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Abstract

Recently, scientific workflows have emerged as a platform for automating and accelerating data pro-
cessing and data sharing in scientific communities. Many scientific workflows have been developed for
collaborative research projects that involve a number of geographically distributed organizations. Shar-
ing of data and computation across organizations in different administrative domains is essential in such
a collaborative environment. Because of the competitive nature of scientific research, it is important
to ensure that sensitive information in scientific workflows can be accessed by and propagated to only
authorized parties. To address this problem, we present techniques for analyzing how information prop-
agates in scientific workflows. We also present algorithms for incrementally analyzing how information
propagates upon every change to an existing scientific workflow.

1 Introduction

Today, scientists use scientific workflows to integrate, structure, and orchestrate a wide range of local and
remote heterogeneous services and applications to perform various in silico experiments to produce scientific
discoveries [29, 20, 19, 43]. As a result, scientific workflows have become the de facto cyberinfrastructure
upper-ware for e-Science [28]. Many scientific workflows have been developed for collaborative research
projects that involve a number of geographically distributed organizations. Sharing of data and computation
across organizations in different administrative domains is essential in such a collaborative environment.
Because of the competitive nature of scientific research, it is important to ensure that sensitive information
in scientific workflows can be accessed by and propagated to only authorized parties.

Let us consider a collaborative brain disorder research project that is conducted by a collaboration among
two hospitals H1 and H2, a medical researcher R and a computer scientist C. A typical medical scenario
for using a scientific workflow is shown in Figure 1. This figure shows various principals, datasets, and
software tools in the system. In the figure, an oval represents a principal within the system; an arrow
represents the direction of information flow between two principals; a square box represents a piece of
data that is flowing; and a double oval represents a trusted software program. Each principal defines its
own information flow policy which specifies a set of principals that can access its data. In our example,
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Figure 1: A medical scenario for using scientific workflows.

each patient p has two pieces of data: Positron Emission Tomography (PET) data that can be retrieved
from hospital H1, and functional Magnetic Resonance Imaging (fMRI) data that can be retrieved from
hospital H2. Each hospital limits the data only to the patient and the hospital itself. This is represented by
{p,H1} and {p,H2}, respectively. The program “Retrieve Data” is a trusted program which is run by the
hospital to anonymize all personal information in the data and provide the anonymized data to researcher
R (labeled with {p,R}). Researcher R can invoke a neuroimaging analysis workflow W to identify each
patient p’s fiber tract pattern and abnormal cortical regions. In workflow W , arrows represent data channels
and boxes represent workflow tasks. Workflow W consists of three tasks: skull stripping, registration, and
fiber tracking. S0, . . . , S3 specify the hosts at which workflow tasks are executed. In addition, a subworkflow
for conformal mapping is reused in two branches of the same workflow. The execution of the workflow also
needs the interaction from a computer scientist who specifies appropriate parameters. Finally, the result of
the study is only readable to the patient and R. This is achieved by label {R, p}.

Based on the information flow policy prescribed by hospital H1, a mechanism is needed to ensure
that a patient’s PET data, which is released from hospital H1, can be accessed by and propagated to only
authorized parties: hospital H1, the patient herself, and researcher R. The PET data should not be accessed
by or propagated to unauthorized parties such as hospital H2. However, consider the following scenario.
First, the PET data for a patient p stored in H1 is retrieved via the Retrieve Data program and released to
researcherR. Second,R executes workflowW . After the execution of tasks skull stripping and registration,
the PET information is propagated to the first branch of the workflow. Third, the fiber tracking task in the
first branch gets executed and the PET information is further propagated to the conformal subworkflow.
Finally, suppose one of the tasks in the conformal subworkflow writes a file at a site that is owned by



hospital H2, then a violation of the information flow policy prescribed by hospital H1 occurred: the PET
information is indirectly propagated to Hospital H2. Such a violation can be hard to be detected manually
due to the complexity of information flows among and within workflow tasks, particularly for large-scale
hierarchical scientific workflows.

To address the above problem, we present information flow analysis techniques for analyzing how in-
formation propagates in scientific workflows. Our analysis techniques deal with both explicit and implicit
information flows. Further, workflows tend to evolve over time and it would be inefficient to perform in-
formation flow analysis from scratch upon every small change to the structure of a workflow. Incremental
analysis is useful in situations where small changes to the workflow lead to small or no changes to the anal-
ysis results. In this paper, we present an algorithm for incrementally analyzing information flows whenever
a change is made to the structure of a workflow. We have also developed a prototype system, called Infoflow
Analyzer, to validate and demonstrate our approaches. Although we present our analysis techniques in the
context of scientific workflows, such techniques are also applicable to business workflows.

The rest of the paper is organized as follows. Section 2 provides an overview of hierarchical state
machines. In Section 3, we present techniques for analyzing how information propagates in scientific work-
flows. We have also presented an algorithm for incrementally performing information flow analysis for
evolving scientific workflows. The implementation details are given in Section 4. The related work and our
concluding remarks appear in Sections 5 and 6, respectively.

2 Background: Hierarchical State Machines

A Hierarchical State Machine (HSM) [6] K is a tuple 〈K1, . . . ,Kn〉 of modules, in which each module Ki

has the following components:

1. A finite set Ni of states, including a set of entry states Ii, a set of exit states Oi, and a set of internal
states Ni that are neither entry states nor exit states.

2. A finite set Bi of sub-modules. The sets Ni and Bi are pairwise disjoint.

3. An indexing function Yi : Bi 7→ {i + 1 . . . n}, which maps each sub-module b of Ki (b ∈ Bi) to j
with j > i. If Yi(b) = j, then b is a reference to the definition of module Kj . Each pair (b, u) with
u ∈ Ij is called a call of Ki and each pair (b, v) with v ∈ Oj is called a return of Ki.

4. A transition edge relation Ei of the form u
G,A−→ v where the source u is either a state or a return of

Ki, the sink v is either a state or a call of Ki, G is a conditional guard, and A is an action.

Intuitively, a call of Ki is an entry state of a sub-module of Ki and a return of Ki is an exit state of a
sub-module of Ki. Transitions are edges connecting states and modules with one another. A guard G over a
transition specifies the condition under which the transition can be performed, and an action A is a sequence
of variable assignments.

In an HSM, a state can be an ordinary state or a superstate, which is an HSM itself. Such a nesting
structure makes HSMs a natural formalism for modeling scientific workflows where workflow tasks (abbr.
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Figure 2: A sample hierarchical state machine

tasks) may be composed of multiple sub-tasks. An HSM K can be “flattened” to a finite state machine by
recursively substituting each reference of K with the corresponding sub-module. Because the references
of the same sub-module can reside in different modules, each module can appear in a number of different
contexts. It has been shown in [6] that flattening may cause exponential blow-up, especially when there are
many references pointing to the same module. A module is called a top-level module if it does not have
parent modules. All references in the hierarchical state machine should form an acyclic graph.

Figure 2 gives an example of an HSM. We use squares to denote module definitions and round-corner
rectangles to denote module references. The entry states, exit states, and internal states are denoted by ◦,
•, and ⊗, respectively. Guards and actions are omitted in the figure. There are two modules: K1 and K2.
K1 is a top-level module that contains three sub-modules r1, r2, r3, all of which are references to K2, i.e.,
Y1(r1) = Y1(r2) = Y1(r3) = 2. K1 has one entry state n1 and one exit state n9. (r1,m1), (r2,m1), and
(r3,m1) are the calls of K1. (r1,m5), (r2,m5), and (r3,m5) are the returns of K1. K2 is a module with
five states and five transitions.

3 Information Flow Analysis of Scientific Workflows

This section presents information flow analysis techniques for scientific workflows and an algorithm for in-
crementally performing information flow analysis for evolving scientific workflows. We consider the work-
flows with the following control flow patters: sequence, exclusive choice, parallel split, synchronization,
simple merge, and condition. We assume that the permission for executing each workflow task is obtained
from some appropriate access control mechanisms. We also assume that the source code of workflow tasks
is available. In case that workflow providers prefer to provide tasks as black boxes, the providers can apply
our techniques to analyze how information flows through the workflow and provide users the results.

3.1 Explicit Information Flow Analysis

We consider hosts as principals. Objects are system resources such as files and databases. Each object has an
object ID. ObjectO in host h is specified as h : O. Each host h has a host information flow policy, access(h),
which specifies the set of principals who can access the objects in h. This policy can be overruled by an
object information flow policy, access(O), which specifies the set of hosts to which the information (i.e., the
content) of O can flow. Information flows from an object O1 to an object O2 if information stored in O1 is
transferred to O2 through a sequence of operations such as assignment statements, file reading and writing,
I/O operations, and parameter passing. Given an information flow policy access(O) = {h1, . . . , hn}, a



workflow violates this policy if there exists an objectO′ in a host other than h1, . . . , hn such that information
can flow from O to O′.

Formal Modeling of Scientific Workflows. Simple Conceptual Unified Flow Language (SCUFL) [31]
is an XML-based workflow specification language. Java Beanshell script [1] can be embedded in SCUFL
to implement tasks in scientific workflows. In this paper, we consider scientific workflows specified using
SCUFL and Beanshell script. For clarity of presentation and illustration purpose, we use an abstract syntax
of Java Beanshell to illustrate our information flow analysis techniques. Let w be a workflow, task be an
atomic task, ports be a set of ports, prog be a program, vdecl be a set of variable declarations, pdecl be
a set of procedure declarations, stmt be a set of statements, and cond be a set of conditions. Also, let
x1, . . . , xn, y1, . . . , yn, f and fp range over variables, p range over procedure names, and n range over
constants. The core language syntax in its abstract form is given below:

w ::= task | w o,i→ w

task ::= ports � prog � ports

prog ::= pdecl ; end prog | pdecl ; prog

pdecl ::= proc p(x1, . . . , xn){vdecl ; stmts}
stmts ::= stmt ; end stmt | stmt ; stmts

stmt ::= x := y | x := n | x = fopen(f) | x = fread(fp) | fwrite(x, fp) | fclose(fp)

| if cond then stmts else stmts | call p(y1, . . . , yn) | while cond do stmts

w1
o,i→ w2 specifies a data channel connecting the output port o of w1 and the input port i of w2. Each

atomic task contains a set of input ports {i1, . . . , in}, a program implementing the functionality of the task,
and a set of output ports {o1, . . . , om}. A program consists of a sequence of procedures separated by “; ”.
end prog signals the end of the program. Each procedure is of the form proc p(x1, . . . , xn){vdecl ; stmts}
where vdecl is a local variable declaration of the form var x1, . . . , xn and stmts is a sequence of state-
ments. x = y and x = n represent assignment of a variable y to x and assignment of a constant n to
x, respectively. fopen , fread , and fwrite represent opening, reading, and appending an object, respec-
tively. if cond then stmt1 else stmt2 is a conditional statement and while cond do stmt is a while loop.
call p(y1, . . . , yn) represents the invocation of procedure p(x1, . . . , xn) with real parameters y1, . . . , yn.

We propose the Hierarchical State Machine for Scientific Workflows (HSMSW), that refines the HSM
targeting for the particular modeling of scientific workflows and for the information flow analysis. HSMSW
extends HSM with variable scoping, which enables us to model languages with nested blocks and different
tasks that use the same name to represent different variables. A state of HSMSW is a set of set of variable
assignments, each of which records the variable assignments propagated through one path. HSMSW assem-
bles modules using transitions that connect exit states of one module with entry states of another module.
Each transition is labeled with an action and a guard. The outgoing transitions of a module are either “and”
transitions or “or” transitions, which models parallel split and exclusive choice, respectively. Similarly, the
incoming transitions of a module are either “and” transitions or “or” transitions, which models synchroniza-
tion and simple merge, respectively. Note that, our information flow analysis technique reports violation of



Algorithm 1 Algorithm for constructing HSMSW from an atomic task
1: procedure CreateHSMSW (prog)
2: let prog = proc p(x1, . . . , xn){vdecl; stmts}; prog′

3: Create a module Kp, an entry state t and an exit state te
4: Local variables of Kp = variables in vdecl
5: if prog′ == end prog then
6: return AddMulStmts(stmts, t, te)
7: else
8: return AddMulStmts(stmts, t, te) ∪ CreateHSMSW (prog′)
9: end if

10: procedure AddMulStmts(stmts, t, te)
11: let stmts = stmt ; stmts ′

12: if stmt is “if cond then stmt1 else stmt2 ” then
13: if stmts == end stmt then
14: return AddMulStmts(stmt1 , t, te) ∪AddMulStmts(stmt2 , t, te)
15: else
16: Create a state t1
17: K1 = AddMulStmts(stmt1 , t, t1)
18: K2 = AddMulStmts(stmt2 , t, t1)
19: K3 = AddMulStmts(stmts ′, t1, te)
20: return K1 ∪K2 ∪K3

21: end if
22: else
23: if stmts == end stmt then
24: return AddSingleStmt(stmt , t, te)
25: else
26: Create a state t1
27: return AddSingleStmt(stmt , t, t1) ∪AddMulStmts(stmts ′, t1, te)
28: end if
29: end if

an information flow property if and only if one of the paths of HSMSW violates the property. As a result,
“and” and “or” transitions are handled in the same manner in the analysis.

Each atomic task in the workflow is modeled using an HSMSW specifying the internal structure of
the task. Specifically, each procedure in the atomic task is modeled as an HSMSW. Local variables of a
procedure are local variables of the corresponding HSMSW. The invocation of a procedure is modeled as a
reference to the HSMSW of the procedure. Each occurrence of an atomic task is modeled as a reference to
the corresponding module of the task. The input and output ports in a scientific workflow are modeled using
entry and exit states in HSMSW, respectively. Data channels between two workflow tasks T1 and T2 are
modeled as connection channels between the two HSMSWs that model T1 and T2. A composite task (i.e., a
task that contains sub-tasks) is modeled as a module with all subtasks modeled as modules in HSMSW.

Algorithms 1 and 2 give a procedure for translating an atomic task, specified using the abstract language



Algorithm 2 Algorithm for constructing HSMSW from an atomic task (Cont.)
1: procedure AddSingleStmt(stmt , t, t1)
2: Create a state t1
3: switch (stmt){
4: case “x = y”:
5: return {t x:=y−→ t1}
6: case “x = n”:
7: return {t x:=∅−→ t1}
8: case “fp = fopen(f)”:

9: return {t fp:=f−→ t1}
10: case “x = fread(fp)”:

11: return {t x:=pastflow(∗fp)∪{∗fp},floww(∗fp):=pastflow(∗fp)−→ t1}
12: case “fwrite(x, fp)”:
13: return {t floww(∗fp):=floww(∗fp)∪x

−→ t1}
14: case “call p(y1, . . . , yn)”:
15: constructs a reference R that refers to module Kp

16: return {t xi:=yi−→ entry(R)} ∪ {exit(R) ε→ t1}
17: }

defined above, into HSMSW. While statement is handled in a manner similar to the conditional statement
and is not shown in the algorithm. Each variable in HSMSW does not contain its real value, e.g., content
read from an object. Instead, the value of each variable v in HSMSW is either an object ID (when evaluating
“fp = fopen(f)”), or a set of object IDs whose information can potentially flow to v.

Because a scientific workflow may be executed multiple times with different input datasets and parame-
ter values and multiple workflow runs may access the same object, we associate each object O with a global
variable pastflow(O). Oi ∈ pastflow(O) iff information has flown from Oi to O in previous workflow
execution. pastflow(O) is ∅ when object O is initially created. Below, we use an example to illustrate how
pastflow(O) is updated as a result of workflow execution. Suppose that pastflow(O1) = pastflow(O2) = ∅
before a workflow W1 is executed and information of an object O1 is transferred to object O2 during the ex-
ecution of W1. As a result, pastflow(O2) = {O1}. Next, workflow W2 is executed, which reads from
O2 and writes its contents to O3. To keep track of information propagation, pastflow(O2) is read as
well so that we know O2 contains the information originated from O1. After W2 finishes its execution,
pastflow(O3) = {O1, O2}, indicating that object O3 contains the information that originated from both O1

and O2.
The top-level function CreateHSMSW (prog) in Algorithm 1 is used to construct an HSMSW for a

program prog. For each procedure proc p(x1, . . . , xn){vdecl, stmts} in the program, an HSMSW Kp is
constructed (Lines 2-9, Algorithm 1). AddMulStmts(stmts, t, te) is used to construct Kp from a sequence
of statements stmts of p, an entry state t of Kp, and an exit state te of Kp. Lines 12-21 of Algorithm 1
construct HSMSWs from a sequence of statements if (C) thenstmt1 elsestmt2; stmts′. We first construct
two HSMSWs with an entry state t and an exit t1 from stmt1 and stmt2, respectively. We then construct



an HSMSW with entry state t1 and exist state te from stmts′.
AddSingleStmt(stmt , t, t1) in Algorithm 2 is used to generate transitions with source state t and target

state t1, from a statement stmt that is neither a conditional nor a while statement. Note that if one path
of a workflow violates an information flow property, the workflow violates this property. Therefore, we
consider all paths in the HSMSW regardless of the conditions in the transitions. As a result, the conditions
are omitted during the construction of HSMSW. When fp = fopen(f) is processed, the ID of the object
f is assigned to fp (Lines 8 and 9, Algorithm 2). When processing x = fread(fp), x is assigned with
pastflow(∗fp) ∪ {∗fp}, where ∗fp is the value of fp, i.e., the object ID stored in fp (Lines 10 and 11, Al-
gorithm 2). In addition, a variable floww (∗fp) is created and is assigned pastflow(∗fp) initially. floww (f)
is used to keep track of a set of object IDs from which information can potentially flow to f in every path if
workflow W gets executed. fwrite is similarly handled. fclose does not change the state. Lines 14-16 of
Algorithm 2 describe how we generate transitions from procedure invocation. Every time a procedure invo-
cation call p(y1, . . . , yn) is encountered, a reference R is created that points to module Kp. Two transitions
t
xi:=yi−→ entry(R) and exit(R) ε→ t1 are constructed, where entry(R) and exit(R) are the entry and the exit

states of R, respectively, and ε indicates that no action is performed.

Analysis algorithm. Every time a scientific workflow is constructed, a corresponding HSMSW is gener-
ated. Each task in a scientific workflow may have parameters whose values are provided by the user who
executes the workflow. Once a user provides the input parameter values, the parameter values are passed
to the HSMSW constructed and the static information flow analysis is performed to detect potential infor-
mation leaks. Let host(h : o) = h. We say that a workflow W conforms to the information flow policy

if and only if there does not exist a transition s
floww (∗f):=floww (∗f)∪x−→ s′ in the HSMSW of W such that

host(∗f) 6∈ access(O) for some O ∈ value(x).
The analysis algorithm is based on the reachability computation. First, the algorithm chooses a state s

whose data is available and computes a set of states reachable from s. Let s1 = {s11, . . . , s1n}, . . ., and
sm = {sm1 , . . . , smn} be m states, and transitions si

αi−→ t(1 ≤ i ≤ m) be all incoming transitions of
t. Then t is computed as {s11 ∪ eval(s11, α1), . . . , smn ∪ eval(smn, αm)}, where eval(s, α) evaluates
the action α on state s. For example, let s = {{x = 1,floww(h1 : f1) = {h2 : f2}}, {floww(h1 :

f1) = {h3 : f3}}} be a state and let s
x:=2,y:=floww(h1:f1)∪{h1:f2}−→ t be a transition. Then t is computed as

{x = 2,floww(h1 : f1) = {h2 : f2, h1 : f2}, {x = 2,floww(h1 : f1) = {h3 : f3, h1 : f2}}}.
Repeat the above process until it “gets stuck” at a state. A state s is called a stuck state if s waits for

inputs from other states. When a stuck state is encountered, the algorithm finds another state whose data is
available and perform reachability computation. The algorithm terminates if an violation to the information
flow policy is detected or all states whose data are available have been processed. Once our algorithm reports
an violation, the administrators will be prompted to revise the workflow. The workflow is executed if no
violation is detected in the analysis.

Consider the workflow W in Figure 3, which is a composite task containing two sub-tasks T1 and T2.
T1 and T2 execute in sequential order and the output of T1 acts as the input to T2. T1 reads from input i1
and appends the contents read to file h2 : f2. T2 reads from i2 and writes to h3 : f3. The HSMSWs of W ,



T1 T2i1 i2=o1 o2

T1: input - i1, output - o1
varfp1, x, y, fp2

a1 : fp1 = fopen(i1);
a2 : x = fread(fp1);
a3 : y := x;
a4 : fclose(fp1);
a5 : fp2 = fopen(h2 : f2);
a6 : fwrite(y, fp2);
a7 : fclose(fp2);
a8 : o1 := “h2 : f2”;

T2: input - i2, output - o2
varfp1, x, y, fp2;
b1 : fp1 = fopen(i2);
b2 : x = fread(fp1);
b3 : y := x;
b4 : fclose(fp1);
b5 : fp2 = fopen(h3 : f3);
b6 : fwrite(y, fp2);
b7 : o2 := y;
b8 : fclose(fp2);

Figure 3: Description of a sample workflow.
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Figure 4: (a) The HSMSW K1 modeling workflow W . (b) The HSMSW K2 modeling task T1. (c) The
HSMSW K3 modeling task T2. R2 and R3 in (a) are references to K2 and K3, respectively.

T1, and T2 are given in Figures 4(a), 4(b), and 4(c), respectively.
Assume that pastflow(h1 : f1) = pastflow(h2 : f2) = ∅ before W executes. Also, assume that

access(h1 : f1) = {h2, h3} and access(h2 : f2) = {h3}, which specify that only organizations h2 and
h3 can access file f1 of h1 and only organization h3 can access file f2 of h2, respectively. Suppose that
a user executes the workflow W with input h1 : f1, then i1 in Figure 4(b) is assigned h1 : f1 and state
s1 = {{i1 = h1 : f1}}. After h1 : f1 is read (Lines a1 and a2), x = pastflow(h1 : f1) ∪ {h1 : f1} =
{h1 : f1}, floww (h1 : f1) = pastflow(h1 : f1) = ∅, and s3 = {{x = {h1 : f1},floww (h1 : f1) = ∅}}.
After x is assigned to y (Line a3), y = {h1 : f1}. When fwrite(y, h2 : f2) is evaluated (Lines a5 and a6),
floww (h2 : f2) = {h1 : f1}. Because h2 ∈ access(h1 : f1), the information flow policy is not violated
and hence the contents of y can be written to h2 : f2. Similarly, after processing T2, floww (h3 : f3) =
{h1 : f1, h2 : f2}. Since no information flow violation is detected, the workflow can be executed. Now,
suppose that we change access(h1 : f1) to {h2}. Then T violates this policy because there exists a transition

s12
floww (h3:f3):=floww (h3:f3)∪y−→ s13 such that y = {h1 : f1, h2 : f2} and host(h3 : f3) 6∈ access(h1 : f1).
pastflow(O) is updated during the execution of the scientific workflow. For each variable x in the



workflow, we associate x with an auxiliary variable auxx , which has the same scoping as x. For each
statement s, we insert the corresponding action generated from Algorithm 3 (with x replaced with auxx )
immediately after the statement. For example, auxx := auxy is inserted after the statement x = y. After the
workflow finishes the execution, auxfloww (∗f ) is written back to pastflow(∗f).

Below, we prove the correctness of our algorithm.

Theorem 3.1 Given a workflowW , the HSMSW HSMSW w ofW , and an information flow policy access(O) =
{h1, . . . , hn}, the following hold: (1) W conforms to access(O) if and only if there does not exist a tran-

sition s
floww (∗f):=floww (∗f)∪x−→ s′ in the HSMSW w such that O ∈ value(x) and host(∗f) 6∈ access(O).

(2) for every variable v in HSMSW w, value(v) is the set of all objects from which the information flows to
v.

Proof: The theorem is proved by induction on the size of W .
Base case: HSMSW w has only one transition. An information flow policy can be violated only when

W contains at least one fread statement and one fwrite statement. This means that, only when HSMSW w

contains at least two transitions, one for fread and one for fwrite , the policy can be violated. Our algorithm
reports no violation when HSMSW w has only one transition. Therefore (1) holds.

We now prove (2). If the transition corresponds to a statement that does not contain fread and fwrite (no
information flows within the workflow), then value(x) = ∅ for every variable x in HSMSW w and hence (1)
holds. If the transition corresponds to statement x = fread(fp) (information flows from the object pointed
by fp to x), then value(x) = {∗fp} ∪ pastfloww(∗fp) and hence (1) holds. If the transition corresponds
to statement fwrite(x, fp), this means that the content of variable x is written to the object pointed by fp.
Since no object is read before the fwrite statement, no information flows from any object to x and hence
no information flows to the object pointed by fp. Our algorithm computes value(x) = floww(∗fp) = ∅,
which is consistent with the above.

Induction: Assume that, when the size of W is k, (1) holds. We now prove that when the size
of W is k + 1, (1) holds. Let stmt be the last statement of W . If W\{stmt} does not conform to
access(O), then W also does not conform to access(O). By induction hypothesis, there exists a transi-

tion s
floww (∗f):=floww (∗f)∪x−→ s′ in the HSMSW w such that O ∈ value(x) and host(∗f) 6∈ access(O), and

hence (1) holds. Otherwise, if stmt is not fwrite(x, fp), then stmt will not cause access(O) to be vio-
lated and hence W also conforms to access(O). By induction hypothesis, there does not exists a transition

s
floww (∗f):=floww (∗f)∪x−→ s′ in the HSMSW w such that O ∈ value(x) and host(∗f) 6∈ access(O). Thus

(1) holds. If stmt is fwrite(x, fp), then information of x flows to ∗fp. Our algorithm generates action
floww(∗fp) = floww(∗fp) ∪ x, which means that ∗fp contains information of x as well as the set of
objects from which the information previously flows to ∗fp. By induction hypothesis, value(x) is the set of
all objects from which the information flows to x. Therefore, floww(∗fp) contains all information flowed
to ∗fp. In this case, access(O) is violated if and only if information flows from O to x and the host that
owns ∗fp is not allowed to access O, i.e. O ∈ value(x) and host(∗fp) 6∈ access(O). Thus (1) holds.

We now prove (2). If stmt is an assignment statement y = x, then after this assignment, y contains
the information of x. The action in the corresponding transition is y := x, which means that value(y) =



input: i1, i2;
var fp1, x, y, z, v, fp2;
fp1 = fopen(i1);
x = fread(fp1);
if (x > 1){
y = 1;
fp2 = fopen(i2);
z = fread(fp2);
if (z > 2) y = 2;
else y = 3; }

v = 1;
(a)

⊗
z:=pastflow(*fp2)∪{fp2}∪vc1
floww(*fp2):=pastflow(*fp2)

fp1:=i1

local fp1, x, y,z,v,fp2;

⊗ x:=pastflow(*fp1)∪{*fp1},
floww(*fp1):=pastflow(*fp1)

y:=vc1vc1:=x
local vc1

⊗ ⊗ fp2:=i2

y:=vc2vc2:=z ∪vc1

local vc2

⊗
ε

v:= ∅

(b)

Figure 5: An example and the corresponding HSMSW for analyzing implicit information flow.

value(x). By induction hypothesis, value(x) is the set of all objects from which the information flows to
x, and hence value(y) contains all objects from which the information flows to y. Thus (2) holds. If stmt
is x = fread(fp), then the information flows from ∗fp to x. The action in the corresponding transition
is x := pastflow(∗fp) ∪ {∗fp}, floww(∗fp) := pastflow(∗fp). Because pastflow(∗fp) contains all
objects from which information flows to ∗fp, x contains all objects from which information flows to x.
Thus, (2) holds. Similarly, we can prove that (2) holds for other statements.

3.2 Implicit Information Flow Analysis

Algorithm 1 deals with only explicit information flow. It does not detect implicit information flow resulting
from conditional statements such as if (x == 0) then y = 0; else y = 1. In this statement, y is assigned
0 if the value of x is 0, and 1 otherwise. From y’s value, we can infer whether x is equal to 0 or not. As a
result of execution of this statement, information of x flows to y implicitly.

We propose to make use of the variable scoping of HSMSW to detect implicit information flow. For ev-
ery conditional statement c of the form if cond then stmt1 else stmt2 , we construct an HSMSW module
K that contains a new local variable vck, called implicit flow variable, to store the union of values of all
variables in cond, denoted as vars(cond). The value of vck is then propagated to variables that appear on
the left-hand side of actions (assignments) generated from statements contained in c. A nested conditional
statement with nesting-depth n is modeled by an HSMSW with nesting-depth n. Once the HSMSW is con-
structed, we can directly use the analysis technique presented in Section 3.1 to analyze implicit information
flow.

The algorithm for constructing an HSMSW for analyzing implicit information flow of a conditional
statement is given in Algorithm 3. The HSMSW for while statement can be constructed similarly. The
algorithm for constructing HSMSWs for other statements is similar to that in Algorithm 1. In order to ana-
lyze implicit information flow, one parameter vc is added to AddMulStmts which is used to propagate the
value of the implicit flow variable. Given a statement stmt ; stmts ′ where stmt is a conditional statement of
the form if cond then stmt1 else stmt2 , AddMulStmts(stmt ; stmts ′, t , te , vc) constructs an HSMSW K



from stmt; stmts′ with an entry state t and an exit state t′ as follows. First, a local implicit flow variable vck
is created (Line 4) and a transition t

vck:=vars(cond)∪vc−→ t1 is generated which assigns vars(cond)∪ vc to vck
(Line 5). Next, AddMulStmts(stmt1 , t1, t

′, vck) and AddMulStmts(stmt2 , t1, t
′, vck) are called, which

propagate vck to the left-hand side of the actions generated through stmt1 and stmt2 , respectively (Lines 7
and 8). The value of the implicit flow variable is propagated to all actions except the action generated through
fopen and the assignment floww (∗fp) := pastflow(∗fp) generated through fread. Finally, an ε transition
from t′ to te is generated (Line 9). The sequence of statements stmt ; stmts ′ where stmts ′ 6= end stmt is
handled similarly.

Algorithm 3 Algorithm for constructing an HSMSW from an atomic actor for implicit information flow
control

1: procedure AddMulStmts(stmt ; stmts ′, t, te, vc)
2: let stmt = “if cond then stmt1 else stmt2”
3: Create a HSMSW module K with entry state t and exit state t′

4: Create a new implicit flow variable vck and a state t1
5: Trans1 = {t vck:=vars(cond)∪vc−→ t1}
6: if stmts′ = end stmt then
7: K1 = AddMulStmts(stmt1 , t1, t′, vck)
8: K2 = AddMulStmts(stmt2 , t1, t′, vck)
9: return K1 ∪K2 ∪ Trans1 ∪ {t′

ε→ te}
10: else
11: Create a state t3
12: K1 = AddMulStmts(stmt1 , t1, t3, vck)
13: K2 = AddMulStmts(stmt2 , t1, t3, vck)
14: K3 = AddMulStmts(stmts ′, t3, t′, vc)
15: return K1 ∪K2 ∪K3 ∪ Trans1 ∪ {t′

ε→ te}
16: end if

Figure 5(b) gives the HSMSW generated for the example in Figure 5(a). When the conditional statement
if (x > 1 ) then . . . in Figure 5(a) is evaluated, a new module is constructed and a local variable vc1 is
created which stores the value of x. The value of vc1 is them propagated to y and z, which means that the
information of x flows to y and z.

3.3 Incremental Information Flow Analysis

If our information flow analysis algorithm detects potential information flow violation in a scientific work-
flow, the user who constructed the workflow will be prompted to revise the workflow. A user may also
want to change the structure of a scientific workflow if she is not satisfied with the results produced by
the workflow. Incremental information flow analysis is useful when structural changes of a workflow lead
to small or no changes in the analysis results. In some cases, a complete re-analysis cannot be avoided,
but in most cases, incremental analysis allows us to reuse the previous analysis results and perform analysis
more quickly than a complete re-analysis. In this section, we present techniques for incremental information



T3: input - i2 output - o2
var fp1, x;
fp1 = fopen(i2);
x = fread(fp1);
o2 = x;
(a)

x:=pastflow(*fp1)∪{*fp1},floww(*fp1):=pastflow(*fp1) o2:=xfp1:=i2

local fp1, x;

⊗ ⊗
(b)

Figure 6: (a) Specification of T3; (b) the corresponding HSMSW of T3.

flow analysis of scientific workflows. The basic idea is to store the exit states of all modules of HSMSW
constructed in the previous analysis and then incrementally update HSMSW and perform analysis.

We consider the following changes to the structure of a scientific workflow: adding, deleting, or replac-
ing workflow tasks, and adding and deleting data channels. Every time a change is made to the structure of
a scientific workflow, our incremental algorithm starts from the entry states of the top module of HSMSW
generated in the previous analysis and inspects every module and transition to see if it is affected by the
change. If so, the algorithm updates the corresponding modules and transitions. The algorithm for updating
HSMSW is straightforward: If a task T is deleted from a workflow W , the corresponding reference in the
HSMSW is deleted. If a new task T is added to a workflow W , an HSMSW module for T is constructed
and a reference to this module is added correspondingly. Replacing a task T1 with another task T2 can be
reduced to deleting T1 and then adding T2. If a data link is added to (or removed from) the workflow, the
corresponding transition will be added to (or removed from) HSMSW.

After the user provides inputs to the scientific workflow, the incremental analysis is performed to detect
potential information flow violation. The algorithm starts from the initial state and traverses HSMSW until a
module or a connection channel that is affected by the change is encountered. Such a module or a connection
channel is called an affected point. The algorithm then re-analyzes HSMSW from the affected point until a
violation is detected or no more state is reachable (i.e., no violation is detected). The following optimizations
can be applied when a moduleK1 is replaced with another moduleK2: (1) if the exit state ofK2 is the subset
of that ofK1 and the previous analysis result is false (i.e., no violation is detected), then the algorithm returns
false; and (2) if the exit state of K2 is the superset of that of K1 and the previous analysis result is true, then
the algorithm returns true.

Below, we use the example in Figure 3 to illustrate our incremental analysis technique. In Section 3, we
have shown that this workflow violates the information flow policy access(h1 : f1) = {h2}. During the
analysis, we store the value of the exit state s7 of R2, which contains {floww(h2 : f2) = {h1 : f1}, o1 =
{h2 : f2}, . . .}. Because the information flow policy of h1 : f1 is violated, the user is prompted to revise the
workflow. Assume that the user replaces task T2 with task T3 in Figure 6(a). Because T1 does not change,
R2 does not change. Since T2 is replaced with T3, R3 is replaced with a reference to the HSMSW module
of T3, i.e., the HSMSW shown in Figure 6(b). Our incremental analysis algorithm then starts from s7 and
performs analysis using the technique given in Section 3. The analysis shows that the information flow
policy access(h1 : f1) = {h2} is not violated.



4 Implementation and Experimental Results

HSMSW
generator

Sc ientific   w orkflow

Analys is  result
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Figure 7: The architecture of In-

foflow Analyzer.

We have developed an information flow analysis tool for scientific work-
flows, called Infoflow Analyzer, whose architecture is given in Figure 7.
Our infoflow Analyzer was developed over Hermes [5], which is a tool
for constructing a hierarchical reactive machine, an extension of the hi-
erarchical state machine with variable scoping, and performing reach-
ability analysis on the hierarchical reactive machine. In Hermes, the
hierarchical reactive machine can either be drawn manually or be gener-
ated through an XML specification. Our infoflow Analyzer differs from
Herms as follows: (1) We extended the XML specification of the hier-
archical reactive machine in Herms to support the specification of “and”
and “or” transitions of HSMSW; (2) We implemented a translator for
converting the workflow specification into the XML specification of the

HSMSW; and (3) We implemented the information flow analysis algorithm developed in this paper which
performs analysis on the XML specification of the HSMSW.

Figure 8 gives the screenshots of HSMSW generated using Infoflow Analyzer for a workflow containing
three tasks. M1 and M2 model tasks T1 and T2 in Figure 3, respectively. Figure 8(a) provides a top-level
view of HSMSW, which allows users to provide parameter values and specify the information flow policy.
Figure 8(b) shows that the information flow policy has been violated by providing a detailed explanation of
the cause and highlighting the transition that violates the policy.

Our prototype currently supports only a subset of Java Beanshell containing some basic file operations
and assignment statements. Further development includes supporting a more expressive subset of Java
Beanshell, including database operations.

Experimental results. We now evaluate the scalability of our Infoflow Analyzer. All reported results were
obtained on an Intel Pentium D machine with 1GB of RAM running Linux 2.6.24.

Figures 9(a) and 9(b) give the execution time and memory consumed by Infoflow Analyzer to analyze
workflows with number of tasks varying between 2000 (14K states) and 20000 (140K states). Each workflow
was constructed by composing a number of modules corresponding to the task T1 in Figure 3 via connection
channels. Observe from the figures that, it takes Infoflow Analyzer less than 100 seconds and less than
800MB memory to analyze a workflow with 20000 tasks. Obtaining results for more sophisticated real-
world workflows is left as a topic for future work.

5 Related Work

Much work has been done for modeling, analysis, and verification of workflows [2, 3, 13, 37, 32, 18, 17,
27, 15, 11, 10, 12, 39]. In this paper, we propose to control information propagation of scientific workflows
based on Hierarchical State Machines for Scientific Workflows (HSMSWs). We exploit the hierarchical



(a)

(b)

Figure 8: The screenshots of Infoflow Analyzer for the example in Figure 3.

structure of HSMSWs to model scientific workflows and perform analysis directly on HSMSWs without
flattening them into finite state machines, which avoids exponential blowup caused by flattening. To the best
of our knowledge, no information flow analysis techniques are proposed based on other formalisms.

While early scientific workflow effort demonstrated the capability of database management for sup-
porting scientific workflows [4], several scientific workflow management systems (SWFMSs) have been
developed over the past few years. The Kepler system [29] is a Java-based open source SWFMS. In Ke-
pler, a scientific workflow is composed from components called actors and its execution is controlled by
a computational model controller called director. Taverna [31] is another SWFMS targeted for life sci-
ence. Currently, Taverna supports a repository of Web services for various bioinformatics data analysis and
transformation. Taverna uses an XML-based workflow language called SCUFL for workflow representation
with each component being either a Web service or a processor developed using Java Beanshell script. The
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Figure 9: The execution time and memory consumption of Infoflow Analyzer on workflows containing 2000
- 20000 tasks.

Triana system [14] has a sophisticated graphical user interface for workflow composition and modification,
including grouping, editing, and zooming functions. The VisTrails system [19] is developed to manage vi-
sualizations and is the first system that supports provenance tracking of workflow evolution in addition to
tracking the data product derivation history. The Pegasus system [20] provides a framework which maps
complex scientific workflows onto distributed grid resources. Artificial intelligence planning techniques are
used in Pegaus for workflow composition. The Swift system [43] combines a novel scripting language called
SwiftScript with a powerful runtime system to support the concise specification, and reliable and efficient
execution, of large loosely coupled computations over Grid environments. Finally, VIEW [26] system fea-
tures an open and flexible Service-Oriented architecture, efficient provenance management using Semantic
Web technologies, and advanced techniques for scientific data visualization. However, none of the above
systems support information flow analysis.

The area of information flow analysis has received considerable attention. The lattice model of infor-
mation flow was first proposed in [7] and [16]. Recently, a number of information flow control techniques
have been developed for decentralized systems or Web services (e.g. [30, 23, 33, 25, 42]). However, none
of these work is done in the context of scientific workflows or uses hierarchical state machines to perform
information flow analysis. Also, in addition to support information flow analysis, our framework also al-
lows us to verify many other properties such as deadlock-freedom [41]. Guernic et. al. [21] present an
automata-based dynamic information flow analysis technique, while the information flow analysis tech-
nique presented in this paper is a static analysis technique. Information flow analysis has also been applied
to programs (e.g. [36]), which checks if information may flow from a variable labeled “high” to a variable
labeled “low” in the program. Our technique does not assume an order exists among variables, which allows
us to specify a policy that prevents information from flowing among arbitrary sets of principals. Second, our
analysis technique also accounts for dataflows formed from data channels that connect the input and output
ports of workflow tasks.



Recently, the Kepler system extends its actor-oriented modeling framework with frames and templates
by borrowing ideas from hierarchical state machines [9]. This approach seamlessly integrates control flows
into a dataflow-based design paradigm without sacrificing the benefits of dataflows. Although Kepler pro-
vides a concrete hybrid model for designing and executing scientific workflows with both dataflows and
control flow features, verification and information flow analysis are not part of the framework. In contrast,
we aim at developing an abstract model for scientific workflows based on hierarchical state machines, pro-
viding a foundation for formal modeling and analysis of scientific workflows, including information flow
analysis.

In [41], we have presented techniques for verifying and controlling information propagation of scientific
workflows. However, [41] does not handle implicit information flow and does not consider incremental
information flow analysis. The language and the control flow patterns we consider in this paper are also
more expressive than those of [41]. For example, this paper considers synchornization, parallel split, and
simple merge, while [41] does not. Further, no prototype is developed in [41].

6 Conclusion and Future Work

In this paper, we propose to use HSMSW, a Hierarchical State Machine for Scientific Workflows, to model
scientific workflows. HSMSW refines the Hierarchical State Machine targeting for the particular modeling
of scientific workflows and for information flow analysis. We consider workflows with the following control
flow patterns: sequence, exclusive choice, parallel split, synchronization, simple merge, and conditions.
Based on HSMSW, we present information flow analysis techniques to control the information propagation
in scientific workflows. Our analysis techniques deal with both explicit and implicit information flows.
We also present an algorithm for incrementally performing information flow analysis upon every change
to scientific workflows. This algorithm is more efficient than performing analysis from scratch, especially
when small changes to the workflow lead to small or no changes to the analysis results. We have also
developed a prototype system, called Infoflow Analyzer, to validate and demonstrate our approaches. We
plan to extend our work to support scientific workflows having Web services as their components.
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[29] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao, and Y. Zhao.
Scientific workflow management and the Kepler system: Research articles. Concurr. Comput. : Pract.
Exper., 18(10):1039–1065, 2006.

[30] A. C. Myers and B. Liskov. A decentralized model for information flow control. In SOSP, pages
129–142, 1997.

[31] T. Oinn and et. al. Taverna: lessons in creating a workflow environment for the life sciences: Research
articles. Concurr. Comput. : Pract. Exper., 18(10):1067–1100, 2006.

[32] Y. Pan, Y. Tang, H. Ma, and N. Tang. Workflow analysis based on fuzzy temporal workflow nets. In
CSCWD (Selected papers), pages 545–553, 2005.



[33] N. Ravi, M. Gruteser, and L. Iftode. Information flow control for location-based services. In 3rd
Annual International Conference on Mobile and Ubiquitous Systems: Networks and Services, 2006.

[34] N. Russell, A. ter Hofstede, D. Edmond, and W. van der Aalst. Workflow data patterns. Technical
report, 2004. QUT Technical report FIT-TR-2004-01.

[35] N. Russell, A. H. ter Hofstede, W. M. var der Aalst, and N. Mulyar. Workflow control-flow patterns:
A revised view. Technical report, 2006. BPM Center Report BPM-06-22.

[36] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal on Selected
Areas in Communications, 21:5–19, 2003.

[37] F. L. Tiplea and D. C. Marinescu. Structural soundness of workflow nets is decidable. Inf. Process.
Lett., 96(2):54–58, 2005.

[38] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow patterns. pages 5–51,
2003.

[39] M. Wang, R. Kotagiri, and J. Chen. Trust-based robust scheduling and runtime adaptation of scientific
workflow. Concurrency and Computation: Practice and Experience, in press.

[40] J. Wing. Computational thinking. Communications of the ACM, 2006.

[41] P. Yang, Z. Yang, and S. Lu. Formal modeling and analysis of scientific workflows using hierarchical
state machines. In Proc. of the International Workshop on Scientific Workflows and Business Workflow
Standards in e-Science, pages 619–626, 2007.

[42] U. Yildiz and C. Godart. Information flow control with decentralized service compositions. In IEEE
International Conference on Web Services, pages 9–17, 2007.

[43] Y. Zhao, M. Hategan, B. Clifford, I. T. Foster, G. V. Laszewski, V. Nefedova, I. Raicu, T. Stef-Praun,
and M. Wilde. Swift: Fast, reliable, loosely coupled parallel computation. In Proc. of the IEEE
International Workshop on Scientific Workflows (SWF 2007), pages 199–206, 2007.


