predecessor of the newly generated predicate 
node. As a result, the operation of node splitting transforms PDG into PDG’.  
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Fig. 2. Operation result of  node splitting and state specification for the program findmax 

Our approach uses the state set {T, F, 丄} to represent the states of a predicate component, where “T” and “F” represent the 

predicate outcomes, and “丄” means that the node was not executed. To specify the state of a non-predicate component, our 

approach takes the context of this non-predicate component into consideration. The state set of a non-predicate component 

denotes the place where the data come from for each variable contained in the statement [13].  

Figure 2 illustrates the operation result of node splitting and state specification for the program “findmax”. In particular, since 

node 6 corresponds to the statement “if (v > max)”, the original node 6 in Figure 2 was split into the new node 6 for its predicate 

component and the new node D6 for its non-predicate component. As a predicate component, the new node 6 was specified with 

the state set {T, F, 丄}, where “丄” means the node was not executed. Oppositely, “丅” means that the node was executed. As a 

non-predicate component, the new node D6 contains two variables v and max in the statement “if (v > max)”. The variable max 

has been defined at node 3 and node 7. But only one of these definitions can be used by node D6. This mutually exclusive 

situation of node 3 and node 7 can be denoted as d3(max) and d7(max) respectively. Similarly, the variable v was denoted as d5(v). 

As a result, the state set of D6 can be specified as {(d5(v), d3(max)), (d5(v), d7(max)), 丄}.  

3.2. Cycle Elimination 

Since BN is a directed acyclic graph, we have to eliminate cycles in a PDG’. Our approach exploit three strategies: the self-

loop elimination strategy, the short-cycle-first heuristic strategy and the MIC based edge removing strategy.  

First, self-loops in a PDG are eliminated with the self-loop elimination strategy. To distinguish from the PDG, the PDG after 

the self-loop elimination is denoted as PDG. Then, the short-cycle-first heuristic strategy is applied to choose a cycle prior to be 

disconnected from multi cycles that may be found in the PDG. At last, our approach applies the MIC based edge removing 

strategy to eliminate the selected cycle in the graph by disconnecting edges from this cycle. After that, our approach reiterates the 

short-cycle-first heuristic strategy and the MIC based edge removing strategy until all cycles were removed from the PDG. The 

procedure of applying cycle elimination strategies with a transformation case PDG is presented in Figure 3. 
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Fig. 3. Procedure of applying cycle elimination strategies 

3.2.1. Self-loop elimination strategy 

The self-loop elimination strategy eliminates a self-loop by removing this self-loop and adds a new node. The new node is an 

immediate predecessor of the original node and is data dependent or control dependent on the original node. For example, there is 

a cycle at node 3 in the PDG in Figure 3 because the node 3 is data-dependent on itself. According to the self-loop elimination 
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strategy, this cycle was removed by adding the node 3′ as the predecessor of the node 3. A newly added node is assigned with the 

same state as its corresponding original node. That is, node 3′ keeps the same state set as node 3. 

3.2.2. Short-cycle-first heuristic strategy 

After self-loop elimination, there may be still cycles in PDG. In this case, PDG identifies the cycles to be disconnected 

according to the short-cycle-first heuristic strategy that detect the cycle with the minimum length [11]. 

Because information propagates multiplicatively within the BNs according to the probability product rule, the influence of a 

node on the other along a fixed path can be calculated as P1P2…Pm approximately if the length of the path is m. Accordingly, the 

shorter a cycle is, the more severely the cycle breaks the acyclic restriction for the BN. 

The short-cycle-first heuristic strategy is more efficient at cycle elimination than other strategies. When cycles on a graph share 

the common edges, the short-cycle-first heuristic strategy tends to disconnect a cycle with the shortest cycle length firstly by 

removing a common edge. Such approach is more likely to disconnect other cycles due to the removal of their common edges.  

44 22

1155

33

 
Fig. 4. A case applying short-cycle-first heuristic strategy 

For example, the graph in Figure 4 contains two cycles that shares an edge “1→2”, i.e., “1→2→3→1” with the shortest length 

3 and “1→2→4→5→1” with the length 4. While the cycle “1→2→3→1” would remove the common edge “1→2” at the 

probability of 1/3, the cycle “1→2→4→5→1” would remove the common edge “1→2” at the probability of 1/4. Thus, the short 

cycle has a higher probability than the long cycle in removing the common edge.  Moreover, the removal of the common edge 

may also disconnect other cycles sharing this common edge, e.g., the disconnection of the cycle “1→2→4→5→1” due to 

removal of the edge “1→2” from the cycle “1→2→3→1”. 

3.2.3. MIC based edge removing strategy 

The elimination of cycle not only satisfies the structural definition of the Bayesian network, but also maintains the 
completeness of the dependency information in a PDG as much as possible. Thus, our approach disconnects a cycle by removing 
an edge with the smallest probability of the dependent relationship, which is measured by the statistic MIC according to equation 
7. MIC is better than other relation measuring statistics in generality and equitability. Generality means that the ability to detect a 
wide range of relationships, not limited to functional types such as linear, exponential, or periodic, or even to nonfunctional types. 
Equitability refers to the ability to overcome the deviation made by the preferences of statistics to special types of relationships. 
Accordingly, the higher the MIC value is the more possible a strong dependence exists between two variables. Otherwise, it is 
impossible for variables to have dependent relationships.  

Algorithm 1: Cycle_Elimination 

  input: PDG 

  output: Raw BNPDG 

1 if PDG contains self-loops then 

2    Get PDG from PDG with the self-loops elimination 

strategy; 

3 else 

4    PDG ←PDG 

5 end 

6 while cycles in PDG do 

7    Select Cshortest(C1→C2→…→Cm→C1) from PDG with 

the short-cycle-first heuristic strategy 

8 //Disconnect Cshortest in G′ according to the MIC     based 

edge removing strategy 

9    Select MIC(Ci,Ci+1)= 

min{MIC(C1,C2),MIC(C2,C3),…,MIC(Cm-

1,Cm),MIC(Cm,C1)} 

10 //Disconnect Cshortest 

11    Remove edge “Ci→Ci+1” from G′ 

12 end 

13 return G′ 
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Algorithm 1 presents the pseudo-code that transforms a PDG into a BNPDG by using the aforementioned three strategies to 

eliminate cycles. For the benchmark case of the PDG in Section 3.1, Figure 5 illustrates the result after cycle elimination with our 
strategies for the program findmax. The end result is a raw BNPDG for further processing in the parameter estimation phase. 

According to Algorithm 1, the PDG turns into a PDG after removing two self-loops “4→4” and “8→8”. Two nodes “4” and 

“8” are added to the PDG according to the self-loop elimination strategy. But the PDG still contains two cycles 

“4→8→D4→4” and “6→7→D6→6”. By the short-cycle-first heuristic strategy and the MIC based edge removing strategy, two 

edges “D4→4” with MIC value 0.03169 and “6→7” with MIC value 0.04828 in our experiment are removed from the PDG , 

respectively.  
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Fig. 5. A raw BNPDG after cycle elimination with our strategies for the program findmax 

3.3. Parameter Estimation 

After structure learning identifies the network structure of the raw BNPDG, the execution of the testing program covers various 

execution instances and generates the abundant “execution data” for parameter estimation, denoted as D. Our technology 

estimates the parameters of the BNPDG by using the execution instances of passing test cases, which enables the BNPDG to 

capture the correct behaviors of the program. After building the BNPDG, we use the execution instances of failing test cases to 

locate the fault.  

Parameter estimation establishes the BNPDG by estimating the conditional probability of each node given its parents through 

D, which are represented as tables called conditional probability tables (CPTs). For the BNPDG with m nodes and the target 

program executing n times, the corresponding “execution data” can be represented as D={d1, d2, …,dn}, where di is the observed 

result in the i-th execution. di can further be described as a trace of node-state pairs di={(X1: x1i), (X2: x2i), …, (Xk: xki), …, (Xm: 

xmi)}, where Xk represents the k-th node and xki represents the execution state of the k-th node in the i-th execution. A node Xk may 

or may not have parents. For Xk without parents, the probability that the state of Xk is xkj can be estimated according to formula 8: 

p(Xk = xkj)
( )

( )

n X xk kj

n Xk


 (j=1, 2, …, s)                (8) 

where xkj represents the j-th state of the node Xk, n(Xk) represents the total number of execution instances of the target program, 

and n(Xk=xkj) represents the number of execution instances that satisfy the constrain “the state of Xk is xkj”. 

For Xk with parents Pa(Xk), the probability that the state of Xk is xkj given the state of Pa(Xk) is pakj can be estimated according 

to the following formula: 

p(Xk = xkj|Pa(Xk)=pakj) 
( , ( ) )

( ( ) )

n X x Pa X pak kj k kj

n Pa X pak kj

 


       (9) 

where pakj represents the j-th state combination of Pa(Xk), n(Pa(Xk)=pakj) represents the number of execution instances that satisfy 

the constrain “the state combination of Pa(Xk) is pakj”, and n(Xk=xkj, Pa(Xk)=pakj) represents the number of instances that satisfy 

the constrain “the state of Xk is xkj and the state combination of Pa(Xk) is pakj. 

Take the estimation of the CPT for node 6 in Figure 5 for example, since D6 is the parent node of node 6, the conditional 

probability for node 6 is represented by P(6|D6). Therefore, we need to estimate the conditional probabilities of states of node 6 

given the states of node D6. Table I shows the CPT for node 6. The first column shows the states of node D6 and the second row 

shows the states of node 6. The table shows that P(6:T | D6: (d5(v),d3(max)))=0.97, which means that the conditional probability 

of node 6 with the state “T” is 0.97 given the node D6 with the state “(d5(v), d3(max))”. 

TABLE I.  CPT OF NODE 6 
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node D6 
node 6 

T F 丄 

(d5(v), d3(max)) 0.97 0.03 0.00 

(d5(v), d7(max)) 0.49 0.51 0.00 

丄 0.00 0.00 0.00 

 

4. FUALT LOCALIZATION WITH THE BNPDG 

The reasoning ability of the BNPDG makes it possible to perform tasks such as fault localization. In general, the categories of 
program errors are syntax errors, semantic errors and logic errors [15]. Our approach mainly focuses on logic errors that cause the 
program to operate incorrectly. A logic error tends to produce incorrect outputs. 

Our approach categorizes the nodes in the BNPDG into input nodes, output nodes and logic nodes. Input nodes represent the 

initialization statements in the program, e.g., nodes 1, 2, 3 and 5 in Figure 5. Output nodes represent the result of the program and 

the output statement, e.g., node 10 in Figure 5. Logic nodes refer to other nodes that are not input or output nodes in an BNPDG, 

e.g., nodes 4, 4, D4, 6, D6, 7, 7, 8 and 8 in Figure 5.   

The PPDG based fault localization approach (RankCP) [7] also judges the fault probability of a node based on the conditional 

probability of this node given the state of their parent nodes. This is achieved by using p(Xj=xji|Pa(Xj)=paji) that reflects how the 

parent nodes influence their children nodes. The hypothesis is that a node Xj with an unusual parent state is a possible cause of the 

execution failure [7]. But the validation of this assumption cannot be guaranteed when faults occur across nonadjacent nodes. 

The advantage of BNPDG-based fault localization approach over the PPDG-based approach is that the former takes the global 

effect of the fault into consideration and synthesizes the state of all output nodes to represent the global result of the program 

execution. The BNPDG-based fault localization approach takes the output nodes as the common condition to calculate the 

conditional probability of each non-output node given the state of the output nodes, which leads to reason across nonadjacent 

nodes. 

 It detects the potential fault by ranking logic nodes with their conditional probabilities given the state of the output nodes in a 

descending order. If the state of each logic node Xj in the BNPDG is xji, the conditional probability of the logic node can be 

calculated with the Bayesian inference by the following formula: 

p(Xj= xji|evidence)                                      (10) 

where evidence represents the execution state of all erroneous output nodes. As mentioned in Section 2.2, our approach adopts 

junction tree propagation [11] to make Bayesian inference in fault location. Therefore, the hypothesis of the BNPDG-based fault 

localization approach is that if a logic node with a higher conditional probability of causing the erroneous output, this node is 

more likely to be the place where a potential fault leads to the failure. 

 

Algorithm 2: Fault Localizaiton 

  input: 1{ : }nj ji jX x  : a trace of node-state pair 

              the BNPDG 

              ξ: threshold. 

  output: Ranked nodes where potential faults exist 

1 //Select the logic and output nodes from BNPDG 

2 logicNodes ← {L1:l1k, L2:l2k,…, La:lak}, Lj:ljk {Xj:xji}𝑗=1
𝑛  

3 outputNodes←{O1:o1k,O2:o2k,…,Ob:obk},Oj:ojk {Xj:xji}𝑗=1
𝑛  

4 sumO←(O1:o1k,O2:o2k,…,Ob:obk),Oj:ojk  outputNodes; 

5 //Exclude the non-suspicious nodes from logicNodes 

according to MIC 

6 for j = 1 to a do 

7    if MIC(Lj, sumO) < ξ
 
then 

8        logicNodes ← logicNodes – {Lj:Ljk}; 

9    end 

10 end 

11 //Calculate the conditional probability with Bayesian 

inference 

12 for every node within logicNodes Li:lik do 

13    probi = p(Li = lik|O1=o1k, O2=o2k, …, Ob=obk) ; 

14 end 

15 Rank logicNodes with probi in descending order; 
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16 return ranked logicNodes 

 

In some cases, a certain kind of logic nodes may be found in the BNPDG with a state whose probability is high no matter what 

states of the output nodes are, although there may be no faults on these nodes. To deal with this exceptional case, our fault 

localization approach synthesizes the output nodes into a multiple random variable SumO that describes the comprehensive 

situation of all output nodes. For example, if there are two output nodes A and B in the BNPDG with two state set A{a1, a2} and 

B{b1, b2} respectively, the SumO for nodes A and B corresponds to a comprehensive state set {(A= a1, B= b1), (A=a1, B=b2), (A=a2, 

B=b1), (A=a2, B=b2)}. Before the calculation and rank of conditional probability for the logic node, the correlation between the 

logic nodes in the BNPDG and SumO will be examined. If the examination gets a lower score than a certain threshold, there is a 

weak correlation between a logic node and SumO so that this node was judged as a correct node and removed from the suspicious 

nodes.  

Our BNPDG-based fault localization approach adopts the statistic MIC to measure the correlations between logic nodes and 

SumO. Our approach of taking MIC to exclude the valid nodes from suspicious logic nodes has at least two advantages. First, it 

avoids the misjudgment of these special “correct” nodes with a state over a certain high probability. Second, it effectively reduces 

the search space of ranking the conditional probability for the suspicious logic nodes with Bayesian inference. Our BNPDG-based 

fault localization approach is presented in Algorithm 2. 

To illustrate our BNPDG-based fault localization approach and compare it with RankCP [7], we provide an example of how 

our approach and RankCP are used to locate the fault in a failing execution. We again use the example program “findmax”, 

described in Section 2, to illustrate our approach and RankCP. This program contains a logic error at line 3: The initial value of 

max should be set to the least negative integer value. The program fails when all integers in the input are negative. When the 

program “findmax” receives the failing input (n=1,v={-1}), it outputs zero as the maximum value. RankCP ranks a node Xj that 

has a state whose probability is low, given the states of Xj’s parents, as highly suspicious. Therefore, RankCP flags node 6 as the 

most suspicious node in the trace because it had the least frequent state configuration, i.e., P(6:F|D6: (d5(v),d3(max)))=0.03 as 

shown in Table I. However, the faulty location is at node 3. For this failing input, RankCP does not pinpoint the faulty location. 

The reason why node 6 is ranked the highest is that RankCP assumes that the fault nodes can be located according to the 

comparison of the conditional probabilities of nodes given the states of their parent nodes, which reflect how the parent nodes 

influence their children nodes. This assumption is valid when faults occur just between child nodes and their adjacent parent 

nodes. But the validation of this assumption cannot be guaranteed when faults occur across nonadjacent nodes. In this example, 

node 6 and the faulty node 3 are nonadjacent nodes, therefore, RankCP fails to pinpoint the faulty location. 

By contrast, our BNPDG-based fault localization approach locates faults by calculating the conditional probability of logic 

nodes given the states of the output nodes. That is, our approach calculates the conditional probability of all logic nodes given the 

condition of the output node 10 by the Bayesian inference. Our approach adopts junction tree propagation [11] to implement the 

Bayesian inference. In this example, the corresponding conditional probability for node 6 is 

P(6:F|10:d3(max))=
      1   3      

  1   3      
=0.12. The node 3 has the highest conditional probability among all logic nodes, which is P(3:

丅|10:d3(max))= 
  3  丅 1          

  1          
=0.48.  Therefore, our approach flags node 3 as the most suspicious node. 

 

5. EVALUATION 

In this section, we evaluate our approach for fault localization. We first describe the experimental dataset and the performance 
measurement. Then, we present the experimental results. Experiments were conducted on a workstation with an Intel Core i7-
4790 CPU with 3.60 GHz. We calculate MIC values of two nodes via the MINE toolkit [16] and use BNT toolkit [17] for 
Bayesian inference in fault localization. 

5.1. Data set 

In this experiment, we employ the Siemens suite and Space as our benchmarks, because these programs have been widely used 
in fault localization. The Siemens programs are written in C, and they are a suite of seven small programs, including print_tokens, 
print_tokens2, replace, schedule, schedule2, tcas and tot-info. Since Siemens programs are a suite of seven small programs, we also 
use the Space program for our scalability study. The Space program is a software subject developed by the European Space Agency. 
For our experiments, we intentionally omit 13 versions from the Siemens suite and remove 12 versions from the Space program. 
We eliminated these versions because 1) there were no syntactic differences between the C file of the correct version and the faulty 
versions of the program (e.g., change in header file), 2) no traces could be gathered because the faulty versions had segmentation 
faults when executed on their test suite, or 3) none of the test cases failed when executed on the faulty version of the program. After 
removing these versions, 123 versions of Siemens programs and 26 versions of Space program are left to evaluate the effectiveness 
of our approach.  

TABLE II.  DETAILS OF EXPERIMENT DATASET 

Prototype Program Faulty versions LOC Description 
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Siemens 
suite 

print_tokens 7 472 Lexical analyzer 

print_tokens2 10 399 Lexical analyzer 

replace 32 512 Pattern replace 

schedule 9 292 Priority schedule 

schedule2 10 301 Priority schedule 

tcas 41 141 Altitude separation 

tot-info 23 440 Information measure 

Space 38 6199 Interpreter for ADL 

 

5.2. Performance measures 

In the experiment, we employ one commonly used performance measurement Score that is defined as follows: 

Score =
N

sumN 100                                   (11) 

where |N| is the number of statements examined until the faulty node is found according to the ordinal suspicious degree, and 
|sumN| is the total number of statements. The lower value of Score an approach of fault localization receives, the more effective it is. 

5.3. Methods in Comparison 

In order to confirm whether our approach can outperform others, we compare our approach with other approaches that include 
Tarantula [18], SOBER [19, 20] and CT (Cause Transitions) [21], and RankCP [7]. 

Tarantula is a fault localization approach proposed by Jones et al. [18]. The intuition behind Tarantula is that entities in a 
program that are primarily executed by failed test cases are more likely to be faulty than those that are primarily executed by passed 
test cases. In particular, the suspiciousness of a statement, s, is computed by the following equation: 

suspiciousness(s)=

         

           
         

           
 

         

           

            (12) 

In Equation 12, passed(s) is the number of passed test cases that executed statement s one or more times. Similarly, failed(s) is 
the number of failed test cases that executed statement s one or more times. totalpassed and totalfailed are the total numbers of test 
cases that pass and fail, respectively, in the entire test suite. 

SOBER is a statistical model-based fault localization approach proposed by Liu et al. [19-20]. Unlike existing statistical 
debugging approaches that select predicates correlated with program failures, SOBER models evaluation patterns of predicates in 
both correct and incorrect runs respectively and regards a predicate as bug-relevant if its evaluation pattern in incorrect runs differs 
significantly from that in correct ones. 

CT (Cause Transitions) was proposed by Holger et al. [21]. A cause transition is where a cause originates-that is, it points to 
program code that causes the transition and hence the failure. Thus, a cause transition is a candidate for a code correction-and cause 
transitions can be isolated automatically, just like causes in the program state. 

The PPDG based fault localization approach (RankCP) [7] judges the fault probability of a node based on the conditional 
probability of this node given the state of their parent nodes. This is achieved by computing the conditional probability of a node’s 
current state (xji) given the current state configuration (paji) of its parents (i.e., p(Xj=xji|Pa(Xj)=paji)), which reflects how the parent 
nodes influence their children nodes. 

5.4. Experiment Results 

Figure 6 shows the experimental results on Siemens programs. We obtained the fault localization results for RankCP, Tarantula, 
SOBER and CT from published papers [7, 18, 19, 20, 21]. It shows the percentage of faults that can be located when a certain 
percentage of code is examined. The horizontal axis represents the percentage of a program’s statements that must be examined to 
find the faults and the vertical axis represents the percentage of faulty versions that are found given a score on the horizontal axis. 
The lower the percentage of statements examined, the higher the effectiveness of fault localization approach is. As shown in Figure 
6, the curves of BNPDG and RankCP lie above the curves of other approaches, indicating that BNPDG and RankCP are more 
effective. This is significant because finding out the abnormal dependence relationships in the execution of the program by 
probabilistic graphical model can help to locate the fault more effectively. When less than 1 percent of the code must be examined, 
our approach is approximately 1.7, 3.8, 6.3, and 11.4 times more effective than RankCP, Tarantula, SOBER and CT. 
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Fig. 6.   Cumulative comparison with other approaches on Siemens suite 

Table III shows the detailed results of our approach on each subject Siemens program. We can observe that our approach is 
effective in locating the fault. In many programs, less than 30% statements must be examined to find all faulty versions. 

TABLE III.  PERCENTAGE OF LOCATED FAULTS TO THE PERCENTAGE OF CODE EXAMINED 

Score print_tokens print_tokens2 replace schedule schedule2 tcas tot-info 

0-1% 42.85 60.00 62.50 44.44 50.00 43.90 60.86 

1-10% 28.57 10.00 21.88 33.33 30.00 36.59 13.04 

10-20% 14.29 10.00 6.25 22.22 10.00 4.88 4.35 

20-30% 24.29 20.00 6.25 0.00 10.00 2.44 8.70 

30-40% 0.00 0.00 3.13 0.00 0.00 4.88 4.35 

40-50% 0.00 0.00 0.00 0.00 0.00 2.44 4.35 

50-60% 0.00 0.00 0.00 0.00 0.00 2.44 0.00 

60-70% 0.00 0.00 0.00 0.00 0.00 2.44 0.00 

70-80% 0.00 0.00 0.00 0.00 0.00 0.00 4.35 

80-90% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

90-100% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Since both our approach and RankCP adopt the probabilistic graphical model and the PDG, we compare our approach and 
RankCP on the Space program for the scalability study. Table IV demonstrates the detailed comparison results. The column “MBT” 
gives the time to build BNPDGs. The column “BNPDG size” gives the number of nodes in BNPDG in the faulty version. In order 
to give a detailed view of the effectiveness of our approach, the column “our approach” gives the number of nodes in the BNPDG 
that must be examined to find the faulty statement instead of the value of Score. As shown in Table IV, the number of statements 
examined until the faulty node is found using RankCP is higher than our approach in most cases. The column “MBT” shows that 
our approach requires less than 15 minutes to build the BNPDG, which indicates that our BNPDG-based fault localization approach 
can scale to larger programs.  In additional, we compute the effect size, Cohen's d [33], to quantify the amount of difference 
between our approach and RankCP. For Cohen's d, we can obtain d from formula (13) and (14): 

d=
𝑋1
̅̅ ̅̅  𝑋2

̅̅ ̅̅

  
                                            (13) 

Sp=√
 𝑛  1   

   𝑛  1   
 

 𝑛  1   𝑛  1 
                                (14) 

where  𝑋1
̅̅ ̅ is the sample mean of group 1, 𝑋2

̅̅ ̅ is the sample mean of group 2, Sp is the pooled standard deviation, n1 is the number 

of samples of group 1, n2 is the number of samples of group 2,  1
2 is the variance of group 1 and  2

2 is the variance of group 2. 
Normally, the effect size is small if 0<d<0.2, the effect size is medium if 0.2<d<0.8, and the effect size is large if d>0.8. The effect 
size of our approach-RankCP is 0.3582, which indicates that the performance of our approach has a medium effect than that of 
RankCP. 

TABLE IV.  COMPARISON RESUTLS OF THE SCALABILITY CASE STUDY ON THE SPACE SUBJECT 

Faulty 

Version 

MBT 

(seconds) 

BNPDG 

size 
Our approach RankCP 

V10 743 4211 182 193 

V11 756 4211 1231 1458 

V12 807 4211 1423 1573 

V13 783 4211 9 11 

V14 694 4210 1032 1071 
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Faulty 

Version 

MBT 

(seconds) 

BNPDG 

size 
Our approach RankCP 

V15 532 4210 1130 1146 

V16 782 4211 53 61 

V17 793 4210 126 130 

V18 813 4211 1353 1554 

V19 701 4213 1 1 

V20 801 4211 1532 1664 

V21 792 4211 1422 1635 

V22 813 4206 1 1 

V23 788 4211 15 20 

V24 789 4196 83 101 

V25 501 4209 1243 1263 

V26 643 4211 832 945 

V27 874 4211 1743 1808 

V28 374 4211 1001 1017 

V29 784 4211 174 271 

V30 103 4211 39 42 

V31 710 4211 21 24 

V33 803 4211 1302 1632 

V34 1 4211 15 10 

V35 792 4203 1394 1370 

V36 821 4211 309 433 

 

6. VALIDITY THREATS 

In this section, we discuss several validity threats that may have an impact on the results of our studies. 

 External validity. Threats to external validity occur when the results of our experiments cannot be generalized. As a 
preliminary study, we conduct our experiments on the Siemens suite and Space to explore the generality of our approach. Although 
these datasets have been widely used in many fault localization studies, we still cannot claim that our approach can be generalized 
to other datasets. We will address this threat in future work. Nevertheless, this work provides a detailed algorithm description. 
Therefore, other researchers can easily replicate our approach on new datasets. 

Internal validity.  Threats to internal validity mainly come from the incorrect program implementation-specifically, the process 
of generating a BNPDG that may affect the experimental results. To overcome these threats, we have compared the manually 
generated BNPDGs of small subjects to their BNPDGs generated automatically by our techniques to ensure they match each other. 

Construct validity. Threats to construct validity concern the appropriateness of the metrics used in our experiments. We used 
the score metric to measure the effectiveness of the proposed approach because it is the metric used by many other fault 
localization approaches. However, it is difficult to determine whether it conforms to the way in which programmers locate the 
faults in the program. Therefore, more studies are required to determine the appropriateness of the metric for measuring the 
effectiveness of fault localization approaches. 

Conclusion validity. Threats to conclusion validity focus on the statistical analysis method. In this work, we use the effect size, 
Cohen's d to statistically quantify the amount of difference between two approaches. 

 

7. RELATED WORK 

In this section, we briefly review the existing fault localization approaches. These approaches can be categorized into three 
main types: program slicing, statistical analysis and probabilistic graphical model. 

 

2.1. Program slicing based fault localization 

Program slicing includes static slicing [22-23], dynamic slicing [24–27] and execution slicing [28]. The static slicing of an 
incorrect variable at a program execution point includes all those program statements which possibly influence the value of the 
variable at that point. In contrast, the dynamic slicing of an incorrect variable at a program point is the set of executed statements 
which actually affect the value of the variable at the given program point under some execution. The execution slicing is the set of 
code executed by a given test cases. By studying the program slicing of the incorrect value, a developer can eliminate the irrelevant 
value and narrowing search area to detect the faulty statements. However, there may still be too much code that needs to be 
examined. In addition, the slicing-based fault localization approach does not provide a ranking of the statements in the slices 
presented to the developer. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

 

2.2. Statistical analysis based fault localization 

This statistical analysis-based fault localization approach locates fault-relevant statements by comparing the statistical 
differences of program elements in passed and failed test cases. Tarantula [18] adopts the pass/fail statuses of test cases and events 
occurred during execution of each test case to offer the developer recommendations of what may be the faults that are causing test-
case failures. SOBER [19, 20] is a statistical model-based approach for localizing software bugs without any prior knowledge of 
program semantics. The approach in [30] utilizes program slices of a set of test runs to capture the influence of a program entity’s 
execution on the output, and uses statistical analysis to measure the suspiciousness of each program entity being faulty. A state 
dependency probabilistic model in [31] for fault localization was proposed. The approach can capture the behavior state 
information during program execution, and the fault-localization approach differentiates the state dependencies in passed and failed 
test cases. 

2.3. Probabilistic graphical model based fault localization 

The probabilistic graphical model based fault localization approach adopts the probabilistic graphical model and the PDG. 

Their difference lies in the choice of the probabilistic graphical model, e.g. the BN, the Markov network, the dependency network 

and the causal graph. The PPDG [7] based on the dependency network facilitates probabilistic analysis and reasoning about 

uncertain program behavior associated with the fault. Another work [32] using the causal graph for fault localization obtains 

causal-effect estimates that are not subject to confounding bias. The divergences between different methods based on probabilistic 

graphical models depend on aspects of whether issues are suitable for them, their theoretical foundations, and their inference 

abilities. The BN for the BNPDG has comparative advantages over these aspects. 

 

8. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a novel probabilistic graphical model called Bayesian Network based Program Dependence Graph 
(BNPDG) that takes the output node as the common condition to calculate the conditional probability of each non-output node. The 
ability of the BNPDG to reason the probability of suspicious nodes across nonadjacent node makes it more effectively than PPDG 
in fault localization. We conducted experiments on the Siemens suite and Space datasets to evaluate the performance of the 
proposed approach. The experimental results indicate that our approach has stronger inference capability on program dependences, 
which leads to more accurate and scalable fault localization. 

In the future, we will validate the generalization of our approach on more real-world datasets. We also plan to apply BNPDG to 
other software engineering tasks.  
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