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Abstract 

There is an increasing demand for data-intensive applications in which scientists use scientific 

workflows to integrate together data management, analysis, simulation and visualization services 

over often voluminous complex and distributed scientific data and services. One major limitation 

of current scientific workflow models is that each workflow task is stationary, requiring a dataset 

to be transferred from its source host to a target host where a stationary task resides before a 

computation can be performed on the dataset. This limitation seriously impedes data-intensive 

applications since it can take an unbearable amount of time to transfer large amount of datasets 

from their sources to the host where a stationary task resides. In order to address this limitation, 

in this paper, we apply the idea of mobile agents to distributed scientific workflows. In contrast 

to stationary tasks, mobile tasks move from their home hosts towards datasets and perform 

computation on the dataset side. Since in data-intensive applications, it is often the case that the 

size of a mobile task is much smaller than the size of a dataset, our mobile-task approach can 

greatly reduce the network communication overhead. Since a mobile task might migrate across 



various administrative domains and get executed at multiple hosts, it is critically important to 

ensure the security of a mobile-task-based workflow system. The lack of effective access control 

model creates security hole in distributed scientific workflows. In this paper, we address this 

problem using an itinerary-based access control model and a host visit scheduling algorithm that 

prevent arbitrary tasks from accessing and being executed on the current host.  
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1. Introduction 

Scientific workflows play a critical role in e-Science [1]. They are essential to integrate data 

management, analysis, simulation and visualization services over voluminous complex and 

distributed scientific data and services. In contrast to traditional business workflows, which are 

task-centric and control-flow oriented, scientific workflows are typically data-centric and 

dataflow-oriented, and thus pose new challenges [1].  

 

Figure 1: A sample scientific workflow in pediatric epilepsy. 

A sample scientific workflow in pediatric epilepsy is shown in Figure 1, which is taken from our 

ongoing pediatric epilepsy project. This workflow integrates various medical imaging processing 

tools (such as Segmentation and Registration), analysis tools (such as Extraction and 

Classification), and various distributed multimodality neuroimaging data (such as Fair and T1) to 



perform integrative analysis to facilitate the identification of the locations of second epileptic 

foci in children’s brains. The workflow contains both control flows and data flows, which are 

represented by solid edges and dashed edges, respectively. Tasks Segmentation and Registration 

will be executed concurrently, but their execution is activated only when there exists no 

segmented model or registration information, respectively. This is specified by the conditions 

labeled over the incoming edges of Segmentation and Registration – no seg and no reg; however, 

if both segmented model and registration information are available, then the execution of task 

Extraction can be activated immediately after the execution of Start. In terms of data flows for 

this specific workflow, task Segmentation takes T1 MRI image modality (T1) as input and 

produces the segmented model as output; task Registration takes both Flair image modality 

(Flair) and T1 MRI image modality (T1) as inputs and produces the registration information 

(reg) as output; then, both the segmented model and registration information are the inputs of 

task Extraction.  

In contrast to traditional business workflows [2, 3], this example illustrates the following features 

of a scientific workflow: 

– Different tasks might be serviced by different providers and thus geographically 

distributed across different administrative domains. For example, while Segmentation 

might be serviced by John Hopkins University, Registration might be serviced by 

University of Michigan. Most traditional business workflows only consider tasks that are 

within one organization. 

– Voluminous complex and distributed scientific data need to be integrated with various 

tools to conduct a complicated scientific analysis. Each dataset is potentially large in size. 



For example, for each patient, each modality image dataset typically consists of 30 to 40 

images, with each image of the size of several Megabytes. 

Together, these two features impose a new computational challenge over traditional workflow 

engines: since tasks are static in traditional workflows, large datasets need to be transferred from 

source hosts to target hosts where computational tasks reside, resulting in extremely unbearable 

network communication overhead. 

To overcome this limitation, we propose a mobile task model for scientific workflows where 

mobile tasks can migrate from one host to another towards large datasets to conduct data-

intensive computation. More specifically, each mobile task is equipped with an itinerary, the set 

of hosts that the mobile task will visit and the pattern of visiting them. However, since a mobile 

task might migrate across several administrative domains and get executed at multiple hosts, it is 

critically important to develop trustworthy mechanisms to ensure the secure migration and 

execution of these itinerary-driven mobile tasks. Our task and access control models enable 

secure execution of scientific workflow inside grid and cloud environments. 

To motivate the need for an itinerary-based access control policy, consider the following access 

control policy examples, in which a mobile task implements several light-weight services but 

will perform these services over a distributed set of datasets. 

Example 1.1 

1. In a brain DTI analysis application, a mobile task needs to visit e first to perform a fiber 

tracking service, and then perform a fiber analysis service at current host h (Figure 2a). 



2. In a temporal lobe epilepsy surgical candidacy determination application, segmentation 

and registration services need to be performed first at hosts e and f, respectively, in any 

order before the extraction service can be performed at current host h (Figure 2b). 

3. In an epilepsy second foci location application, the cortical element parcelation service 

has to be performed first at host e, and then a fiber tracking service has to be performed at 

host f before the second foci location analysis service can be performed at current host h 

(Figure 2c). 

 

 

Figure 2: An example of access control policy: (a) DTI analysis application; (b) Temporal lobe 

epilepsy surgical candidacy determination application; (c) Epilepsy second foci location 

application; (d) Epilepsy intracranial EEG surgery application – bold arrow indicating no 

intermediate hosts can be visited between a and b. 



4. In an epilepsy intracranial EEG surgery application, a mobile task has to visit hosts a and 

b to perform cortical element parcelation and concentration analysis in sequence first 

before the mobile task can perform a concentration comparison at the current host h. If 

the patient is identified as a surgery candidate, then the mobile task will visit e to perform 

an intracranial EEG analysis to identify the abnormal area. Finally the abnormal area will 

be resected and a record will be inserted into a database at host f (Figure 2d). 

The above example motivates the need for an access control model in which access control 

policies can be specified based on both the host visit history and future migration behavior of a 

mobile task. 

 The main contributions of this paper are: 

1. We propose a mobile task model for scientific workflows to meet the need of data-

intensive applications. To the best of our knowledge, this is the first time that such a 

model is proposed. 

2. We design a formal itinerary-based access control model. While our previous work [4] 

considers only the itinerary of a mobile task, both the visit history and future itinerary of 

a mobile task are considered in this paper. 

3. We propose formal syntax and semantics of itinerary based access control policy, and 

develop algorithms to verify the access request of a mobile task against the access control 

policy at the host. 

4. We develop a host visit scheduling algorithm for mobile tasks based on their itineraries 

and the dynamic host visit scenarios. 



Organization. The rest of the paper is organized as follows. Section 2 presents an overview of 

related work. Section 3 describes our proposed architecture for mobile task migration and 

execution. The algorithms to schedule a mobile task based on its itinerary are presented in 

Section 4, followed by the innovative approaches on host access control in Section 5. Finally, 

Section 6 concludes the paper and suggests some possible future work.  

2. Related work 

According to the workflow reference model [5], a workflow describes a business process. 

Correctness and security are two most important aspects of a workflow management system. An 

excellent overview of correctness issues in workflow management was given in [6]. Some 

researchers focus on how to ensure data consistency when concurrency and failures are present. 

These techniques emerge from the areas of extended transaction models [7-8], multidatabases [9, 

10], and transactional workflows [11, 12]. Others focus on the data and control flow 

requirements. These techniques include control flow graph, triggers (i.e., event-condition-action 

rules) [13], temporal constraints [14-15], Petri nets [16-17], and set and graph theory [18]. As for 

security, there is a wide range of security requirements [19]. While process integrity is ensured 

by constrained planning [20], data confidentiality is often supported by integrating role based 

access control in the enactment system [21-23]. Security requirements can be either managed by 

the workflow system itself, or enforced outside of the workflow engine [24]. 

In recent years, scientific workflows have gained great momentum due to their critical roles in e-

Science and cyberinfrastructure applications [25, 26]. There is a plethora of scientific workflows 

covering a wide range of scientific disciplines. The scale of e-Science computations has 

motivated researchers to harness distributed environments for running data-intensive scientific 



applications. Much work has been done towards executing scientific workflows on Grids and 

Clouds [27]. Thus, Yu and Buyya characterized and classified various approaches for building 

and executing workflows on the Grid [28] highlighting that scheduling workflow tasks in a 

distributed Grid environment is a challenging problem. Besides, they proposed their own 

scheduling approach in [29]. The workflow scheduling problem is showcased in the ASKALON 

project [30] by Wieczorek et al. 

Another aspect of scientific workflow that received considerable attention in the community is 

workflow and data provenance [31]. To facilitate collaborations and workflow reuse, the 

problem of workflow annotation and metadata management has been addressed in [32, 33]. Yang 

et al. propose to use hierarchical state machine to formally model and verify scientific workflow   

designs [34]. Other research directions in scientific workflows include workflow composition  

[35], scientific data management inside the resource as well as between different resources [36], 

workflow security [19, 37], metadata and provenance management [36], including provenance 

capture, storage querying [38], reusability of scientific workflow system components [39] 

Nevertheless, none of the above work has addressed the security and correctness issues of 

scientific workflows that support mobile tasks.  

Extensive work has been done on mobile agents [40-44] and their applications [45-51]. There is 

an increasing interest in the development of itinerary-driven mobile agents [4, 43, 52-54], in 

which the specification of the mobility behavior of a mobile agent is separated from the 

specification of its computational behavior. 

Many researchers have investigated various security issues in mobile agents [55-56], in 

particular, the access control at each host [57-59]. However, existing host visit access control 



models only consider the visit history of a mobile agent and do not consider future behavior of a 

mobile agent. In contrast, our access control model supports the specification of a host visit 

access control policy that not only considers the host visit history of a mobile agent but also its 

future itinerary which prescribes its future mobility behavior. Another unique feature of our 

model is that each mobile task is equipped with a “scheduler”, which is able to communicate 

with the list of candidate hosts that the mobile task intends to visit according to its itinerary and 

then schedules the next host to visit. This next host will guarantee the permission of such an 

access. As a result, a mobile task will always follow a trace of hosts which permit its access if 

such a trace exists. None of existing work supports this salient scheduling feature. 

Finally, our notion of mobile tasks is developed from our previously proposed notion of 

itinerary-driven mobile agents [4, 54, 60] with the following additional features necessary for 

scientific workflow applications: (i) mobile tasks have well-defined input and output ports such 

that data links can be used to connect these ports to compose composite task or a scientific 

workflow, while traditional mobile agents do not support input and output ports that target for 

data links, and (ii) a mobile task might possess some of the ACID (Atomicity, Consistency, 

Isolation, and Durability) properties of a transaction, while traditional mobile agents usually do 

not support such properties. 

In [61] (which extends [4]) we focused on the access control approach that relied on model 

generation and negotiation between the mobile agent and the host. We used a fragment of the 

modal μ-calculus [62] to specify access control policies. In this paper, on the other hand, we 

focused on the itinerary-based access control model that considers host visit history of a mobile 

task along with its future migration behavior without the option of negotiations. Unlike [61], 



here, we use Control Tree Logic to specify access control policies and Host Transition Graph to 

verify the itinerary against the access control policy. 

This paper extends [63] with the following additional contributions: 

1. We present three new algorithms to verify the access request from a mobile task against 

the combination of multiple access control policies of the host, which adds flexibility to 

the proposed model. 

2. We introduced an algorithm to create a Host Transition Graph for a given history. 

3. We enhanced our access control model with four new satisfaction relationships to verify 

an itinerary of a mobile task against an access control policy at the host. 

3. Access control model 

In this section we define the model we use in our workflow system that provides a basis for our 

access control mechanism.  

3.1. Resource model 

Our resource model consists of a set of mobile tasks and a set of hosts that these tasks can be 

executed on. Our model is flexible, i.e. it allows hosts to be geographically spread across 

multiple locations. It also does not require them to run a particular, or even the same operating 

system. Our model is agnostic to the programming language used by the mobile tasks. Because 

our model is not operating system- or language-specific, proposed approach can be applied to a 

wide range of distributed workflow systems. 



As shown on Figure 3, a mobile X consists of computation and itinerary components, where 

specification of the computational behavior of a mobile task is separated from the specification 

of its navigational behavior. 

 Computation Component. The computation specification can be written in a traditional 

programming language such as Java. 

 Itinerary Component. An itinerary includes visit history and residue itinerary. The visit 

history records all the hosts that this mobile task has visited, and the residue itinerary is a 

host pattern to be visited in the future. The scheduler considers both the visit history and 

residue itinerary, and interacts with access control systems of hosts to schedule which 

host H to visit next. Once the access request to H is granted, X will migrate to H, and the 

residue itinerary and visit history will be updated accordingly. 

 

Figure 3: Architecture for mobile task migration and execution. 

  



3.2. Application Model 

Each host is equipped with a mobile task virtual machine to support the secure execution of 

mobile tasks. The virtual machine consists of the following two components. 

 Runtime Execution System (RES). The RES will execute the computation task specified in 

the computation component of a mobile task. 

 Access Control System (ACS). The ACS of a host contains itinerary Access Control 

Policy (ACP) and computation ACP that are used to control the host visit and resource 

access privileges of mobile tasks. When a host A receives a visit request from a mobile 

task X, X’s itinerary will be verified against A’s itinerary ACP. X may visit A only if X’s 

itinerary satisfies A’s itinerary ACP. After X migrates to A, A’s computation Runtime 

Verification System (RVS) will verify at runtime if X’s computation model satisfies host 

A’s computation ACP. If it does, then mobile task X can execute its computation 

specification; otherwise, the mobile task X’s computation specification will not be 

executed. 

In this paper we concentrate on mobile task scheduling and itinerary access control. Since the 

computation task of a mobile task can be developed using general purpose programming 

language, software verification techniques [64-66] can be applied to handle computation access 

control.  

We now define the problem as follows. Given a mobile task X with its visit history history 

and residue itinerary residue, and a host h0 that X is trying to access, grant X access to h0 if 

and only if its host transition graph satisfies access control policy of h0.  



4. Mobile Task Scheduling 

In this paper, we consider a simple form of itinerary which has the following BNF syntax. 

i ::= s | i1; i2 | i1#i2 | i1 || i2 

where s represents a single host visit and ;, #, and || are sequential, nondeterministic choice, and 

parallel operators, respectively. We use the interleaving semantics for the parallel operator.  

Given an itinerary I, Algorithm 1 calculates the set of hosts to be visited next and the 

corresponding residue itineraries. It is a migration set because there maybe multiple hosts that 

can be visited following the specification of an itinerary. Each item in the returned set is a pair P 

= (sk, ik) where sk, referred to as P.h, is a host that a mobile task may visit next, and ik, referred 

to as P.r is the residue itinerary if the mobile task chooses to visit sk next. The algorithm works 

as follows. If the itinerary I is s (Lines 1-2), the host to be visited next is s. If I has the top level 

pattern i1; i2, the algorithm first obtains the set M from i1. For each item in M that is not (_, Ø) 

where _ is wildcard, i2 is appended to the item’s residue itinerary (Lines 6-7); otherwise, the 

residue itinerary becomes i2 in the item (Line 9).  

If I is i1#i2 (Lines 12-13), the migration set is the disjunction of those of i1 and i2. Finally, if I is i1 

|| i2, the migration sets for both i1 and i2 need to be considered. The residue itineraries of i1 are 

interleaved with i2, and the residue itineraries of i2 are interleaved with i1. 
The procedure Schedule(), shown in Algorithm 2, is used to schedule which host to visit next for 

a mobile task. The parameter history, initially Ø, is the list of hosts that the mobile task has 

visited. 



 

The parameter residue, initially the full itinerary I, contains the hosts to be visited. The parameter 

stack, initially empty, is a stack with each item recording other possible route at each traversal 

step. At line 1 function Migration() is called to compute the migration set M. The loop between 

lines 2-23 guides the task based on M and stack. The loop terminates when either the mobile 

task has successfully traversed its full itinerary, or has exhausted all alternative routes but still 

cannot proceed as required. 

The while loop between lines 3-16 tries to navigate the mobile task based on the migration set M. 

A pair (next, R) is removed from M where next is the host to be visited next, and R is the residue 

after next is visited. An access request to host next is made at Line 9. The algorithm for host 

access control is discussed in Section 5. If the access request is denied, another pair will be 

selected from M. Otherwise the mobile task will visit next and continue its scheduling based on 

its new history and residue itinerary (Lines 10-15). Note that at Line 11 we save M in stack for 



the purpose of backtracking in the future. This is because the access of host next does not 

guarantee the mobile task can visit the hosts specified in R successfully. It is possible that the 

mobile task has to backtrack to choose a different route. M becomes empty when accesses to all 

potential next hosts are denied. In this case, the mobile task will backtrack. If stack is empty 

(Lines 17-19), the mobile task has exhausted all possible routes that conform to the mobile task’s 

residue itinerary, but still cannot fulfill the requirement of the itinerary. 

 

Otherwise, the mobile task will pop a set to replace M and backtrack to the last host in its 

history (Lines 20-22).  

  



5. Itinerary-Based Access Control 

In this section we discuss approaches for itinerary-based host access control. We first define the 

syntax of the access control policy in Section 5.1. Then we explain its semantics using Host 

Transition Graph in Section 5.2. Finally in Section 5.3, we present efficient algorithms to verify 

mobile task’s itinerary against the access control policy.  

5.1. Access Control Policy 

We consider the Computational Tree Logic (CTL) as the basis for specifying itinerary-based 

Access Control Policies (ACP). In CTL, formulas are composed of path quantifiers that are used 

to describe the branching structure, and temporal operators that are used to describe properties 

of a path. There are two path quantifiers: A (for all paths) and E (for some path); and four 

temporal operators: X(next time), F(eventually), G(always), U(until). Formally, the formulas that 

describe the future behaviors of ACP are defined by the following grammar. 

μ ::= h | EXμ | μEUμ      (1) 

where h is a host. 

Note that the unary temporal connective EX (possibly-next), and the binary temporal connective 

EU (possibly-until) can be used to define other connectives: 

– possibly-eventually: EFμ for trueEUμ; 

– Inevitably-next: AXμ for ￢EX￢μ; 

– Inevitably-always: AFμ for ￢EF￢μ 



In order to reason about past-time behaviors, we introduce the following past temporal operators: 

Y (in the previous time instance), P (sometime in the past), H (always in the past), S (since). 

Note that in our context, the visit history has only one path without any branches, so the past 

temporal operators can only be combined with A. The past-time behaviors is defined by the 

following grammar. 

Definition 2 [Access Control Policy – Past Behaviors] 

v  ::= h | AYv  | vASv         (2) 

Similarly, the unary temporal connective AY (previous), and the binary temporal connective AS 

(since) can be used to define other connectives: 

– past: APv for trueASv; 

– Inevitably-past: AHv for ￢AP￢v 

Finally, the access control policy is defined with the following syntax. 

Definition 3 [Access Control Policy] 

  ::=  μ | v |  ∨   | ￢       (3) 

Example 5.1 The access control policies described informally in Example 1.1 can be formally 

specified using ACP formulas as follows. 

1. APe: a mobile task can visit current host only if it has visited e. 

2. APe ∧ AP f: a mobile task can visit current host only if it has visited both e and f in any 

order. 



3. AP(f ∧ APe): a mobile task can visit current host only if it has visited e first and then 

visited f sometime later (possibly visit other hosts in between). 

4. AP(b ∧ AYa) ∧ EF(e → AFf): a mobile task can visit current host h only if it has visited 

a and then b in the past without visiting any other hosts in between, and in the future if 

the mobile task visits e then it will also visit f later eventually. 

5.2. Host Transition Graph 

We define the semantics of access control policy with respect to a Host Transition Graph (HTG), 

defined as a tuple G = <V, T, λ, c> where V is a set of vertices, T ∈  H × H is a set of transitions,  

λ is a function that labels each vertex with a set of host control policy formulas, and c is the to-

be-visited-next vertex. In order to link different components during HTG construction, we define 

two sets START and END. Given a subgraph G′ ⊆ G, s ∈  START (G′) iff s ∈  G′ and ∃ (t ∉ G′ ∧  

(t → s) ∈  G), and s ∈  END(G′) iff s ∈  G′ and ∃ (t ∉ G′ ∧  (s → t) ∈  G). 

Algorithm 3 shows the pseudo-code on how to construct a HTG based on three inputs: 

history are the hosts that have been visited, h0 is the host to be visited next, and residue is 

the residue itinerary. The algorithm first creates the HTGs GH and GR for history and 

residue (Lines 1-2), then links the two components through the to-be-visited-next vertex v0 

that is labeled with the set {h0}. 

 



The algorithm to create HTG for history is presented in Algorithm 4. A linear graph is generated 

with each vertex labeled by a singleton set. Algorithm 5 shows how to construct the HTG 

component for residue. It is straight forward when residue is a single host (Lines 1-3). In 

case residue is sequential (Lines 4-9), we first construct HTGs G1 and G2 for its component i1 

and i2, then the edges link the end set of G1 and the start set of G2 is added. Note that (END(G1) 

→ START (G2)) should be interpreted as Cartesian product with direction. For example, if 

END(G1) = {s1, s2} and START(G2) = {s3, s4}, the following four edges are added: s1 → s3, s2 → 

s3, s1 → s4, s2 → s4. In the case of non-deterministic choice, the start and end sets are the union 

of its components. Finally, when residue is an interleaving itinerary, we need

 

to consider all the combinations. Each pair of edge s1 → s2 and t1 → t2 in different components 

result in Cartesian product s1 → s2 × t1 → t2, which denote the following edges: s1 → s2 → t1 → 

t2,  t1 → t2 → s1 → s2, s1 → t1 → s2 → t2, t1 → s1 → t2 → s2, t1 → s1 → s2 → t2, s1 → t1 → t2 → 

s2. The start (end) set of the graph needs to be re-calculated, since the start (end) point of a 

component may no longer be the start (end) point of the resulted HTG. The algorithm to 

calculate the new start (end) set is omitted here. 

Example 5.2 Assume that a mobile task who tries to access host h3 has visited hosts h1, h2 in that 

order, and the residue itinerary is (h4||h5); (h6#h7). The host transition graph is shown in Figure 4, 

where the visit history consists of nodes marked with set h1 or h2, the to-be-visited-next node is 



marked with set h3, and the residue consists of nodes marked with sets h4 or h5. The semantics of 

access control policy can be explained on host transition graphs. When a mobile task X requests 

for access at host h0, the itinerary tuple <history, h0, residue> of X will be used to construct an 

HTG GX. Note that initially each vertex in GX is labeled with a singleton set and GX.c is labeled 

with {h0}. It is also possible that multiple vertices in GX are labeled with the same host name. 

 

The set of access control policy formulas labeled at each vertex will be changed in the algorithms 

introduced in Section 5.3. 



 

Figure 4: A host transition graph. 

The definition on whether G satisfies the access control policy formula  is defined as follows. 

Definition 4 [Satisfaction relationship |=] Let v0 be a vertex in GX created from the itinerary of 

mobile task X, and  be an access control policy. The relation v0 |=  is defined inductively as 

follows: 

– v0 |= s iff s ∈ λ(v0).  

– v0 |= ￢ iff not v0 |= . 

– v0 |=  1 ∨  2 iff v0 |=  1 or v0 |=  2. 

– v0 |= AX iff for all vertices v such that (v0 → v) ∈ G, v |= . 

– v0 |= EX iff for some vertices v such that (v0 → h) ∈ G, v |= . 

– v0 |= AF iff for all paths (v0, v1, . . .), ∃i[i ≥ 0 ∧ vi |= p]. 

– v0 |= EF iff for some paths (v0, v1, . . .), ∃i[i ≥ 0 ∧ vi |= p]. 

– v0 |= 1AU2 iff for all paths (v0, v1, . . .), ∃i[i ≥ 0 ∧ vi |= 2 ∧ ∀j[0 ≤ j < i → vi |= 1]] 

– v0 |= 1EU2 iff for some paths (v0, v1, . . .), ∃i[i ≥ 0 ∧ vi |= 2 ∧ ∀j[0 ≤ j < i → vi |= 1]] 

– v0 |= AY iff for the vertex v such that (v, v0) ∈ R, v |= . 

– v0 |= AP iff for the path (. . . , v1, v0), ∃i[i ≥ 0] ∧ vi |= . 

– v0 |= 1AS2 iff for the path (. . . , v1, v0), ∃i[i ≥ 0 ∧ vi |= 2 ∧ ∀j[0 ≤ j < i → vi |= 1]] 

The mobile task X can access host h with control policy  iff G.c |= . 



5.3 Access Control Verification 

In this section we discuss the algorithms to verify a host transition graph G submitted by a 

mobile task against an access control policy  at a host h0. We consider only EX,EU,AP,AS as 

other operators can be defined from these basic connectives. In the proposed algorithm we 

proceed inductively on the structure of . The subformulas of  is defined as follows. 

Definition 5 [Subformulas] The set Sub() of subformulas of  is defined inductively: 

Sub(h) = {h}if h is a host 

Sub(1 ∨  2) = {1 ∨  2} ∪  Sub(1) ∪  Sub(2) 

 Sub(￢) = {￢} ∪  Sub() 

Sub(EX) = {EX} ∪  Sub() 

Sub(1EU2) = {1EU2} ∪  Sub(1) ∪  Sub(2) 

Sub(AY) = {AY} ∪  Sub() 

Sub(1AS2) = {1AS2} ∪  Sub(1) ∪  Sub(2) 

OrderedSub() is a queue with the subformulas of  such that a formula appears only after all its 

subformulas. That is, if 1 ∈  Sub() and 2 ∈  Sub(1), then 2 precedes 1 in OrderedSub(). 

Definition 6 [Characteristic Region] Given a (sub) formula , the characteristic region []G of 

 in G is the set of all the vertices that satisfy . Let λ (v) be the set of formulas that are labeled in 

v, then v ∈  []G ↔  ∈  λ(v). 



In order to check if the HTG G satisfies the access control policy  at host h0, we compute the 

characteristic region on ’s ordered subformulas inductively, as shown in Algorithm 6. The for 

loop (Lines 1-15) iterates over all the subformulas of  and calls functions (Algorithms 7-10) that 

handle particular formula types. After the loop, each vertex v is labeled by a set λ(v) of 

subformulas of  that satisfies v. Note that the policy  is its own subformula and the last item in 

OrderedSub(). 

 

Finally (Line 16), if the input policy  is a member of λ(G.c), the host h0 should grant access to 

the mobile task who submits the request; otherwise the h0 will reject the request. This is because 

G.c |=  iff h0 ∈  []G. The algorithms for AccessControlAY and AccessControlAS are omitted 

since they are relative simple, due to the fact that G is a linear structure. 

Algorithm 7 shows the function to check a formula with format 1 ∨  2. Since 1 and 2 are 

subformulas of 1 ∨  2, they must have been checked before. The algorithm iterates all the 



vertices v ∈  G. If either  or 2 is a member of λ(v), 1 ∨  2 becomes a member as well. 

Similarly, Algorithm 8 shows how to check formulas with Boolean connective ￢. 

Algorithm 9 shows the function to check formulas with format EX1. For each v ∈  G, if one of 

its successors v′ has 1 ∈  λ(v′), then EX1 ∈  λ(v) due to the semantics of EX. 

Algorithm 10 shows how to check formulas of the form 1EU2. The basic idea is to first find 

out all the hosts v such that 2 ∈  λ(v). Then starting from these hosts the algorithm does a 

backward traversal on all the hosts v′ such that 1 ∈  λ(v′). For such hosts, we have EU2 ∈  

λ(v′). The traversal stops on a path whenever 1 ∉ λ(v). In order to do so we need help of a set α 

and a stack β that are initially empty (line 1). 

 



 

For each v ∈  G, if 2 ∈  v and v has not been visited before, it is added to both α and β (lines 3-5). 

The while loop (lines 6-13) repeats until the stack becomes empty. It first pops β to get v′ and 

append λ(v′) with 1EU2. Then continues backward traversal from v′. Note function 

PrevMigrationSet(v′) returns all the hosts v′′ such that v′′ → v′ is an edge of G. 

Theorem 1 Let  be an access control policy with ρ symbols, and let G be a host transition 

graph with n hosts and m transitions. Given the input  and G, Algorithm 6 solves the access 

control problem in O(ρ ×(n +m)) time, and requires O(ρ × n) space. 

Example 5.3 We now apply a verification policy from Example 1.1 to a specific host transition 

graph. Consider a mobile task A whose host transition graph GA is shown in Figure 5. A is 

requesting to access host h with the policy 

APe   



which is a formal specification of the policy in the first application from Example 1.1 that states 

that a mobile task can visit current host h only after visiting host e (DTI analysis application). 

Host h will grant X access if the following relationship is satisfied: 

h |= APe 

 

Figure 5. Host transition graph GA 

According to Definition 4, such policy is satisfied if and only if there exists a path (…, v1, v0), 

such that for some i vi |=e. From Figure 5, we know that there exists a path (d, e, h), and if i=1, 

then v1 = e, and e |= e. Therefore, the above policy is satisfied by GA and access is granted to X. 

The other three policies in Example 1.1 can be specified as  APe ∧ APf, AP (e∧APf), AP 

(a∧APb) ∧ AF(e∧ AFf), respectively. Host h will not grant X access for the following reasons: 

 APe ∧ APf and AP (e∧APf): no host f has been visited in the past. 

 AP (a∧APb) ∧ AF(e∧ AFf): neither host a or b has been visited in the past, and there is 

no host e  to be visited in the future. 

6 Conclusions and Future Work 

We have presented an itinerary-based access control model to address the need for secure data-

intensive distributed scientific workflows. To support secure migration, our proposed model not 

only considers the host visit history of a mobile task but also its future migration behavior that is 

prescribed by the residue itinerary. In addition, we proposed a mobile task scheduling algorithm 



with the salient feature of supporting backtracking to dynamically schedule a successful route of 

hosts if it exists. 

Several directions can be pursued in the future work. First, itinerary language can be extended 

with additional constructs such as cloning and loop. Second, we will extend our access control 

model to control fine-grained access to scientific datasets, such as scientific XML datasets and 

data streams, where the issue is to control who can access which datasets or data elements. Third, 

we will investigate the access control issues in collaborative scientific workflows, in which a 

consortium can be formed by several member institutions for a collaborative scientific study. In 

this context, a collaborative scientific workflow might integrate various services, applications, 

tools, and datasets that are contributed by different member institutions of the consortium. A 

consortium based access control system is needed in order to enforce the secure sharing policies 

that are agreed by all the parties. Such an access control system will be used to control which 

user, which institution, and which workflow, can access which service, which dataset, and/or 

which data elements. Finally, we will develop system architecture to support mobile tasks in 

data-intensive scientific workflows, and will implement our access control model to support 

secure migration of these tasks.  
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