
Assertion Guided Symbolic Execution
of Multithreaded Programs

Shengjian Guo
Department of ECE

Virginia Tech

Markus Kusano
Department of ECE

Virginia Tech

Chao Wang
Department of ECE

Virginia Tech

Zijiang Yang
Department of CS

Western Michigan University

Aarti Gupta
Department of CS

Princeton University

ABSTRACT
Symbolic execution has emerged as a powerful technique for sys-
tematic testing of sequential and multithreaded programs.However,
its application is limited by the high computational cost ofcov-
ering all feasible intra-thread paths and inter-thread interleavings.
We propose a new assertion guided pruning framework that identi-
fies executions guaranteed not to lead to an error state and removes
them during symbolic execution. By summarizing the reasonswhy
previously explored executions cannot reach an error stateand us-
ing the information to prune redundant executions in the future,
we can soundly reduce the search space exponentially. We also
use static concurrent program slicing and heuristic minimization of
symbolic constraints to further reduce the computational overhead.
We have implemented our method in theCloud9symbolic execu-
tion tool and evaluated it on a large set of multithreaded C/C++
programs. Our experiments show that the new method can reduce
the overall computational cost significantly.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs; D.2.4 [Software Engineer-
ing]: Software/Program Verification

Keywords
Symbolic execution, test generation, concurrency, partial order re-
duction, weakest precondition

1. INTRODUCTION
The past decade has seen exciting developments on symbolic

execution of both sequential [19, 44, 49, 8] and concurrent pro-
grams [42, 39, 14, 5]. However, existing methods are still limited
in their capability of mitigating thestate space explosion. That is,
the number of paths in each thread may be exponential to the num-
ber of branch conditions, and the number of thread interleavings
may be exponential to the number of concurrent operations. Many
techniques have been proposed to address this problem, including
the use of function summaries [18], interpolation [34, 23, 62], static

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ESEC-FSE’15,August 31–September 4, Bergamo, Italy.
Copyright 2015 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Summary Executions
Computing Pruning

no no

yesyes

Symbolic
Execution

(in, sch′) (in′, sch)

(in, sch)

Flip b-PP? EndFlip i-PP?

Initial
Slicing
Static

Test Input

Figure 1. Our assertion guided redundancy pruning framework.

analysis [7], and coverage metrics [14]. In this paper, we propose
a new and complementary method, which is designed specifically
for pruning redundant executions in multithreaded programs where
the properties under verification are expressed as assertions.

Our assertion guidedsymbolic execution framework focuses on
identifying and eliminating executions that are guaranteed to be re-
dundant for checking assertions. Assertions can be used to model
a wide variety of interesting properties, ranging from logic and nu-
merical errors, to memory safety and concurrency errors, and has
been the focus of many software verification projects. When seman-
tic errors of the program are modeled as simple code reachability,
i.e., the reachability of a bad state guarded by the assertion condi-
tion, we can concentrate on exploring potentially failure-inducing
executions as opposed to all feasible executions of the program.
This is particularly attractive in the presence ofconcurrency, since
it becomes possible to uniformly handle the exploration of both
intra-thread execution paths and inter-thread interleavings leading
to a simple but more powerful analysis algorithm.

The overall flow of our new method is illustrated in Figure 1:
the shaded block represents our addition and the remainder illus-
trates the classic symbolic execution procedure for multithreaded
programs [42]. Specifically, given a programP and some symbolic
input variables, the procedure explores the feasible executions of
the program systematically, e.g., in a depth-first search order.

Starting with an initial test(in, sch) consisting of program in-
puts and thread schedule, the method first produces a concrete exe-
cution followed by a symbolic execution. Then, it tries to generate a
new test by flipping a prior decision at either an thread interleaving
pivot point (i-PP) or a local branch pivot point (b-PP). The new test
is denoted by either(in, sch ′) or (in ′, sch), depending on whether
changes are made to the thread schedule (sch ′) or data input (in ′),
respectively. The iterative procedure terminates when no new test
can be generated. State explosion occurs because it has to explore
the combined space of data inputs and thread schedules whereeach

individual execution may be unique, i.e., it leads to a different pro-
gram state.

We extend the baseline symbolic execution procedure by adding
a new constraint-based pruning block shown in Figure 1. Our method
centers around the idea of summarizing the reasons why the bad
state is unreachable via previously explored executions, and lever-
aging such information to avoid similarly futile executions. Specif-
ically, at each global control locationn, we use a predicate sum-
mary (PS) constraint to capture theweakest preconditions[13] of
the assertion condition along all explored executions starting from
n. Therefore,PS[n] captures the reason why prior executions are
not able to violate the assertion. Whenever symbolic staten is
reached again through another execution path, we check if the new
path conditionis subsumed byPS[n]. If so, we can safely back-
track fromn since extending the execution beyondn would never
lead to a bad state.

Our method for pruning redundant executions can be viewed as
a way of systematically exploring an abstract search space defined
by a set of predicates [4] which, in this case, are extracted from
the assertion. Although the concrete search space may be arbitrar-
ily large, the abstract search space can be significantly smaller. In
this sense, our method is similar topredicate abstraction[21] in
model checking except that the latter requires constructing a pri-
ori a finite-state model from the actual software code whereas our
method directly works on the software code while leveragingthe
predicates to eliminate redundant executions.

Our method is complementary to standard partial order reduction
(POR) techniques in that it relies on property-specific information
to reduce the state space. But, POR techniques typically do not
target particular states. We will show through experimentsthat our
new method can indeed eliminate a different class of redundant ex-
ecutions from those eliminated by state-of-the-art POR techniques,
such as dynamic partial order reduction (DPOR) [16]. Towardthis
end, since DPOR is an elegant but delicate algorithm that caneas-
ily be made unsound without taking great care in the implementa-
tion [60], a main technical challenge in our work is to make sure
our new pruning method does not interfere with DPOR or make it
less effective.

Our method differs from the prior works by Wachter et al. [52],
and Chu and Jaffar [9], which extended the well-known framework
of lazy abstraction with interpolants by McMillan [34] to multi-
threaded programs. One main difference is that our computation
of predicate summaries is significantly more general than existing
methods, especially at the thread interleaving pivot points, where
we merge summaries from multiple execution paths to form a com-
bined summary. Another main difference is in the integration of
property specific pruning with partial order reduction. Both exist-
ing methods implemented a variant of the symbolic partial order
reduction algorithm by Kahlon et al. [26] whereas we integrate our
predicate summary-based pruning method with the more scalable
DPOR algorithm.

We have implemented our method inCloud9 [11], a state-of-
the-art symbolic execution tool built upon LLVM and KLEE [8],
to handle multithreaded C/C++ programs. We have implemented
an inter-procedural static program slicing algorithm [22], executed
prior to symbolic execution, to further reduce the search space. We
have also implemented heuristic based minimizations of predicate
summary constraints during symbolic execution to reduce the com-
putational overhead. In both cases, the main technical challenge is
to ensure the overall algorithm remains sound in the presence of
such optimizations. We have conducted experiments on a set of
standard multithreaded C/C++ applications. Our results show that
the new method can reduce the number of explored executions as
well as the overall run time significantly.

To sum up, this paper makes the following contributions:

• We propose an assertion guided symbolic execution method
to identify and eliminate redundant executions in multithreaded
programs to reduce the overall computational cost.

• We implement our method in a state-of-the-art symbolic exe-
cution tool while ensuring it does not interfere with the pop-
ular DPOR algorithm or make it less effective.

• We demonstrate through experiments that our new method
can indeed achieve a significant performance improvement
on public benchmarks.

The remainder of this paper is organized as follows. First, we
illustrate our new method through examples in Section 2, then es-
tablish the notation and review the baseline symbolic execution al-
gorithm in Section 3. We present our method for summarizing ex-
plored executions in Section 4 and pruning redundant executions
in Section 5. We present optimization techniques in Section6 and
experimental results in Section 7. We review related work inSec-
tion 8 and finally give our conclusions in Section 9.

2. MOTIVATING EXAMPLES
In this section, we illustrate the high-level ideas in our method

using examples. Consider the example in Figure 2, which has two
threadsT1 andT2, a global variablex, and two local variablesa
andb. The initial value ofx is a symbolic input which can be any
integer value. We want to check if the assertion fails and, ifso,
compute a failure-inducing test input.

x = symbolic(V);
if(x>10) return;

----[T1]-----------------------------[T2]----
x = 10; a = x;
x = 20; b = x;

assert(a<=b)

(x ≤ 10)

a = x;

a = x;

n1

n2

n4

n7

n5

n3

n6

n8

n9

a = x;

x = 20;

x = 10;

x = 10;

x = 20;b = x;

b = x;

b = x;

x = 10;

x = 20;

run#1

run#2

run#3

run#4

run#6

(a ≤ b)

Run 1:if(x<=10)x=10;x=20;a=x;b=x; leads to(a=20,b=20).
Run 2:if(x<=10)x=10;a=x;x=20;b=x; leads to(a=10,b=20).
Run 3:if(x<=10)x=10;a=x;b=x;x=20; leads to(a=10,b=10).
Run 4:if(x<=10)a=x;x=10;x=20;b=x; leads to(a=V ,b=20).
Run 5:if(x<=10)a=x;x=10;b=x;x=20; leads to(a=V ,b=10).
Run 6:if(x<=10)a=x;b=x;x=10;x=20; leads to(a=V ,b=V).

a = x;n1

n2

n4

n3

n6

b = x;

x = 10;

x = 20;

n5

n7 n7 n7 n8 n8

x = 10;

n8

x = 10;

n5

a = x;

a = x;

b = x;
b = x;x = 20;

b = x;b = x;

x = 20;

(x ≤ 10)

x = 20;
b = x;

x = 20; x = 20;
n9

(a ≤ b)

n9 n9 n9 n9 n9

(a ≤ b) (a ≤ b) (a ≤ b) (a ≤ b) (a ≤ b)

Figure 2. Our new method only needs to explore one full run and
four partial runs, as opposed to all six runs by existing methods.

The program has six distinct executions, each leading to a differ-
ent final state defined by the values ofa andb. According to the
theory of partial order reduction [16], they belong to six different
equivalence classes [32], as each has a different final state. How-
ever, exploring all six executions is not necessary for the purpose
of checking the assertion, since some of these executions share the
same reason why they cannot reach the bad state. Our new method
can reduce the exploration from six executions to one full execu-
tion together with four partial executions, as illustratedby the red
dotted lines in Figure 2.

Our method first extracts a set of predicates by computing the
weakest preconditions of the assertion condition along theexplored
executions. These predicates are then combined at the mergepoints
(in the graph) to form a succinct summary that captures the reason
why the bad state has not been reached via executions starting from
these merge points. During subsequent symbolic execution itera-
tions, our method needs to explore only those executions that have
not be covered by these predicates, thereby leading to a sound re-
duction of the search space.

Now, we provide a step-by-step explanation of how our method
works on this example:

• Run 1 is the first and only execution fully explored by our
new method, which goes through nodesn1, n2, n4, n7 in the
graph in Figure 2 before executingb=x;if(a<=b). Since it
does not violation the assertion, we summarize the reason at
n9 andn7, respectively, as follows:PS[n9] = (a ≤ b) and
PS[n7] = (a ≤ x). That is, as long as(a ≤ x) holds at node
n7, it would be impossible for the execution to reach the bad
state.

• Run 2 goes through nodesn1, n2, n5 before reachingn7,
where its new path condition ispcon [n7] = (V ≤ 10) and
symbolic memory isM =(a=10,x=20). Sincepcon [n7] →
PS[n7] underM, meaning the set of reachable states falls in-
sidePS[n7], continuing the current execution fromn7 would
never lead to a bad state. Therefore, we skip the remainder
of this execution.

• Run 3 goes through nodesn1, n2, n5, n8 before reaching
n9, where its path condition again falls withinPS[n9]. We
skip the remainder of this execution and update the summary
atn8 andn5 as follows:PS[n8] = (a ≤ b) andPS[n5] =
wp[n7] ∧ wp[n8] = (a ≤ 20) ∧ (a ≤ x). By conjoining
the weakest preconditions along both interleavingsn5 → n7

andn5 → n8, we capture the summary common to both
interleavings.

• Run 4 goes through nodesn1, n3 before reachingn5, with
the new path conditionpcon [n5] = (V ≤ 10) and symbolic
memoryM =(a=V,x=10). Sincepcon [n5] → PS[n5] un-
derM, we skip the remainder of this execution, which would
have led to Run 4 and Run 5 if it is allowed to continue.

• Run 6 goes through nodesn1, n3, n6 before reachingn8,
where the new path condition falls withinPS[n8]. Therefore,
we skip the remainder of this execution.

• At this moment, our method has completed the exploration.

Note that weconjoin weakest preconditions from different in-
terleavings at i-PP nodes such asn5, but union weakest precon-
ditions from different thread-local paths at b-PP nodes (see Sec-
tion 4.) Also note that the amount of reduction achieved by our
method depends on the program structure as well as the location of
the assertion. For example, if we changeif(x>10) to if(x>11),
our method would have to explore Run 5 instead of skipping it be-
causepcon [n5] = (V ≤ 11) would no longer be subsumed by
PS[n5] = (V ≤ 10).

x = y = z = 1;

---[T1]--------------[T2]---
a = x; x = 10;

assert(a>0)

---[T1]-------------[T3]----
b = y; y = 10;

assert(b>0)

---[T1]-------------[T4]----
c = z; z = 10;

assert(c>0)

x = y = z = 1;

(b > 0)

(a > 0)

(c > 0)

* Run 1: a=x;x=10;if(a>0);b=y;y=10;if(b>0);c=z;z=10;if(c>0).
* Run 2: a=x;x=10;if(a>0);b=y;y=10;if(b>0);z=10;c=z;if(c>0).

Run 3:a=x;x=10;if(a>0);y=10;b=y;if(b>0);c=z;z=10;if(c>0).
* Run 4: a=x;x=10;if(a>0);y=10;b=y;if(b>0);z=10;c=z;if(c>0).
* Run 5: x=10;a=x;if(a>0);b=y;y=10;if(b>0);c=z;z=10;if(c>0).

Run 6:x=10;a=x;if(a>0);b=y;y=10;if(b>0);z=10;c=z;if(c>0).
Run 7:x=10;a=x;if(a>0);y=10;b=y;if(b>0);c=z;z=10;if(c>0).
Run 8:x=10;a=x;if(a>0);y=10;b=y;if(b>0);z=10;c=z;if(c>0).

Figure 3. Our new method can reduce the number of executions
from 2k down to(k + 1).

The running example demonstrates that our method differs from
standard partial order reduction techniques such as DPOR [16] which
could not prune away any of the six interleavings. Furthermore,
our method also differs from the stateful state space exploration
techniques commonly used in model checking, which record the
forward reachable states explicitly during exploration toprevent
visiting them again. Such methods would not be effective forthe
example in Figure 2 either because each of the six executionsleads
to a distinct state. In contrast, our new method can achieve asig-
nificant reduction due to its use of property specific information as
guidance. In this sense, our new method is aproperty directedre-
duction, whereas the aforementioned POR techniques areproperty
agnostic.

However, it can be tricky to combine our pruning method with
the state-of-the-art DPOR algorithm. The main advantage ofDPOR
over static POR techniques lies in its dynamic update of backtrack
sets, which uses runtime information to compute the dependency
relation between shared variable accesses. Without takingany ad-
ditional measure, pruning redundant executions may interfere with
the dynamic update of backtrack sets in DPOR. Consider run 4 in
Figure 2 as an example. If the execution is allowed to complete,
whenb=x is executed, threadT2 will be added to the backtrack set
of noden3. However, if run 4 is terminated pre-maturely at node
n5 due to our predicate summary-based pruning, threadT2 would
not be added to the backtrack set of noden3 sinceb=x has been
skipped. As a result, the DPOR algorithm would not explore run
6. Therefore, integrating DPOR with property specific pruning is
a challenging task. We present our solution to this problem in Sec-
tion 5.2.

Our computation of predicate summaries at the thread interleav-
ing merge pointn5 in Figure 2 shows that it is different from the
prior work by Wachter et al. [52], and Chu and Jaffar [9]. Specifi-
cally, we combine the summaries from all outgoing edges by con-
joining them together, whereas existing methods do not merge in-
terpolants at these i-PP nodes. Furthermore, our method differs
from these existing methods in that they both implemented a sym-
bolic POR whereas our method is integrated with the more scalable
DPOR algorithm.

Now, we use the example in Figure 3 to demonstrate that our
new method has the potential to achieve an exponential reduction.
In this contrived example, the interleaving of instructions in{a=x,
x=10} is completely independent from{b=y, y=10} and{c=z,
z=10}. Exploring all feasible executions results in23 runs, each

of which leads to a different final state. However, based on the ab-
stract search space induced by the assertions, our new method can
reduce the exploration of eight runs down to one full run together
with three partial runs, as marked by the ‘*’ symbol in Figure3.
To further generalize the example, a program withk independent
code segments would have2k distinct interleavings, which can be
reduced by our method to(k + 1) executions.

3. PRELIMINARIES
We establish the notation and review the baseline symbolic exe-

cution algorithm for multithreaded programs in this section.

3.1 Multithreaded Programs
For ease of presentation, we consider a simple imperative lan-

guage with integer variables, assignments, and if-else statements
only. We elide the details for handling of complex language fea-
tures such as pointers, recursion, and system calls in symbolic ex-
ecution since these are orthogonal issues addressed previously by
many symbolic execution tools [8, 11]. A multithreaded program
P consists of a set of threads{T1 . . . Tm}, where each thread,Ti,
is a sequential program. Threads share a set ofglobal variables.
Each thread also has a set oflocal variables.

Let st be an instruction in a thread with the thread indextid.
Let evente = 〈tid, l, st, l′〉 be an execution instance ofst, where
l and l′ are locations in the thread before and after executing the
instance ofst. If the same instruction is executed more than once,
e.g., when it is in a loop or a recursive function call, we makecopies
of l, st, l′ to make them unique for each event. Conceptually, this
corresponds to unrolling loops and recursive calls. Aglobal control
stateof the multithreaded program is a tuples = 〈l1, . . . , lm〉,
where eachli is a location inTi. We regard a global control state
as anabstract state implicitly containing all concrete states that
have the same thread locations but potentially different values of
the local and global variables.

Without loss of generality, we assume that every assertion of the
form assert(c) is transformed toif(!c)abort. We use a spe-
cial eventabort to denote faulty program termination andhalt to
denote normal program termination. Letvl denote a local variable,
vg denote a global variable,cond l denote a local condition, and
expl denote an local expression. In addition toabort andhalt, each
instructionst in an event may have one of the following types:

• α-operation, which is a local assignmentvl := expl;
• β-operation, which is a local branchassume(cond l);
• γ-operation, which is a global operation defined as follows:

– γ-I is a global writevg := expl or readvl := vg ;
– γ-II is a thread synchronization operations.

For eachif(c)-else statement, we useassume(c) to denote
the execution of then-branch, andassume(¬c) to denote the exe-
cution of else-branch. Without loss of generality, we assume that
all if-else conditions use only local variables or local copies of
global variables [17]. For thread synchronizations, we focus on
mutex locks and condition variables since they are frequently used
in mainstream multithreaded programming environments such as
C, C++, and Java. Specifically, we consider the following types of
γ-II operations: thread creation, thread join, lock, unlock, signal,
and wait. If other thread synchronizations or blocking operations
are used they can be modeled similarly asγ-II events.

During the execution of the program,γ-operations are the thread
interleaving points whereasβ-operations are thread-local branch-
ing points. Both contribute to the path and interleaving explosion.
In contrast,α-operations are local and thus invisible to other threads;
they do not contribute directly to the path and interleavingexplo-
sion.

A concreteexecution of the multithreaded program is charac-
terized byπ = (in, sch), where in is the data input andsch

a1: a=x++;
a2: if(a==0) A1;

else A1;
a3: a=y++;
a4: if(a==0) A2;

else A2;
a5:
--- [T1] ---

b1: b=x++;
b2: if(b==0) B1;

else B1;
b3: b=y++;
b4: if(b==0) B2;

else B2;
b5:
--- [T2] ---

{a3, b4}

{a3, b5}

{a1, b1}

{a3, b1}

{a5, b1}

{a1, b3}

{a3, b3} {a1, b5}

{a5, b3}

{a5, b5}

A1A2
B1

A1

B1

B1

B1

B2

B1

B1

B1

A1

A1

A1

A2

A2

A2

A2

A1

{a2, b1}

{a4, b1}

B1

B2

run-iirun-i run-iii

A2

{a5, b2}

{a5, b4}

B1

B1

{a1, b2}

{a1, b4}

{a2, b5}

{a4, b5}

{a3, b2}

{a4, b3}

Figure 4. A two-threaded program and its generalized interleav-
ing graph (GIG). Black edges represent events from threadT1 and
blue edges represent events from threadT2.

is the thread schedule corresponding to the total order of events
e1 . . . en. The correspondingsymbolicexecution is denoted by
(∗, sch), where the∗ indicates the data input is kept symbolic and
thus may take any value. Each execution of the programP can be
represented by a finite word{α, β, γ}∗{halt, abort}. If the execu-
tion ends withhalt it is a normalexecution. If the execution ends
with abort it is a faultyexecution.

3.2 Generalized Interleaving Graph (GIG)
The set of all possible executions of a multithreaded program

can be captured by ageneralized interleaving graph (GIG), where
nodes are global control states and edges are events. The root node
corresponds to the (symbolic) initial state. The leaf nodescorre-
spond to normal or faulty ends of the execution. Each internal node
may have:

• one outgoing edge corresponding to anα-operation;
• two outgoing edges corresponding to aβ-operation; or
• k outgoing edges wherek ≥ 2 is the number of enabled

γ-operations from different threads.

We call a node with more than one outgoing edge apivot point.

• If the pivot point corresponds toβ-operations we call it a
branching pivot point (b-PP).

• If the pivot point corresponds toγ-operations we call it a
threadinterleaving pivot point (i-PP).

Figure 4 shows an example program and its GIG. For simplicity,
we assume thata=x++ is atomic on the execution platform. The
root node(a1, b1) corresponds to the starting points of the two
threads. The terminal node(a5, b5) corresponds to the end of the
two threads. Nodes such as(a1, b1) are i-PP nodes, where we can
execute either thread 1 which leads to(a2, b1), or thread 2 which

leads to(a1, b2). In contrast, nodes such as(a2, b1) are b-PP nodes,
where we can take either theassume(a = 0) branch, leading to
the code segmentA1, or theassume(a 6= 0) branch, leading to the
code segmentA1.

Note that the GIG does not have loop-back edges since the GIG
paths represent unrolled executions. Furthermore, pointers, alias-
ing, and function calls have been resolved as well during execution.
However, a GIG may have branches, which makes it significantly
different from the typical thread interleaving graph used in the par-
tial order reduction literature.

As is typical in symbolic execution algorithms, we focus on only
a finite set of executions and assume that each execution has afi-
nite length. Typically, the user of a symbolic execution tool needs
to construct a proper testing environment that satisfies theabove
assumption. In KLEE [8] andCloud9 [11], for example, the user
may achieve this by bounding the size of the symbolic input thereby
restricting the execution to a fixed number of paths of finite lengths.

3.3 Symbolic Execution of Multithreaded Pro-
grams

We present the baseline symbolic execution procedure for mul-
tithreaded programs in Algorithm 1 following Sen et al. [42]. The
recursive procedure EXPLORE is invoked with the symbolic initial
states0. Inside the procedure, we differentiate among three scenar-
ios based on whethers, the current state, is ani-PP node, ab-PP
node, or a non-branching node.

If s is ani-PP node where multipleγ-operations are enabled, we
recursively explore the nextγ event from each thread. Ifs is a
b-PPnode where multiple sequential branches are feasible, we re-
cursively explore each branch. Ifs is a non-branching node, we
explore the unique next event. The current execution ends ifs
is a leaf node (normal_end_state, faulty_end_state) or an infeasi-
ble_state, at which point we return from EXPLORE(s) by popping
the states from the stackS.

Algorithm 1 Baseline Symbolic Execution.
Initially: StackS = {s0}; run EXPLORE(s0) with the symbolic initial states0.

1: EXPLORE(s)
2: S.push(s);
3: if (s is an i-PP node)
4: while (∃t ∈ (s.enabled \ s.done))
5: s′ ← NEXTSTATE(s, t);
6: EXPLORE(s′);
7: s.done← s.done ∪ {t};
8: else if(s is a b-PP node) {
9: while (∃t ∈ (s.branch \ s.done))
10: s′ ← NEXTSTATE(s, t);
11: EXPLORE(s′);
12: s.done← s.done ∪ {t};
13: else if(s is an internal node)
14: t← s.next;
15: s′ ← NEXTSTATE(s, t);
16: EXPLORE(s′);
17: S.pop();
18: NEXTSTATE(s, t)
19: let s = 〈pcon,M, enabled, branch, done〉;
20: if (t is halt)
21: s′← normal_end_state;
22: else if(t is abort)
23: s′← faulty_end_state;
24: else if(t is assume(c))
25: if (s.pcon is unsatisfiable underM)
26: s′← infeasible_state;
27: else
28: s′← 〈pcon ∧ c,M〉;
29: else if(t is assignmentv := exp)
30: s′← 〈pcon,M[exp/v]〉;
31: return s′;

Each states ∈ S is a tuple〈pcon ,M, enabled , branch , done〉,
wherepcon is the path condition for the execution to reachs from

s0, M is the symbolic memory map,s.enabled is the set ofγ-
events whens is an i-PP node,s.branch is the set ofβ-events when
s is a b-PP node, ands.done is the set ofα or β events already
explored froms by the recursive procedure. Initially,s0 is set to
〈true ,Minit 〉, wheretrue means the state is always reachable and
Minit represents the initial content of the memory. The execution
of each instructiont is carried out by NEXTSTATE(s,t) as follows:

• If t is halt, the execution ends normally.
• If t is abort, ands.pcon is satisfiable under the current mem-

ory maps.M, we have found an error.
• If t is v:=exp, we need to update the current memory map

M by changing the content ofv to exp.
• If t is assume(c), we change the path condition to (pcon ∧c).

At each pivot point (i-PP or b-PP), we try to flip a decision made
previously to compute a new execution. Let(in, sch) denote the
current execution. By flipping the decision made previouslyat an
i-PP node, we compute a new execution(in, sch ′), wheresch ′ is a
permutation of the original thread schedule. In contrast, by flipping
the decision made previously at a b-PP node, we compute a new
execution(in ′, sch), wherein′ is a new data input. Note that in
both cases, the newly computed execution will be the same as the
original execution up to the flipped pivot point. After the flipping,
the rest of the execution will be a free run.

As an example, consider the GIG in Figure 4, where the current
execution is represented by the dotted linerun-i. Flipping at the
b-PP node(a4, b3) would lead to the new execution labeledrun-ii,
whereas flipping at the i-PP node(a3, b3) would lead to the new
executionrun-iii .

4. SUMMARIZING THE EXPLORED EXE-
CUTIONS

We first present our method for symbolically summarizing the
reason why explored executions cannot reach the bad state. In the
next section, we will leverage the information to prune awayredun-
dant executions.

Our method for summarizing the explored executions is based
on the weakest precondition computation [13]. We differentiate
the following two scenarios, depending on whether the execution
encounters the assert statement or not.

• For each execution that encountersassert(c) (and satisfies
the conditionc), we compute the weakest precondition of the
predicatec along this execution.

• For each execution that does not encounter the assert state-
ment at all, we compute the weakest precondition of the pred-
icatetrue along this execution.

Since the weakest precondition is a form of Craig’s interpolant [34],
it provides a succinct explanation as to why the explored execution
cannot reach the bad state guarded by¬c.

DEFINITION 1. The weakest precondition of the predicateφ
with respect to a sequence of instructions is defined as follows:

• For t: v:=exp, WP (t, φ) = φ[exp/v];
• For t: assume(c) , WP (t, φ) = φ ∧ c; and
• For sequencet1;t2, WP (t1; t2, φ) = WP (t1,WP (t2, φ)).

In the above definition,φ[exp/v] denotes the substitution of vari-
ablev in φ with exp. As an example, consider the execution path in
the following table, which consists of three branch conditions and
three assignments. Column 1 shows the control locations along the
current path. Column 2 shows the sequence of instructions exe-
cuted. Column 3 shows the weakest preconditions computed back-
wardly starting atl6. Column 4 shows the rules applied during the
computation.

Loc. Instruction WP Computed Rule Applied

l0 if(a ≤ 0) (a ≤ 0) ∧ (b ≤ 0) ∧ (c ≤ 0) wp ∧ c
l1 res := res + 1 (b ≤ 0) ∧ (c ≤ 0) wp[exp/v]
l2 if(b ≤ 0) (b ≤ 0) ∧ (c ≤ 0) wp ∧ c
l3 res := res + 2 (c ≤ 0) wp[exp/v]
l4 if(c ≤ 0) (c ≤ 0) wp ∧ c
l5 res := res + 3 true wp[exp/v]
l6 true terminal

4.1 Computing Predicate Summary at b-PP
Nodes

Assume that the baseline symbolic execution procedure traverses
the GIG in a depth-first search (DFS) order, meaning that it back-
trackss, a branching pivot point (b-PP), only after exploring both

outgoing edgess
assume(c)
−→ s′ ands

assume(¬c)
−→ s′′. This also in-

cludes the entire execution trees starting from these two edges. Let
wp[s′] andwp[s′′] be the weakest preconditions computed from
the two outgoing executions, respectively.

Following the classic definition of weakest precondition provided
by Dijkstra [13], we compute the weakest precondition at theb-PP
nodes as follows:

wp[s] := (c ∧ wp[s′]) ∨ (¬c ∧ wp[s′′]) .

Then, we usewp[s] computed from these outgoing edges to update
the global predicate summary.

The predicate summary,PS[s], defined for each global control
states, is the union of all weakest preconditions along the outgoing
edges. Recall that each nodes may be visited by EXPLORE mul-
tiple times, presumably from different execution paths (from s0 to
s). Therefore, we maintain a global mapPS and update each pred-
icate summary entryPS[s] incrementally. InitiallyPS[s] = false

for every GIG nodes. Then, we merge the newly computedwp[s]
toPS[s] every time EXPLOREbacktracks froms.

The detailed method for updating the predicate summary is high-
lighted in blue in Algorithm 2, which follows the overall flowof
Algorithm 1, except for the following two additions:

• We computewp[s] before the procedure backtracks from state
s. At this moment,wp[s] captures the set of all explored ex-
ecutions froms as a continuation of the current execution.

• We update the summary as follows:PS[s] = PS[s] ∨ wp[s].
Here,PS[s] captures the set of execution trees as a continua-
tion of all explored executions froms0 to s, includingwp[s],
which represents the newly explored execution tree.

4.2 Computing Predicate Summary at i-PP Nodes
In contrast to the straightforward computation of weakest precon-

dition at the sequential merge point, the situation at the interleaving
merge point is trickier. In fact, to the best of our knowledge, there
does not exist a definition of weakest precondition in the literature
for thread interleaving points.

A naive extension of Dijkstra’s original definition would bein-
efficient since it leads to the explicit enumeration of all possible
interleavings. For example, assume that an i-PP node has twoout-
going edgess

γ1−→ s′ ands
γ2−→ s′′, one may attempt to define the

weakest precondition at nodes as follows:
(

(γ1 <hb γ2) ∧ wp[s′]
)

∨
(

(γ2 <hb γ1) ∧ wp[s′′]
)

,

where(γ1 <hb γ2) means that we choose to executeγ1 before
γ2, (γ2 <hb γ1) means that we choose to executeγ2 beforeγ1,
andwp[s′] andwp[s′′] are the weakest preconditions along the two
interleavings, respectively.

Although the above definition serves the purpose of summariz-
ing the weakest preconditions along all explored executions from
s, it has a drawback: the size ofwp[s] computed in this way can

Algorithm 2 Assertion Guided Symbolic Execution.
Initially: summaryPS[n] = false for all noden; stackS = {s0}; run EX-
PLORE(s0) with initial states0.

1: EXPLORE(s)
2: S.push(s);
3: if (s is an i-PP node)
4: wp[s] := true;
5: while (∃t ∈ (s.enabled \ s.done))
6: s′ ← NEXTSTATE(s, t);
7: EXPLORE(s′);
8: wp[s]← wp[s]∧ COMPUTEWP (s, t, s′);
9: s.done← s.done ∪ {t};
10: else if(s is a b-PP node)
11: wp[s] := false;
12: while (∃t ∈ (s.branch \ s.done))
13: s′ ← NEXTSTATE(s, t);
14: EXPLORE(s′);
15: wp[s]← wp[s]∨ COMPUTEWP (s, t, s′);
16: s.done← s.done ∪ {t};
17: else if(s is an internal node)
18: t← s.next;
19: s′ ← NEXTSTATE(s, t);
20: EXPLORE(s′);
21: wp[s]← COMPUTEWP (s, t, s′);
22: else// end state
23: wp[s]← true;
24: PS[s] := PS[s] ∨ wp[s];
25: S.pop();
26: COMPUTEWP(s, t, s′)
27: if (t is assume(c))
28: return (wp[s′] ∧ c);
29: else if(t is assignmentv := exp)
30: return substitute(wp[s′], v, exp);
31: else
32: return wp[s′];
33: NEXTSTATE(s, t)
34: let s be tuple〈pcon,M, enabled, branch, done〉;
35: if (t is halt)
36: s′← normal_end_state;
37: else if(t is abort)
38: s′← faulty_end_state;
39: else if(t is assume(c))
40: if (s.pcon is unsatisfiable underM)
41: s′← infeasible_state;
42: else if(pcon → PS[s])
43: s′← early_termination_state;
44: else
45: s′← 〈pcon ∧ c,M〉;
46: else if(t is assignmentv := exp)
47: s′← 〈pcon,M[exp/v]〉;
48: return s′;

quickly explode when there are a large number of threads. Recall
that in a multithreaded program the number of outgoing edgesat an
i-PP node equals the number of enabled threads and the numberof
interleavings ofk concurrent threads can bek! in the worst case.

However, for the purpose of pruning redundant executions, the
weakest precondition computation does not have to be precise to
be effective. To mitigate the aforementioned interleavingexplosion
problem, we resort to the following definition, which can be viewed
as an under-approximation of the naive definition:

wp[s] :=
∧

1≤i≤k

wp[sk] ,

where eachwp[si] is the weakest precondition computed along one
of thek outgoing edges of the forms

γi−→ si, such that1 ≤ i ≤
k. Consider Figure 2 as an example. We compute the weakest
precondition at noden5 by conjoining weakest preconditions at the
two successor nodesn7 andn8. That is,wp[n5] = wp[n7] ∧
wp[n8] = (a ≤ 20) ∧ (a ≤ x).

For the purpose of pruning redundant executions, conjoining weak-
est preconditions from different interleavings at i-PP nodes is a
sound approximation. Although it may not capture all the explored

executions and thus fail to prune certain redundant executions, all
the pruned executions are guaranteed to be redundant.

5. PRUNING THE REDUNDANT EXECU-
TIONS

We present our method for leveraging the predicate summaries
to prune away redundant executions in this section.

5.1 Assertion Guided Pruning
To decide if we can skip executions starting from a global control

states wheres has been visited by EXPLORE previously through
some executions froms0 to s, but is reached again through a new
execution, we check whether the current path conditions.pcon is
subsumed byPS[s] under the current memory maps.M. Intu-
itively, the path conditions.pcon represents the set of states reach-
able along the current execution froms0 to s, whereasPS[s] repre-
sents the set of states from which it is impossible to reach the bad
state.

Within the NEXTSTATE procedure in Algorithm 2, we check for
the pruning condition as follow:

• If s.pcon → PS[s] holds unders.M, extending the current
execution beyonds would not lead to a bad state. Therefore,
we backtrack immediately by settings′ as anearly termina-
tion state.

• Otherwise, theremayexist an extension of the current execu-
tion beyonds to reach the bad state. In this case, we need to
continue the forward symbolic execution as usual.

The validity of s.pcon → PS[s] can be decided by checking the
satisfiability of(s.pcon ∧ ¬PS[s]) using an SMT solver. That is,
s.pcon → PS[s] holds if and only if(s.pcon ∧ ¬PS[s]) is unsatis-
fiable.

Our new pruning method is complementary to partial order re-
duction techniques. POR is a generic reduction that relies solely
on commutativity between concurrent operations. Therefore, two
executions are considered equivalent as long as they resultin the
same program state. Our new method, in contrast, uses assertions
to guide the pruning. Therefore, even executions that result in dif-
ferent program states may still be regarded as equivalent.

Consider the GIG in Figure 4, which has 54 feasible executions.
To make the presentation simple, we have assumed that x++ is
atomic in this example. However, note thata1:a= x++ andb1:b=
x++ do not commute, because from a state wherex=0, for instance,
executinga1;b1 leads toa=0,b=1,x=2, but executingb1;a1 leads
to a=1,b=0,x=2. As shown in Table 1, without applying any reduc-
tion technique, the program has a total of 54 distinct runs. Partial
order reduction (POR) alone can reduce the 54 runs down to 34
runs. Our new predicate summary-based pruning method alonecan
reduce the 54 runs down to the 18 runs. Finally, applying bothour
method and POR can reduce the 54 runs down to 13 runs.

Table 1. Applying various reduction techniques to Figure 4.
Reduction Technique Number of Paths

None 54
Partial order reduction (POR) 34

Our predicate summary-based pruning method 18
Both POR and our new pruning method 13

5.2 Interaction with DPOR
However, there is a caveat in combining our predicate summary-

based pruning method with dynamic partial order reduction [16],
because DPOR is a delicate algorithm that relies on the dynamic
computation of thebacktrack sets. Without taking precautions,
naively pruning away redundant executions, even if they do not lead

to the bad state, may deprive DPOR the opportunity to properly up-
date its backtrack sets, thereby leading to unsound reduction.

As we have shown in Section 2, when the current execution is run
4 in Figure 2, by the time noden5 is reached DPOR has not had
the opportunity to update its backtrack set atn3. Ideally, threadT2

should be put into the backtrack set ofn3, that is, after EXPLORE
backtracks ton3, it should proceed to explore run 6.

However, sincen5.pcon → PS[n5] along run 4, our pruning
method would force EXPLORE to backtrack fromn5, thereby skip-
ping the remainder of run 4 and run 5. Here, the technical challenge
is how to properly update the backtrack set at noden3 before EX-
PLOREbacktracks fromn5.

Fortunately, similar problems were encountered during thedevel-
opment of stateful DPOR algorithms [60]. In this work, we follow
the solution by Yang et al. [60]. We maintain two global tables,
RVar [s] andWVar [s], for each global control states. TheRVar
table stores the set of global variables that have been read by some
thread during previously explored executions starting from s. Sim-
ilarly, theWVar table stores the set of global variables that have
been written to by some thread during previously explored execu-
tions starting froms. These two tables are updated at the same time
the globalPS table is updated.

For the example in Figure 2, after exploring run 1, run 2, and run
3, we would haveWVar [n5] = {(x, T1)} representing thatx=20
has previously been executed by threadT1 at some point aftern5.
Similarly, we haveRVar [n5] = {(x, T2)} representing thatb=x
has previously been executed by threadT2 at some point aftern5.

Whenever EXPLORE decides to skip the execution tree from a
nodes, we can leverage the information stored inWVar [s] and
RVar [s] to properly update the backtrack sets for DPOR. For ex-
ample, the original DPOR algorithm waits until assignmentb=x is
executed by threadT2 before it can update the backtrack set ofn3.
Now, using the entry(x, T2) ∈ RV ar[n5], it can put threadT2

into the backtrack set ofn3, as ifb=x has been executed by thread
T2 at some point aftern5.

The correctness of this solution follows Yang et al. [60] in the
context of stateful DPOR, which ensure that DPOR remains sound
in the presence of assertion guided pruning. For more information
on the dynamic update of backtrack sets, please refer to the original
description of DPOR [16].

5.3 Proof of Correctness
Now, we state and prove the correctness of our overall algorithm.

Let SEorig be the baseline symbolic execution procedure described
in Algorithm 1, andSEnew be our new symbolic execution proce-
dure with predicate summary-based pruning, as described inAlgo-
rithm 2. We say thatSEnew is a sound reduction ofSEorig if it
always reaches the same set of error states asSEorig .

THEOREM 1. Given a programP and an error locationE. Our
new symbolic execution procedureSEnew reachesE if and only if
the original symbolic execution procedureSEorig reachesE.

Proof: We divide the proof into two steps. First, we prove that
if SEnew reachesE, thenSEorig also reachesE. This is straight-
forward becauseSEnew explores a subset of the execution paths
explored bySEorig , as shown by a comparison of the two versions
of NEXTSTATE in Algorithms 1 and 2.

Second, we prove that ifSEorig reachesE, thenSEnew reaches
E. We do this by contradiction. Assume thatSEorig can reach
E along a pathπ but SEnew cannot. Since Lines 42–43 in Algo-
rithm 2 are the only places whereSEnew can skip a path, there must
exist an event〈s, t, s′〉 in pathπ such thats.pcon → PS[s] holds
unders.M.

• Since pathπ is feasible, the subpath ofπ from s′ to E must
also be feasible. To skipπ in SEnew , the subpath must have

been explored and then summarized inPS[s′], presumably
whenSEnew first explored the subpath.

• But if PS[s′] already includes this common subpath froms′

toE, by definition,SEnew must have reached the error block
E. This contradicts our assumption that the new symbolic
execution procedureSEnew cannot reach the error blockE.

Therefore, our assumption is incorrect. The theorem holds.

6. OPTIMIZATIONS
In our new method, the size of the summary table as well as

the size of the logical constraint in each entry may become anper-
formance bottleneck. Since large logic formulas are expensive to
compute and store, we would like to reduce the associated compu-
tational cost without affecting soundness of the overall procedure.
Toward this end, we propose two optimizations.

6.1 Leveraging Static Program Slicing
Our first optimization is to combine our assertion guided pruning

with static programslicing to achieve a more significant state space
reduction. Given an assertion statementst, we define thesliceof st
as the set of all statements in the program that may affect theresult
of st. The slice is computed based on two dependency relations:
the control dependency relation and the data dependency relation.
Intuitively, a statementst′ is a control dependency of a statement
st if the execution ofst′ determines whetherst can be executed.
Whereas a statementst′′ is a data dependency ofst if the execution
of st′′ may affect the data used inst.

1 if (p)
2 y = v;
3 z = w * 5;
4 if (q)
5 x = z * 2;
6 assert(x);

Figure 5. Example for static
program slicing computation.

Slice

A

B

assert(c)

s0

Figure 6. Using Type A and
B nodes outside the slice.

Consider the example in Figure 5. The write tox at Line 5 has
a control dependencyat Line 4, and adata dependencyat Line 3.
Thesliceof Line 5 is defined as the transitive closure of its control
and data dependencies, which consists of Lines 3–5. In contrast,
the branching statement at Line 1 and the write toy at Line 2 are
irrelevant since their execution willnot affectthe value written tox
at Line 5 nor the reachability of Line 5. Therefore, for the purpose
of checking the assertion at Line 6, which is related to the value of
x at Line 5, we can simply ignore Lines 1–2. In other words, the
slice of Line 5 (and Line 6) defines a sub-program producing an
equivalent result as the full program as far as assertion checking is
concerned.

We implemented the inter-procedural slicing method of Horwitz
et al. [22, 40] together with an Andersen [3] style flow-insensitive
alias analysis to compute the program slice statically. We imple-
mented the method in LLVM using the Datalog engine inside the
Z3 SMT solver [12]. The overall method is flow-insensitive, and
safe for handling multithreaded program with sequentiallyconsis-
tent memory. Due to the lack of space, we do not go over the details
here. Readers can refer to [27, 22, 15, 3] for more details.

We combine static program slicing with symbolic execution as
follows. First, we compute the static program slice prior tothe start
of symbolic execution. Then, inside the symbolic executionpro-
cedure as described in Algorithm 2, for eachto-be-executedb-PP

or i-PP nodes, we check if the corresponding branch condition or
global operation belongs to the static slice of the assertion state-
ment. If the answer is no, we handle a pivot points (which can be
an i-PP or a b-PP) in one of the following ways depending on the
node type as illustrated in Figure 6.

• Type A: If s is not on any path froms0 to the assertion state-
ment, we treat each outgoing edge froms as if it is halt. In
other words, we stop the current execution and backtrack
from s immediately. Note that backtracking will automati-
cally trigger the computation of weakest precondition.

• Type B: If s is on some GIG path froms0 to the assertion
statement, we cannot simply treats as the end of the program
since outgoing paths froms may still lead to the assertion
failure. As shown in Figure 6, we have to symbolically exe-
cute at least one of the outgoing edges from the Type B node,
while skipping the other outgoing edges.

The correctness of this approach directly follows from the defi-
nition of slicing. For both Type A and Type B nodes outside the
program slice,which outgoing edge to executedoes not affect the
reachability of the bad state. Due to the relative efficiencyof the
static slicing algorithm, the overhead of computing the slice is min-
imal compared to the subsequent symbolic execution procedure.
However, we will show through experiments that, by leveraging
static program slicing results, we can significantly decrease of the
number of executions to be explored, thus decreasing the complex-
ity of the overall analysis.

6.2 Approximating the Summary Constraints
Following Theorem 1, we can prove that in general, any kind

of underapproximation ofPS[s] may be used in Algorithm 2 to re-
placePS[s], while maintaining the soundness of our pruning method.
Our optimization is to heuristically reduce the computational cost
associated with predicate summaries. Toward this end, we propose
the following two underapproximations.

First, we use a global hash table with a fixed numberN of en-
tries to limit the storage cost forPS. With such bounded table, two
global control locationss and s′ may be hashed to the same en-
try. Whenever this happens, instead of storing both summaries in a
linked list for that entry, we limit the overall cost by dropping one
of them. That is, whenkey(s) = key(s′), we heuristically remove
one entry, effectively setting the corresponding predicate summary
false.

Second, we use a fixed threshold to bound the size of each in-
dividual logical constraint forPS[s]. In other words, when the
predicate summary becomes too large, we will stop adding new
weakest-preconditions to it, thereby dropping all subsequently ex-
plored subpaths. That is,

if (size(PS[s]) < bnd) PS[s]:=PS[s] ∨ wp[s] .
This is again an underapproximation ofPS[s].

A main advantage of this on-demand constraint minimization
framework is that it allows various forms of underapproximations
to be plugged into it without affecting the soundness proof of the
overall algorithm. With underapproximations, it is possible that we
may no longer be able to prune away all redundant executions,how-
ever, we can guarantee that all pruned executions are truly redun-
dant. In particular, the baseline symbolic execution in Algorithm 1
(no pruning) can be viewed as an extreme form of underapproxi-
mation, wherePS[s] is underapproximated tofalse for all global
control locations.

7. EXPERIMENTS
We have implemented our method inCloud9[11], which in turn

builds upon the LLVM compiler [2] and the KLEE symbolic vir-
tual machine [8]. Note that KLEE does not by itself support mul-
tithreading, and althoughCloud9 has extended KLEE to support

Table 2. Summary of our experimental results.

Cloud9 +DPOR +DPOR+AG

Name LOC Threads Runs Time (s) Runs Time (s) Runs Time (s)

fibbenchfalse1 44 2 924 61.4 48 2.0 15 1.8
fibbenchfalse2 44 2 − >1800 628 36.2 34 3.9
fibbenchfalse3 44 2 − >1800 8704 503.8 378 13.7

indexertrue 85 2 − >1800 81 2.8 24 6.0
lazy01false 51 3 11 0.5 3 0.3 3 1.1

reorder2false1a 85 2 7 0.3 3 0.3 3 1.2
reorder2false1b 85 3 91 1.4 26 0.6 9 1.2
reorder2false1c 85 4 2421 89.1 205 3.2 39 1.6
reorder2false2a 85 2 23 0.6 14 0.5 14 1.5
reorder2false2b 85 3 479 8.9 233 5.0 64 2.2

sigmafalse1 49 2 12 0.4 6 0.3 2 1.2
sigmafalse2 49 3 180 3.2 50 1.0 2 1.2
sigmafalse3 49 4 4830 222.4 862 18.6 2 1.2

singletonfalse 57 4 60 1.1 24 0.6 19 1.1
stackfalse 120 2 527 8.6 236 3.9 49 2.8

stateful01true 55 2 6 0.4 6 0.4 5 1.2
twostage3false 129 3 4862 302.1 88 1.1 34 2.2

dekkertrue 55 2 − >1800 280 3.6 6 1.5
petersontrue1 43 2 − >1800 1052 22.7 64 2.7
petersontrue2 43 2 − >1800 2566 86.6 85 8.1

readwritelktrue1 52 2 24 0.6 4 0.3 4 1.1
readwritelktrue2 52 4 − >1800 − >1800 436 14.9
timevarmutextrue 55 2 41 0.8 4 0.3 2 1.0

szymanskitrue 55 2 − >1800 − >1800 6 1.8
unveriftrue 40 2 − >1800 221 2.9 27 1.7

bluetoothbad 88 2 − >1800 1789 25.1 95 4.0
art-example 71 2 450 11.5 146 3.1 9 1.5
fsbenchbad 86 8 − >1800 256 9.2 9 20.9
tickettrue 76 2 1062 19.6 274 4.8 44 1.9

accountbad 60 3 8 0.4 8 0.4 8 1.0
circularbufbad1 109 2 118 1.7 118 1.9 58 3.8
circularbufbad2 109 2 358 5.5 358 5.5 132 6.4
readreadwrite 50 3 96 1.4 19 0.5 3 1.1

queuefalse 167 2 252 3.9 252 3.8 26 3.9

nbds-slU1a 1942 2 − >1800 133 8.9 5 7.8
nbds-slU1b 1942 2 − >1800 − >1800 76 16.2
nbds-slU1c 1942 2 − >1800 − >1800 202 35.2
nbds-slU2a 1942 2 − >1800 241 25.3 29 12.8
nbds-slU2b 1942 2 − >1800 − >1800 118 24.5
nbds-slU2c 1942 2 − >1800 − >1800 717 164.8
nbds-skiplist 1994 3 − >1800 − >1800 1 25.1

nbds-hashw1a 2322 2 − >1800 1339 167.4 123 177.8
nbds-hashw1b 2322 2 − >1800 6501 1568.9 675 222.8
nbds-hashw1c 2322 2 − >1800 − >1800 2399 476.9
nbds-hashw2a 2234 2 − >1800 5852 674.1 369 155.3
nbds-hashw2b 2234 2 − >1800 − >1800 1735 257.4
nbds-hashw2c 2234 2 − >1800 − >1800 4017 528.4

nbds-hash 2375 2 − >1800 − >1800 2283 333.8
nbds-list 1887 3 − >1800 10274 1130.7 1 5.9

nedmalloc 6303 4 − >1800 − >1800 1 12.0

Average 986.9 518.5 51.6

a limited number of POSIX thread routines, it does not attempt
to cover all feasible thread interleavings. Indeed,Cloud9 allows
for context switches only before certain POSIX thread synchro-
nizations but not before shared variable reads/writes. Furthermore,
Cloud9does not support partial order reduction. Instead, it forksa
new execution every time a POSIX synchronization is encountered,
which can cause the number of executions to explode quickly.

We have extendedCloud9 to implement the baseline symbolic
execution in Algorithm 1, which systematically explores both intra-
thread paths and thread interleavings. Then, we implemented the
DPOR algorithm [16]. Based on these extensions, we have imple-
mented our new assertion guided pruning (Algorithm 2) with the
optimizations presented in Section 6.

We have conducted experiments on two sets of benchmarks. The
first set consists of multithreaded C programs from the 2014 Soft-
ware Verification Competition (SV-COMP) benchmark [48] and
programs from [14, 29]. The second set consists of two real mul-
tithreaded applications:nbds [35], a collection of lock-free data

100 101 102 103
100

101

102

103

Runs Cloud9

R
un

s
+

D
P

O
R

+
A

G

100 101 102 103
100

101

102

103

Time (s) Cloud9

T
im

e
(s

)
+

D
P

O
R

+
A

G

Figure 7. Scatter plots comparing our new method with Cloud9.

structures, andnedmalloc[36], a thread-safe malloc implementa-
tion. Each of these programs has between 40 to 6,500 lines of code,
with a combined total of 40,291 lines of code. Each benchmarkpro-
gram is first transformed into LLVM bitcode using Clang/LLVM,
before given to the symbolic execution tool with a set of useranno-
tated variables as symbolic input.

Table 2 summarizes the results of our experimental evaluation.
Columns 1–3 show the name, lines of code, and the number of
threads for each program. Columns 4–9 compare the performance
of three different methods in terms of the number of exploredruns
and the total run time in seconds.Cloud9denotes the baseline sym-
bolic execution algorithm in Algorithm 1, +DPOR denotes thebase-
line algorithm with dynamic partial order reduction, and +DPOR +
AG denotes our new method, which augments the baseline algo-
rithm with DPOR and assertion guided pruning. The runtime of
+DPOR + AG includes the time to compute the slice. For all tests,
we used a maximum time of 30 minutes.

In the remainder of this section, we analyze the experimental
results in more details, to answer the following research questions:

1. How effective is our proposed pruning technique? Is it more
effective than DPOR alone?

2. How scalable is our technique? Is it practical in handling
realistic C/C++ programs?

First, we show the comparison of Cloud9 and +DPOR + AG in
two scatter plots in Figure 7, where thex-axis in each scatter plot
represents the number of runs (or time) of the baseline algorithm
(Cloud9), and they-axis represents the number of runs (or time)
of our method (+DPOR + AG). Each benchmark program is repre-
sented by a dot in the scatter plots; dots below the diagonal lines
are winning cases for our method. The results show that our new
method can significantly reduce the number of runs explored by
symbolic execution as well as the overall execution time. Inmany
cases, the baseline algorithm timed out after 30 minutes while our
new method finished in a few seconds.

Next, we show the comparison of +DPOR and +DPOR + AG in
the scatter plots in Figure 8. Our goal is to quantify how much
of the performance improvement comes from our new assertion
guided pruning as opposed to DPOR. Again, dots below the di-
agonal lines are winning cases for our method (+DPOR + AG)
over DPOR. For most of the benchmark programs, our new method
demonstrated a significant performance improvement over DPOR.
For some benchmark programs, however, +DPOR + AG was slightly
slower than +DPOR despite that it executed the same, or a smaller,
number of runs. This is due to the additional overhead of run-
ning the supplementary static slicing algorithm, as well aspredi-
cate summary-based pruning, which did not provide sufficient per-
formance boost to offset their overhead.

However, it is worth noting that, where our combined optimiza-
tion of slicing and pruning is able to bring a performance improve-
ment, it often leads to a drastic reduction in the execution time com-
pared to DPOR alone. For example, innedmalloc(Table 2), our
new method was able to identify that the property does not depend

100 101 102 103
100

101

102

103

Runs +DPOR

R
un

s
+

D
P

O
R

+
A

G

100 101 102 103
100

101

102

103

Time (s) +DPOR

T
im

e
(s

)
+

D
P

O
R

+
A

G

Figure 8. Scatter plots comparing our new method with DPOR.

2 4 6

102

104

Number of Threads

R
un

s

Cloud9
+DPOR

+DPOR + AG

2 4 6

100

102

Number of Threads

T
im

e
(s

)
Cloud9
+DPOR

+DPOR + AG

Figure 9. Parameterized results forreorder2falseexperiment.

on any shared variables. In such cases, it can safely skip exploring
the entire interleaved state space and finish in just one run.

We also evaluated the growth trends of the three methods when
the complexity of the benchmark program increase. Figure 9 shows
the results of comparing the three methods on a parameterized pro-
gram namedreorder2false. In these two figures, thex-axis repre-
sents the number of threads created in the parameterized program,
and they-axis represents, in logarithmic scale, the number of runs
explored and the execution time in seconds. As shown by these
two figures, the computational overhead of all three methodsin-
creases as the complexity of the program increases. However, our
new method increases at a significantly reduced rate compared to
the two existing methods.

8. RELATED WORK
As we have mentioned earlier, for sequential programs, there is

a large body of work on mitigating path explosion in symbolicexe-
cution, including the use of function summaries [18], may-must ab-
straction [20], demand-driven refinement [31], state matching [51],
state merging [30], and structural coverage [37]. McMillanpro-
posed a method calledlazy abstractionwith interpolants [33, 34],
which has been shown to be effective in model checking sequential
software [6]. Jaffar et al. [10] used a similar method in the con-
text of constraint programming to compute resource-constrained
shortest paths and worst-case execution time. However, a direct
extension of such methods to multithreaded programs would be in-
efficient since they lead to the naive exploration of all thread inter-
leavings.

Wachter et al. [52] extended McMillan’s lazy abstraction with in-
terpolants method [34] to multithreaded programs while combining
it with a symbolic implementation of the monotonic partial order re-
duction algorithm [26, 59]. The idea is to apply interpolant-based
reduction to each interleaved execution while applying symbolic
POR to reduce the number of interleavings. Chu and Jaffar [9]pro-
posed a similar method, where they improved the symbolic POR
algorithm by considering not only the standard independence rela-
tion but also a newsemi-commutativityrelation. However, these
existing methods [52, 9] differ from our method significantly.

First, we merge predicate summaries at interleaving pivot points
whereas the existing methods [52, 9] do not. Second, we lever-

age static program slicing before symbolic execution and heuristic
minimization of summary constraints during symbolic execution
to further reduce the search space. Finally, our pruning method
is designed to work seamlessly with the more scalable DPOR al-
gorithm [16] whereas the existing methods implemented symbolic
POR. Neither of these previous methods demonstrated handling
C/C++ code with more than a thousand lines of code as in our work.

Kusano and Wang [29] introduced a notion of predicate depen-
dence in the context of dynamic partial order reduction. Wang et
al. [58, 53] proposed similar property-driven pruning methods for
dynamic model checking. However, these methods were geared
toward stateless model checking, which can be viewed as a form
of systematic testing with fixed data input, as opposed to symbolic
data inputs. Furthermore, these methods relied on control and data
dependency relations as opposed to symbolic constraints generated
from weakest precondition computation, and therefore was unable
to merge non-failing executions reaching different final states. In
this sense, our new method is a more general and more accuratever-
sion of these prior works. Furthermore, it is orthogonal andcom-
plementary to the symmetry-reduction method proposed by Yang
et al. [61].

Our method also differs from the various heuristic state space re-
duction techniques [43, 38, 47] which do not guarantee the sound-
ness of the reduction. For example, Farzan et al. [14] and Razavi et
al. [39] proposed methods for exploring certain subsets of thread in-
terleaving scenarios in symbolic execution of concurrent programs.
The idea of selective thread interleaving exploration was also used
by Wang et al. [57] to cover the interleaving of certain pairsof
dependent operations captured by a history aware predecessor set.
There are also many predictive bug detection methods based on the
use of SMT solvers [55, 28, 56, 24, 25, 45, 41, 46, 45, 54], which
explore only thread interleavings under fixed program inputs.

The GREEN tool by Visser et al. [50] provides a wrapper around
constraint satisfiability solvers to check if the results are already
available from prior invocations, and reuse the results if available.
As such, they can achieve significant reuse among multiple calls to
the same solvers during the symbolic execution of differentpaths.
GREEN achieves this by distilling constraints into their essential
parts and then representing them in a canonical form. The reuse
achieved by GREEN is at a much lower level, and therefore is com-
plementary to our new pruning method.

Finally, we assume the sequential consistency memory model,
although it is possible to integrate our method with the dynamic
partial order reduction methods for relaxed memory models [63,
1]—we leave this for future work.

9. CONCLUSIONS
We have presented a predicate summary-based pruning method

for improving symbolic execution of multithreaded program. Our
method is designed to work with the popular DPOR algorithm, and
has the potential of achieving exponential reduction. We have im-
plemented the method inCloud9and demonstrated its effectiveness
through experiments on multithreaded C/C++ benchmarks. For fu-
ture work, we plan to conduct more experiments to identify the
sweet spotsin using heuristic minimizations of summary constraints
to exploit the trade-off between increasing the pruning power and
decreasing the computational overhead.

10. ACKNOWLEDGMENTS
This work was primarily supported by the NSF under grants

CCF-1149454, CCF-1405697, and CCF-1500024. Partial support
was provided by the ONR under grant N00014-13-1-0527. Any
opinions, findings, and conclusions expressed in this material are
those of the authors and do not necessarily reflect the views of the
funding agencies.

11. REFERENCES

[1] P. A. Abdulla, S. Aronis, M. F. Atig, B. Jonsson,
C. Leonardsson, and K. F. Sagonas. Stateless model
checking for TSO and PSO. InInternational Conference on
Tools and Algorithms for Construction and Analysis of
Systems, pages 353–367, 2015.

[2] V. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke.
LLVM: A low-level virtual instruction set architecture. In
ACM/IEEE international symposium on Microarchitecture,
San Diego, California, Dec 2003.

[3] L. O. Andersen. Program analysis and specialization forthe
c programming language. Technical report, University of
Copenhagen, 1994.

[4] T. Ball. A theory of predicate-complete test coverage and
generation. InFormal Methods for Components and Objects,
Third International Symposium, FMCO 2004, Leiden, The
Netherlands, November 2 - 5, 2004, Revised Lectures, pages
1–22, 2004.

[5] T. Bergan, D. Grossman, and L. Ceze. Symbolic execution of
multithreaded programs from arbitrary program contexts. In
ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages, and Applications, pages
491–506, 2014.

[6] D. Beyer and P. Wendler. Algorithms for software model
checking: Predicate abstraction vs. impact. InInternational
Conference on Formal Methods in Computer-Aided Design,
pages 106–113, 2012.

[7] P. Boonstoppel, C. Cadar, and D. R. Engler. RWset:
Attacking path explosion in constraint-based test generation.
In International Conference on Tools and Algorithms for
Construction and Analysis of Systems, pages 351–366, 2008.

[8] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs. InUSENIX Symposium on Operating
Systems Design and Implementation, pages 209–224, 2008.

[9] D. Chu and J. Jaffar. A framework to synergize partial order
reduction with state interpolation. InInternational Haifa
Verification Conference, pages 171–187, 2014.

[10] D.-H. Chu and J. Jaffar. A complete method for symmetry
reduction in safety verification. InInternational Conference
on Computer Aided Verification, pages 616–633, 2012.

[11] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and
G. Candea. Cloud9: a software testing service.Operating
Systems Review, 43(4):5–10, 2009.

[12] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver.
In International Conference on Tools and Algorithms for
Construction and Analysis of Systems, pages 337–340, 2008.

[13] E. Dijkstra.A Discipline of Programming. Prentice Hall, NJ,
1976.

[14] A. Farzan, A. Holzer, N. Razavi, and H. Veith. Con2colic
testing. InACM SIGSOFT Symposium on Foundations of
Software Engineering, pages 37–47, 2013.

[15] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization.ACM Trans.
Program. Lang. Syst., 9(3):319–349, July 1987.

[16] C. Flanagan and P. Godefroid. Dynamic partial-order
reduction for model checking software. InACM
SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 110–121, 2005.

[17] P. Godefroid.Partial-Order Methods for the Verification of
Concurrent Systems - An Approach to the State-Explosion
Problem. Springer, 1996.

[18] P. Godefroid. Compositional dynamic test generation.In
ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 47–54, 2007.

[19] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. InProgramming Language
Design and Implementation, pages 213–223, June 2005.

[20] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali.
Compositional may-must program analysis: unleashing the
power of alternation. InACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, pages 43–56,
2010.

[21] S. Graf and H. Saïdi. Construction of abstract state graphs
with PVS. InComputer Aided Verification (CAV’97), pages
72–83. Springer, 1997. LNCS 1254.

[22] S. Horwitz, T. W. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. InACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 35–46, 1988.

[23] J. Jaffar, V. Murali, and J. A. Navas. Boosting concolic
testing via interpolation. InACM SIGSOFT Symposium on
Foundations of Software Engineering, pages 48–58, 2013.

[24] V. Kahlon and C. Wang. Universal Causality Graphs: A
precise happens-before model for detecting bugs in
concurrent programs. InInternational Conference on
Computer Aided Verification, pages 434–449, 2010.

[25] V. Kahlon and C. Wang. Lock removal for concurrent trace
programs. InInternational Conference on Computer Aided
Verification, pages 227–242, 2012.

[26] V. Kahlon, C. Wang, and A. Gupta. Monotonic partial order
reduction: An optimal symbolic partial order reduction
technique. InInternational Conference on Computer Aided
Verification, pages 398–413, 2009.

[27] K. Kennedy and J. R. Allen.Optimizing Compilers for
Modern Architectures: A Dependence-based Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2002.

[28] S. Kundu, M. K. Ganai, and C. Wang. CONTESSA:
Concurrency testing augmented with symbolic analysis. In
International Conference on Computer Aided Verification,
pages 127–131, 2010.

[29] M. Kusano and C. Wang. Assertion guided abstraction: a
cooperative optimization for dynamic partial order reduction.
In IEEE/ACM International Conference On Automated
Software Engineering, pages 175–186, 2014.

[30] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient
state merging in symbolic execution. InACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 193–204, 2012.

[31] R. Majumdar and K. Sen. Hybrid concolic testing. In
International Conference on Software Engineering, pages
416–426, 2007.

[32] A. W. Mazurkiewicz. Trace theory. InAdvances in Petri Nets,
pages 279–324. Springer, 1986.

[33] K. L. McMillan. Lazy abstraction with interpolants. In
International Conference on Computer Aided Verification,
pages 123–136. Springer, 2006. LNCS 4144.

[34] K. L. McMillan. Lazy annotation for program testing and
verification. InInternational Conference on Computer Aided
Verification, pages 104–118, 2010.

[35] Non-blocking data structures. URL:
https://code.google.com/p/nbds/.

[36] ned productions: nedmalloc URL:
http://www.nedprod.com/programs/portable/nedmalloc/.

[37] R. Pandita, T. Xie, N. Tillmann, and J. de Halleux. Guided
test generation for coverage criteria. InIEEE International
Conference on Software Maintenance (ICSM 2010),
September 12-18, 2010, Timisoara, Romania, pages 1–10,
2010.

[38] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity
violation bugs from their hiding places. InArchitectural
Support for Programming Languages and Operating
Systems, pages 25–36, 2009.

[39] N. Razavi, F. Ivancic, V. Kahlon, and A. Gupta. Concurrent
test generation using concolic multi-trace analysis. InAsian
Symposium on Programming Languages and Systems, pages
239–255, 2012.

[40] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural
dataflow analysis via graph reachability. InACM
SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 49–61, New York, NY,
USA, 1995. ACM.

[41] M. Said, C. Wang, Z. Yang, and K. Sakallah. Generating data
race witnesses by an SMT-based analysis. InNASA Formal
Methods, pages 313–327, 2011.

[42] K. Sen.Scalable Automated Methods for Dynamic Program
Analysis. PhD thesis, UIUC, 2006.

[43] K. Sen. Race directed random testing of concurrent
programs. InACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 11–21, 2008.

[44] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C. InACM SIGSOFT Symposium on
Foundations of Software Engineering, pages 263–272, 2005.

[45] A. Sinha, S. Malik, C. Wang, and A. Gupta. Predicting
serializability violations: Smt-based search vs. dpor-based
search. InHaifa Verification Conference, pages 95–114,
2011.

[46] N. Sinha and C. Wang. On interference abstractions. InACM
SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 423–434, 2011.

[47] F. Sorrentino, A. Farzan, and P. Madhusudan. PENELOPE:
weaving threads to expose atomicity violations. InACM
SIGSOFT Symposium on Foundations of Software
Engineering, pages 37–46, 2010.

[48] SV-COMP. 2014 software verification competition. URL:
http://sv-comp.sosy-lab.org/2014/, 2014.

[49] N. Tillmann and J. de Halleux. PEX – white box test
generation for .NET. InInternational Conference on Tests
and Proofs, pages 134–153, 2008.

[50] W. Visser, J. Geldenhuys, and M. B. Dwyer. Green: reducing,
reusing and recycling constraints in program analysis. In
ACM SIGSOFT Symposium on Foundations of Software
Engineering, page 58, 2012.

[51] W. Visser, C. S. Pasareanu, and R. Pelánek. Test input
generation for java containers using state matching. In
International Symposium on Software Testing and Analysis,
pages 37–48, 2006.

[52] B. Wachter, D. Kroening, and J. Ouaknine. Verifying
multi-threaded software with Impact. InFormal Methods in
Computer-Aided Design (FMCAD), pages 210–217, 2013.

[53] C. Wang, S. Chaudhuri, A. Gupta, and Y. Yang. Symbolic
pruning of concurrent program executions. InACM
SIGSOFT Symposium on Foundations of Software
Engineering, pages 23–32, 2009.

[54] C. Wang and M. Ganai. Predicting concurrency failures in
generalized traces of x86 executables. InInternational
Conference on Runtime Verification, pages 4–18, Sept. 2011.

[55] C. Wang, S. Kundu, M. Ganai, and A. Gupta. Symbolic
predictive analysis for concurrent programs. InInternational
Symposium on Formal Methods, pages 256–272, 2009.

[56] C. Wang, R. Limaye, M. Ganai, and A. Gupta. Trace-based
symbolic analysis for atomicity violations. InInternational
Conference on Tools and Algorithms for Construction and
Analysis of Systems, pages 328–342, 2010.

[57] C. Wang, M. Said, and A. Gupta. Coverage guided
systematic concurrency testing. InInternational Conference
on Software Engineering, pages 221–230, 2011.

[58] C. Wang, Y. Yang, A. Gupta, and G. Gopalakrishnan.
Dynamic model checking with property driven pruning to
detect race conditions. InInternational Symposium on
Automated Technology for Verification and Analysis, pages
126–140, 2008.

[59] C. Wang, Z. Yang, V. Kahlon, and A. Gupta. Peephole partial
order reduction. InInternational Conference on Tools and
Algorithms for Construction and Analysis of Systems, pages
382–396, 2008.

[60] Y. Yang, X. Chen, G. Gopalakrishnan, and R. Kirby. Efficient
stateful dynamic partial order reduction. InSPIN Workshop
on Model Checking Software, pages 288–305, 2008.

[61] Y. Yang, X. Chen, G. Gopalakrishnan, and C. Wang.
Automatic discovery of transition symmetry in multithreaded
programs using dynamic analysis. InInternational SPIN
workshop on Model Checking Software, pages 279–295,
2009.

[62] Q. Yi, Z. Yang, S. Guo, C. Wang, J. Liu, and C. Zhao.
Postconditioned symbolic execution. InIEEE International
Conference on Software Testing, Verification and Validation,
pages 1–10, 2015.

[63] N. Zhang, M. Kusano, and C. Wang. Dynamic partial order
reduction for relaxed memory models. InACM SIGPLAN
Conference on Programming Language Design and
Implementation, 2015.

