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Abstract

Methods based on Boolean satisfiability (SAT) typically
use a Conjunctive Normal Form (CNF) representation of
the Boolean formula, and exploit the structure of the given
problem through use of various decision heuristics and im-
plication methods. In this paper, we propose a new de-
cision heuristic based on separator-set induced partition-
ing of the underlying CNF graph. It targets those vari-
ables whose choice generates clause partitions with dis-
joint variable supports. This can potentially improve per-
formance of SAT applications by decomposing the problem
dynamically within the search. In the context of a recently
proposed image computation method combining SAT and
BDDs, this results in simpler BDD subproblems. We pro-
vide algorithms for CNF partitioning — one based on a
clause-variable dependency matrix, and another based on
standard hypergraph partitioning techniques, and also for
the use of partitioning information in decision heuristics
for SAT. We demonstrate the effectiveness of our proposed
partition-based heuristic with practical results for reacha-
bility analysis of benchmark sequential circuits.

1 Introduction

The Boolean satisfiability problem (SAT) has recently
received considerable attention in many verification appli-
cations, such as equivalence checking [6, 12, 23], as well as
model checking [1, 3, 26]. Recently, combining SAT tech-
niques with BDDs has been shown to be effective for image
computation with application in state reachability analysis
of sequential circuits [13].

A typical implementation for solving SAT uses a branch-
and-bound search over the values of all variables, with
considerable sophistication in the software engineering of
techniques for decision making, implication gathering, and
backtracking [19, 22, 28]. Since the SAT problem itself is
NP-complete, the effectiveness of any algorithm for solv-
ing SAT depends upon the amount of pruning of the search
space that it enables. Decision heuristics, i.e. the choice of
the SAT variable to branch on, and its value, directly affect
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the amount of pruning. Many SAT implementations use
a Conjunctive Normal Form (CNF) representation of the
Boolean formula. This has led to the development of many
decision heuristics based on the frequency of appearance of
variables in unsatisfied (or all) clauses, sometimes giving
preference to smaller clauses in order to facilitate implica-
tions [17]. In this paper, we focus on decision heuristics
targeted at decomposing the overall problem into smaller,
unrelated, partitions.

1.1 Motivation

A recently reported method for image computation uses
SAT search as a disjunctive decomposition of the overall
search for image solutions into multiple subproblems, each
of which is handled by using a standard BDD-based image
computation algorithm [13]. In this context, SAT decision
heuristics affect not only the pruning of the search space
in SAT, but also the complexity of dynamically generated
BDD subproblems.

We propose a new decision heuristic for SAT, based on
separator-set induced partitioning of the underlying CNF
graph. We use separators instead of minimum cutsets
for partitioning, because there exist small separators for
graphs that do not have bipartitions with small cutsize [16].
The decision heuristic is targeted at those variables whose
choice dynamically results in clause partitions with disjoint
variable supports. Since disjoint subproblems contribute to
search complexity additively, rather than multiplicatively,
this heuristic can potentially improve performance in many
applications of SAT, especially those where a large part of
search space needs to be explored. Specifically, for the
image computation problem, use of the proposed decision
heuristic in SAT, leads to simpler BDD subproblems. This
is because BDD image computations with disjoint conjunc-
tive partitions are less likely to blow up in size, in compari-
son to those with connected partitions.

In this paper, we describe two different methods for par-
titioning the CNF graph. One is based on the MLP (Mini-
mal Lifetime Permutation) approach proposed by Moon et
al. [20], and the other is based on use of a standard hyper-



graph partitioning package called hMETIS [14]. We also
provide a simple algorithm which uses the partition infor-
mation to assign weights to all CNF variables, which can
be combined with standard SAT decision heuristics.

The benefit of complementing a purely functional ap-
proach based on BDDs with structural information captured
by SAT is crucial in improving performance of image com-
putation. We present practical results on benchmark circuits
demonstrating this impact. We show that the use of our pro-
posed heuristic consistently improves the performance for
reachability analysis, in some cases enabling the prototype
tool to reach more states than possible without the use of
this heuristic.

1.2 Related Work

There has been some effort in exploring the benefits of
partitioning for generic SAT applications [18], but this was
restricted to the detection of partitions as they arise dynam-
ically within the search, and no effort was made to actually
derive such partitions. There has been some independent
work in the SAT community on use of partitioning meth-
ods similar to ours, in order to improve the efficiency of the
SAT solver [2]. However, this effort is not directly targeted
at deriving good decision heuristics, and they do not pro-
vide any empirical results on practical problems. Along an-
other related line, it has been conjectured that the degree of
difficulty of a given SAT problem is related to the informa-
tion “bandwidth” of the problem [24, 15], i.e. the greater
the connectivity between variables, the more difficult the
problem is likely to be. Again, this observation can be used
to justify choosing decision variables which partition the
problem into low bandwidth (or disjoint) partitions.

In terms of image computation itself, there have been
many efforts aimed at exploiting circuit structure informa-
tion for a pure BDD-based image computation [10]. For
example, heuristics for clustering and ordering are based
on analysis of shared variable support sets between next-
state bit relations and the input state set [25]. In particular,
Moon et al. proposed the MLP algorithm for a dependency
matrix representation to obtain a Bordered Block Triangu-
lar form, which is particularly suited for deriving a good
conjunction schedule [20]. We use this form directly for
partitioning, described later in the paper. They also iden-
tify existing connected components for decompaosition, but
again, there is no effort to actively derive such decomposi-
tions dynamically. A recent technique [9] also uses graph
partitioning methods to find a good order for clusters. Note
that many of these heuristics capture the benefits of parti-
tioning on the underlying circuit structure, which is similar
to our goal. However, none of these methods actually use
SAT. Therefore, the specific partitioning methods we use
for CNF graphs, as well as their use for choosing decision
heuristics within SAT, are novel in our approach.
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Figure 1: Image Computation using SAT and BDDs

The rest of the paper is organized as follows. In Sec-
tion 2, we provide the necessary background for image
computation based on SAT and BDDs. Our algorithms for
partitioning CNF graphs, and our SAT decision heuristic
based on this information is described in Section 3. Exper-
imental results demonstrating the benefits of our heuristic
are presented and discussed in Section 4, followed by con-
clusions.

2 SAT-based I mage Computation

Historically, symbolic state space traversal [7, 11] has
relied on efficient algorithms based on BDDs [5] for carry-
ing out an image computation, shown below:

Image(Y) =3x,w T(X,W,Y) A From(X) (1)

Here, X/Y denote present/next state variables, W denotes
primary input variables, T' denotes the transition relation,
and From denotes the input state set. BDDs are used to
represent the characteristic function of the transition rela-
tion, as well as the input/image sets. As an example appli-
cation, the set of reachable states can be computed by start-
ing with a set F'rom which denotes the set of initial states
of a system, and using image computation iteratively, un-
til a fixpoint is reached. The BDD-based approaches work
well when it is possible to represent the sets of states and
the transition relation (as a whole, or in a usefully parti-
tioned form) using BDDs. Unfortunately, BDD size is very
sensitive to the number of variables, variable ordering, and
the nature of the logic expressions being represented.
Recently, an integration of SAT and BDDs has been pro-
posed for image computation [13]. A pictorial represen-
tation of various features of this method is shown in Fig-
ure 1. As shown in Part (a), state sets are represented by
BDDs, and the transition relation is represented as a CNF



formula. All image solutions over Y are enumerated us-
ing a backtracking search algorithm for SAT which oper-
ates over the CNF formula for 7. Within this search, the
BDD for From(X) is used as a constraint (called BDD
Bounding), where any partial assignment over the X vari-
ables that does not satisfy From(X) leads to immediate
backtracking within SAT. As shown in Part (b), rather than
using SAT to enumerate each solution all the way down to
a leaf, BDD-based subproblems are invoked at intermedi-
ate points within the SAT search. This allows a symbolic,
rather than explicit, enumeration of all solutions in the sub-
tree rooted below that point. In a sense, this approach can
be regarded as SAT providing a disjunctive decomposition
of the image computation into many BDD subproblems.
Each of the BDD subproblems involves a standard image
computation as shown in Part (c), where the BDDs for the
conjunctive partition are generated on-the-fly from unsatis-
fied clauses of the CNF for 7.

3 CNF Partitioning

In this section, we describe our algorithms for two par-
titioning methods and the decision heuristic for SAT. The
basic idea is to use partitioning methods on a CNF formula
to obtain a good separator, i.e. a set of clauses which sep-
arates the remaining clauses into two sets with no common
variables. In other words, we obtain three partitions of the
entire set of clauses — called left, right, and separator, such
that the left and right partitions do not share any variables.
We focused on the use of separators for partitioning, rather
than using a minimum cutset, because there exist graphs
which have a small separator, but do not have bipartitions
with small cutsets [16]. For example, a star graph with a
central node connected to n other nodes, has a one-node
separator, but an O(n) cutset. Furthermore, we use a recur-
sive partitioning scheme, whereby any partition is consid-
ered for further re-partitioning if its size is above a certain
threshold.

Note that a three-way partition of the set of clauses does
not necessarily correspond to a partition of the support vari-
ables. This is shown pictorially for the general case in Fig-
ure 2, which shows the shared and the private (non-shared)
variables for each of the three clause partitions.

During SAT, we give preference to making decisions on
the separator variables, in order that the remaining search
can be performed over the disjoint left and right partitions.
Note that it is sufficient, but not necessary, to choose only
shared variables in order to obtain partitions with disjoint
variable supports. For example, it may be possible to as-
sign values to private separator variables in order to satisfy
all clauses in the separator partition. This still leads to the
remaining problem being disjoint in terms of the left and
right clause partitions. Our approach based on CNF parti-
tioning allows us to take into account not only the variable
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Figure 2: Variables of Clause Partitions

support sets, but also the constraints on their values, i.e. the
clauses. This is in contrast to other approaches which may
consider only variable support sets for partitioning.

3.1 Dependency Matrix Method

The first partitioning method is based on the work by
Moon et al. [20]. They use a dependency matrix repre-
sentation of conjunctive partitions (rows) and their variable
support sets (columns). The rows and columns of this ma-
trix are then permuted using the MLP algorithm to obtain a
Bordered Block Triangular form. The basic algorithm con-
sists of working iteratively on the active region of the ma-
trix, by choosing a column which intersects the maximum
number of shortest rows, moving it to the leftmost position,
and shrinking the active region to exclude it. This form
is used to obtain a good conjunction schedule for purely
BDD-based image computation.

We use a similar matrix representation for capturing
the dependencies between clauses (rows) and variables
(columns) of the CNF formula to be partitioned. In our
implementation, we do not use all CNF clauses represent-
ing the transition relation, since this sometimes resulted in
clauses from the same gate being in different partitions. In-
stead, we consider only the minimum number of clauses for
each gate of the circuit such that all variable dependencies
are captured. We also add a row to denote the dependency
of the input set BDD on various variables. Next, we use
the basic MLP algorithm proposed by Moon et al., with
minor modifications, to obtain the Bordered Block Trian-
gular form. The modifications consist of several rules to
break ties whenever there are multiple column candidates
that can be moved to the left. In particular, preference is
given to those columns with a higher “affinity” with the in-
active region, i.e. with more number of entries in the inac-
tive matrix.

Next, we use this matrix to choose a good separator.
This is done by choosing a good separator variable, as
shown in the pseudo-algorithm in Figure 3. Basically, each
variable (column) is considered as a candidate for separa-
tion, because it divides all clauses into three sets — those
with all variables to its left, those with all variables to its



choose_separator_variable()
{
max = 0;
for (each column i) {
set varsinL, varsinSep, varsinR;
for (each row j) {
if (al entriesinj areto theleft of i)
varsinL = varsinL UNION (varsin row j);
elseif (al entriesinj areto theright of i)
varsinR = varsinR UNION (varsin row j);
else
varsinSep = varsinSep UNION (varsinrow j);
} // end of loop on j
set PrivateVarsinL = varsinL - varsinSep;
set PrivateVarsinR = varsinR - varsinSep;
merit = (|PrivateVarsinL| * |PrivateVarsinR|) /
|varsinSep|;
if (merit > max) {
max = merit;
sep_var =1i;

}/l'end of looponi
return sep_var;

}

Figure 3: Choosing a Separator Using Dependency Matrix

right, and those with variables both to its left and right. The
last set of clauses is actually the separator set associated
with this variable. The figure of merit we use for each vari-
able is targeted at maximizing the number of private vari-
ables in each of the left and right partitions, while mini-
mizing the total number of variables in the separator itself.
This matrix-based separator algorithm is used at every level
of the recursive partitioning scheme to yield three disjoint
partitions of clauses at each level.

3.2 Graph Partitioning M ethod

We have explored another CNF partitioning method
based on standard hypergraph partitioning techniques. The
CNF graph we consider consists of nodes denoting clauses,
and hyperedges denoting variables of the CNF formula.
The CNF formula we use is the same as for the Dependency
Matrix Method, and we also add a node to the CNF graph
denoting the input set BDD. We consider weighted graphs,
where each hyperedge has a weight equal to the number of
nodes it connects, i.e. the number of clauses that the corre-
sponding variable appears in.

Though polynomial time algorithms exist for finding
minimum separators based on maxflow-mincut network al-
gorithms, the problem of finding separators which yield
balanced partitions is NP-hard [16]. For partitioned CNF
graphs, since the overall complexity of the SAT solver is
affected by the sizes of the individual partitions as well,

our main interest is in solving the latter problem. For this,
we used a publicly available package called hMETIS [14],
which is known to perform well on practical problems.
However, the hMETIS package cannot be used directly to
find good separators. Instead, we use it to find a minimum-
weight cutset of the given graph, where the cutset partitions
the graph into unconnected components. The minimum-
weight cutset consists of hyperedges, i.e. variables, and
the separator partition is defined as all clauses that these
variables appear in. Note that while this is not equivalent
to finding a good separator, minimizing the weights on the
hyperedges does tend to give small separators. The variable
support set of the separator clauses defines the set of sep-
arator variables, which can be larger than the set of cutset
variables in general. By definition, the two node partitions
defined by the cutset do not share any hyperedges, i.e. they
correspond to the left and right partitions of clauses which
do not share any common variables.

Again, the graph partitioning algorithm is used at each
level of the recursive partitioning scheme, such that each
terminal partition is less than a certain threshold. For this
reason, we also allow unbalanced partitions, with up to a
25% unbalance factor. (Using a higher unbalance factor
results in many trivial terminal partitions.)

3.3 Using Partitions for Decision Heuristics

The result of the partitioning method is a partition tree,
such that the size of each terminal partition is less than a
certain threshold. This partition tree is used to assign a
weight to each variable in the CNF representation of the
SAT problem. This partition-based weight is used as a
multiplicative factor for the weight/rank computed for each
variable using standard SAT heuristics, e.g. DLIS [19].

Our weight assignment algorithm works as follows: we
would like to favor decisions on separator variables, in or-
der that the remaining search can be performed over the
disjoint left and right partitions. Therefore, we assign sep-
arator terminals a weight of 2, and other terminals a weight
of 1. Recall from Figure 2 that some variables of the sep-
arator partition might be shared, while others are private.
Again, we give more preference to shared separator vari-
ables, rather than private separator variables. This is be-
cause shared separator variable assignments are more likely
to lead earlier to disjoint partitions. Therefore, for each
variable, its weight is obtained by adding the contribution of
each terminal partition that the variable appears in. This en-
sures that shared variables get more weight than non-shared
variables.

For example, consider the partition tree shown in Fig-
ure 4, where all terminal partitions are labeled by the sup-
port variables, and the boxed numbers denote the weights
assigned to the terminal partitions — weight 2 for separa-
tors, weight 1 otherwise. The resulting weight assignment
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Figure 4: Example Partition Tree

for each variable is shown in the box to the right of the par-
tition tree.

We also experimented with alternative weight assign-
ment strategies. In one, the weight assigned to each termi-
nal partition decreased according to increased depth from
the top of the tree. In another, the weight also depended
on the size of the partition, with smaller partitions being
given higher weight, in order to achieve disjoint partitions
as soon as possible in the SAT search. However, none of
these variations worked as well as, or improved upon, the
simple scheme described above.

4 Experimental Results

There has been significant progress made in symbolic
reachability analysis in recent years. \We compare the SAT-
based image computation with and without the partition-
based decision heuristic, to state of the art techniques in
VIS [4], a public domain tool. Our prototype implemen-
tation of the SAT-based image computation algorithm uses
the GRASP SAT solver [19] and the CUDD BDD pack-
age [27], and has been integrated within VIS. All reported
experiments were run on an UltraSparc machine, with a 296
MHz processor, 1 GB memory. For most experiments a
time limit of 100K seconds was used, and the times indi-
cated in the table are for the last reachability step completed
within this time limit. For VIS!, we used the default op-
tions in all experiments (partition threshold=5000, frontier
method for building partition MDDs, iwls95 image method,
and image cluster size=5000) Dynamic variable reordering
was enabled throughout all experiments, and good orders
on the state and primary input variables (when available)
were used initially. (Note that the SAT-based image compu-
tation requires additional ordering on the internal variables
also, which appear in the CNF formula.)

1These experiments were conducted with VIS version 1.3, since ver-
sion 1.4 was not available at that time.

4.1 Partitioning

Results of the two partitioning methods for the ISCAS
benchmark circuits are shown in Table 1. The name of
the circuit appears in Column 1, and number of latches in
Column 2 (marked #L). The number of CNF variables and
clauses are shown in Column 3 (marked #V / #C, respec-
tively). Columns 4 through 7 show the results for the De-
pendency Matrix method — the depth of the partition tree,
the number of terminal partitions, size of the biggest ter-
minal partition (#v / #c), and the CPU time required for
partitioning respectively. Columns 8 through 11 show cor-
responding results for the Graph Partitioning method. For
these experiments, the input set BDD corresponds to the
initial state set. For reachability analysis, we perform CNF
partitioning dynamically at each iteration, taking into ac-
count the dynamically changing input set BDD.

As can be seen from Table 1, both partitioning methods
are quite efficient in obtaining multi-depth partition trees
for all benchmark circuits. In general, for the same thresh-
old size constraint (different across circuits), the Graph
Partitioning method (based on hMETIS) results in smaller
depth trees, and less number of terminal partitions than the
Dependency Matrix method. However, as results in the next
section show, this did not always lead to improved results
for reachability analysis.

4.2 Reachability Analysis

Results for reachability analysis on the benchmark cir-
cuits are shown in Table 2. The name of the circuit ap-
pears in Column 1, and and a “(C)” after the name indicates
that at least one method was able to complete the traversal,
i.e. a fixpoint was reached. Columns 2, 3, and 4 show the
number of steps completed (n), the CPU time (in seconds),
and the Peak number of BDD nodes (in Millions) for stan-
dard VIS [4], which uses only BDDs for image computa-
tion. The remaining columns report the results for the SAT-
based image computation which uses both SAT and BDDs.
Columns 5, 6, and 7 report these numbers without the use
of partition-based decision heuristic. Columns 8, 9, and 10
report these numbers with the use of partition-based deci-
sion heuristic using the Dependency Matrix (DM) method,
while Columns 11, 12, and 13 report these numbers for the
Graph Partitioning (GP) method using hMETIS. The CPU
times reported include the time spent on obtaining the par-
tition tree dynamically for each reachability step. Finally,
Column 14 reports the improvement obtained by using the
best partitioning method (DM or GP) in comparison to not
using the partition-based decision heuristic at all. The im-
provement is reported either as an increase in the number
of reachability steps, or as a speedup factor when the num-
ber of reachability steps completed are the same, i.e. (time
without partition heuristic)/(time with partition heuristic).

Note from the last column of Table 2 that for all cir-



Name #L CNF Size Dependency Matrix Method Graph Partitioning Method
#V [ #C Tree # Tree Biggest | Time Tree # Tree Biggest | Time
Depth | Terminals | Size #v/#c (s) || Depth | Terminals | Size #v/#c (s)
51269 37 || 488/1308 6 11 181/ 342 2.7 3 7 1741282 1.5
51423 74 || 589/1494 6 13 189/ 345 4.1 4 9 155/205 1.7
$3271 116 || 1273 /3387 6 21 182/354 | 12.7 6 21 1877438 5.3
53330 132 || 885/2214 7 15 193/ 325 8.7 5 13 200/ 363 2.9
$3384 183 || 1187 /2853 7 21 2171 456 9.7 6 17 239 /154 3.1
54863 88 || 1887 /5250 7 21 286/642 | 46.7 5 19 256 /678 7.5
prolog 136 || 921/2322 7 13 193/ 242 9.5 4 11 192 /259 2.8
s5378 164 || 1234 /3085 8 23 289/611 | 178 5 11 288 /328 3.3
56669 231 || 2440/6302 8 27 280/669 | 55.0 7 23 297 /188 94
$9234.1 | 211 || 2316/6548 4 15 | 484/1012 | 38.6 5 15 445 /725 9.8
s13207.1 | 638 || 3464/8773 9 43 520/974 | 110.9 10 35 | 526/1159 | 16.2

Table 1: Partitioning Results for Benchmark Circuits

cuits, except s5378, the use of at least one partitioning
method improves the performance of the SAT-based im-
age computation in comparison to use of no partitioning
method. The improvement in performance for the same
number of steps is up to factor of 6, or more number of
reachability steps are completed. For one circuit, s4863,
the use of the GP method allowed a complete traversal,
which could not be done earlier. In our experiments, the
CPU times were dominated by the time needed to solve
the BDD sub-problems. With the use of partition-based
decision heuristics in SAT, these BDD sub-problems are
considerably simplified because they consist of image com-
putation over more loosely-connected (sometimes disjoint)
BDD relations. Therefore, these improvements clearly in-
dicate the benefit of adding partition-based information in
SAT for this application. Furthermore, both partitioning
methods perform fairly well, each contributing to best im-
provement in about half of the circuits. At this time, our
experiments are not conclusive in terms of characterizing
which method is better suited for which kind of circuits (or
partition trees).

In comparison to standard BDD-based image computa-
tion, note again from the table that SAT-based image com-
putation is able to outperform standard VIS for many of
the benchmark circuits, sometimes by an order of magni-
tude. For some of the larger circuits, such as s9234.1 and
§13207.1, the SAT-based methods are not as good as VIS
due to the large number of variables in the CNF represen-
tation, in contrast to a BDD-based transition relation rep-
resentation. However, there is scope for improvement in
this direction by use of clustering to pre-quantify variables
statically, and we are currently exploring such methods.

Other researchers have also recently reported improve-
ments for these benchmark circuits in comparison to stan-
dard VIS by use of better conjunction/ quantification sched-
ules [9, 20, 21]. However, since these enhancements are

not publicly available, we could not conduct experiments
within our environment, and it is difficult to make a fair
comparison. (Note that our implementation of the depen-
dency matrix method of Moon et al. works on the CNF
graph, not on the next-state bit relations as in their original
work.) We are also aware of other prioritized (non breadth-
first) traversal techniques which have shown good results
for reachability analysis. (See a recent paper [8] for more
details and other references). However, the target applica-
tion for our current paper is image computation, and we
have focused on pure breadth-first traversal as a good indi-
cator of its performance. It is our belief that just like pure
BDD-based image computation has seen many advances
with sophisticated heuristics and better engineering, there is
further potential to improve SAT-based image computation,
which complements the benefits of BDDs by incorporating
domain-specific knowledge through SAT.

4.3 Separator-set Induced Partitioning

Recall from Section 3.2 that in our CNF graph partition-
ing method based on hMETIS, each hyperedge (denoting a
CNF variable) has a weight, which represent the number of
clauses the variable appears in. We then used hMETIS to
find a minimum-weight cutset, and associated the separator
partition with all clauses that the cutset variables appeared
in. Our motivation for using edge weights was to minimize
the number of clauses in the separator, and thereby poten-
tially minimize the total number (shared and private) of sep-
arator variables. (There is no direct way to use hMETIS to
find good separators.)

We also explored the use of hMETIS without edge
weights, i.e. all hyperedges are given a weight of 1. In this
case, hMETIS again obtains minimum cutsets, but these
do not necessarily correspond to good separators. This is
because only the number of shared separator variables is
minimized, with no effort to minimize either the number



Circuit VIS SAT+BDD Image

(Standard) No Partition DM Method GP Method Improvement

n | Time | Peak n | Time | Peak n | Time | Peak n | Time | Peak

©) | (M) ©) | (M) 6 | (M) ©) | (M)
s1269 (C) || 10 | 3269 6.7 || 10 | 2164 0.8 || 10 | 2000 15| 10 | 1685 1.7 1.28 (GP)
51423 11| 8791 6.5 || 13 | 13151 12 || 15 | 24933 | 30.6 || 14 | 33013 | 17.2 || 2 more (DM)
s3271(C) || 17 | 17933 6 || 17 | 14036 1.4 | 17 | 9700 2.2 || 17 | 12791 2.4 1.45 (DM)
$3330 (C) 9 | 20029 6 9| 2029 1 9| 4351 1.3 9 748 0.8 2.71 (GP)
53384 4 | 24844 | 3.6 6 | 7801 0.5 6| 3843 0.6 7 | 15307 29 || 1more (GP)
54863 (C) 3| 3592 6 1| 1014 0.6 5 | 39250 1.6 4 | 9488 0.7 || 4 more (DM)
prolog (C) 4 | 22099 5 9 | 4697 2.8 9 858 0.7 9 726 1.1 6.47 (GP)
s5378 (C) 8 | 57986 | 22.7 || 45 | 60547 2.6 || 45 | 95960 2.5 || 45 | 82644 1.6 0.73 (GP)
$6669 3 505 1 2 549 0.3 2 317 0.3 2 542 1.3 1.73 (DM)
59234.1 9 | 11577 7.6 9 | 22777 7.7 || 11 | 96455 | 17.3 9 | 15769 1.4 || 2 more (DM)
513207.1 14 | 28600 75| 10 | 8340 0.8 8 | 4910 0.8 || 11 | 13548 2.3 || 1more (GP)

Table 2: Reachability Results for Benchmark Circuits

of separator clauses, or the total number of separator vari-
ables. Therefore, for the same size threshold for recursive
partitioning, we obtained different partition trees with no
edge weights. These were then used in the same way as
described earlier for computing decision heuristics in SAT.

The results for reachability analysis on some circuits
using hMETIS with and without edge weights are shown
in Table 3. In this table, Columns 2, 3, and 4 report the
number of steps completed (n), the CPU time (in seconds),
and the Peak number of BDD nodes (in Millions) for the
hMETIS-based partitioning heuristic with edge weights,
while Columns 5, 6, and 7 report these numbers without
edge weights. Note that in all circuits, the performance of
reachability analysis suffers when hMETIS is used without
edge weights. This highlights the benefit of using good sep-
arators for partitioning, instead of using minimum cutsets
alone.

5 Conclusions

We have proposed a decision heuristic for SAT which
favors those variables whose choice results dynamically in
disjoint variable supports for clause partitions in the under-
lying CNF graph. When used in combination with BDDs
for image computation, this heuristic has the effect of sim-
plifying the associated BDD subproblems, because the con-
junctive partitions are more loosely coupled than before
(and are disjoint in some cases). We have provided algo-
rithms for two CNF partitioning methods — one based on
use of a clause-variable dependency matrix, and another
based on use of a standard package for hypergraph parti-
tioning. We have also described details of using this parti-
tioning information to modify standard decision heuristics
in SAT. We have presented practical results for reachability
analysis on a number of benchmark circuits, which show a
consistent performance improvement due to our partition-

based decision heuristic, and also demonstrate the benefits
of a separator-set induced partitioning method. We are cur-
rently exploring the use of this heuristic for general SAT
applications.
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