Assertion Guided Symbolic Execution
of Multithreaded Programs

Shengjian Guo Markus Kusano Chao Wang
Department of ECE Department of ECE Department of ECE
Virginia Tech Virginia Tech Virginia Tech
Zijiang Yang Aarti Gupta

Department of CS
Western Michigan University

ABSTRACT

Symbolic execution has emerged as a powerful techniqueyfoer s
tematic testing of sequential and multithreaded progratasvever,

its application is limited by the high computational costamiv-
ering all feasible intra-thread paths and inter-threadrlaavings.
We propose a new assertion guided pruning framework thatiide
fies executions guaranteed not to lead to an error state amaves
them during symbolic execution. By summarizing the reasamg
previously explored executions cannot reach an error stadeus-

ing the information to prune redundant executions in therfyt
we can soundly reduce the search space exponentially. \We als
use static concurrent program slicing and heuristic mization of
symbolic constraints to further reduce the computationatieead.
We have implemented our method in t6&gud9 symbolic execu-
tion tool and evaluated it on a large set of multithreaded+3/C
programs. Our experiments show that the new method caneeduc
the overall computational cost significantly.

Categories and Subject Descriptors

F.3.1 Logics and Meanings of Program§ Specifying and Veri-
fying and Reasoning about Programs; D.Séffware Engineer-
ing]: Software/Program Verification

Keywords

Symbolic execution, test generation, concurrency, datider re-
duction, weakest precondition

1. INTRODUCTION

Department of CS
Princeton University

Initial Static
Test Input Slicing
(in, sch) Computing Pruning
Summary Executions

—= Symbolic]
Executio

Figure 1. Our assertion guided redundancy pruning framiewor

analysis [7], and coverage metrics [14]. In this paper, vappse
a new and complementary method, which is designed spetifical
for pruning redundant executions in multithreaded prograrere
the properties under verification are expressed as assertio

Our assertion guidedymbolic execution framework focuses on
identifying and eliminating executions that are guarathteebe re-
dundant for checking assertions. Assertions can be useddelm
a wide variety of interesting properties, ranging from toghd nu-
merical errors, to memory safety and concurrency errorg,heas
been the focus of many software verification projects. W leemesn-
tic errors of the program are modeled as simple code redikabi
i.e., the reachability of a bad state guarded by the assertindi-
tion, we can concentrate on exploring potentially failurdtcing
executions as opposed to all feasible executions of thergmag
This is particularly attractive in the presencecohcurrency since

The past decade has seen exciting developments on symbolict becomes possible to uniformly handle the exploration athb

execution of both sequential [19, 44, 49, 8] and concurreat p
grams [42, 39, 14, 5]. However, existing methods are stilitid

in their capability of mitigating thestate space explosiohat is,
the number of paths in each thread may be exponential to time nu
ber of branch conditions, and the number of thread inteihgav
may be exponential to the number of concurrent operatiorayM
techniques have been proposed to address this problemdingl
the use of function summaries [18], interpolation [34, 23, 6tatic

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providedttipies are not
made or distributed for profit or commercial advantage aatichpies bear
this notice and the full citation on the first page. Copyrigir components
of this work owned by others than ACM must be honored. Absitrgavith
credit is permitted. To copy otherwise, or republish, totmwsservers or to
redistribute to lists, requires prior specific permissiod/ar a fee. Request
permissions from permissions@acm.org.

ESEC-FSE'15August 31-September 4, Bergamo, Italy.

Copyright 2015 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

intra-thread execution paths and inter-thread intertegssieading
to a simple but more powerful analysis algorithm.

The overall flow of our new method is illustrated in Figure 1:
the shaded block represents our addition and the remaitider i
trates the classic symbolic execution procedure for nuéaded
programs [42]. Specifically, given a progrdPand some symbolic
input variables, the procedure explores the feasible dixeiof
the program systematically, e.g., in a depth-first seardbror

Starting with an initial testin, sch) consisting of program in-
puts and thread schedule, the method first produces a cereet
cution followed by a symbolic execution. Then, ittries tmgeate a
new test by flipping a prior decision at either an thread lataiing
pivot point (i-PP) or a local branch pivot point (b-PP). Thewtest
is denoted by eithefin, sch’) or (in', sch), depending on whether
changes are made to the thread schedule’) or data input {n"),
respectively. The iterative procedure terminates wheneave test
can be generated. State explosion occurs because it haglooeex
the combined space of data inputs and thread schedules edrdre

individual execution may be unique, i.e., it leads to a défg pro- e We propose an assertion guided symbolic execution method

gram state. to identify and eliminate redundant executions in muleétded
We extend the baseline symbolic execution procedure byhgddi programs to reduce the overall computational cost.

a new constraint-based pruning block shown in Figure 1. Gathod e We implement our method in a state-of-the-art symbolic exe-

centers around the idea of summarizing the reasons why the ba cution tool while ensuring it does not interfere with the pop

state is unreachable via previously explored executioms |lever- ular DPOR algorithm or make it less effective.

aging such information to avoid similarly futile execut&rspecif- e We demonstrate through experiments that our new method

ically, at each global control location, we use a predicate sum- can indeed achieve a significant performance improvement

mary (PS) constraint to capture tiveakest preconditiong 3] of on public benchmarks.

the assertion condition along all explored executiongdiatafrom)))) .

n. Therefore PS[n] captures the reason why prior executions are _ 1he remainder of this paper is organized as follows. Firgt, w
not able to violate the assertion. Whenever symbolic staie illustrate our new method through examples in Section 2 e
reached again through another execution path, we check ifetv tablish the notation and review the baseline symbolic etecial-
path conditionis subsumed byS[n]. If so, we can safely back- ~ 9orithm in Section 3. We present our method for summarizing e
track fromn since extending the execution beyomavould never plored executions in Section 4 and pruning redundant et

lead to a bad state. in Section 5. We present optimization techniques in Sediand
Our method for pruning redundant executions can be viewed as XPerimental results in Section 7. We review related worgee-
a way of systematically exploring an abstract search spefieed tion 8 and finally give our conclusions in Section 9.

by a set of predicates [4] which, in this case, are extraatenh f
the assertion. Although the concrete search space may marb 2. MOTIVATING EXAMPLES

ily large, the abstract search space can be significantljlemén In this section, we illustrate the high-level ideas in ourtinoe
this sense, our method is similar poedicate abstractiorj21] in using examples. Consider the example in Figure 2, whichwias t
model checking except that the latter requires constrgdirpri- threadsT: and T3, a global variabler, and two local variables
ori a finite-state model from the actual software code whereas ou 5n4p. The initial value ofz is a symbolic input which can be any
method directly works on the software code while leveragh® jnteger value. We want to check if the assertion fails andoif
predicates to eliminate redundant executions. compute a failure-inducing test input.

Our method is complementary to standard partial order teztuc
(POR) techniques in that it relies on property-specific infation X = synbolic(V);
to reduce the state space. But, POR techniques typicallyotio n i f(x>10) return;

target particular states. We will show through experiméimas our
new method can indeed eliminate a different class of rechirga
ecutions from those eliminated by state-of-the-art PORrtigies,
such as dynamic partial order reduction (DPOR) [16]. Tovihrsl
end, since DPOR is an elegant but delicate algorithm thataan

ily be made unsound without taking great care in the impldemen
tion [60], a main technical challenge in our work is to makeesu
our new pruning method does not interfere with DPOR or make it
less effective.

Our method differs from the prior works by Wachter et al. [52]
and Chu and Jaffar [9], which extended the well-known fraoréw
of lazy abstraction with interpolants by McMillan [34] to fiiu
threaded programs. One main difference is that our conmipntat
of predicate summaries is significantly more general thastieg
methods, especially at the thread interleaving pivot gointhere
we merge summaries from multiple execution paths to formma-co
bined summary. Another main difference is in the integraid

Run 1:i f (x<=10) x=10; x=20; a=x; b=x; leads to(a=20, b=20) .

property specific pruning with partial order reduction. Beiist- Run 2:i f (x<=10) x=10: a=x; x=20; b=x; leads to{ a=10, b=20) .
ing methods implemented a variant of the symbolic partideor Run 3:i f (x<=10) x=10; a=x; b=x; x=20; leads to{ a=10, b=10) .

i i i Run 4:i f (x<=10) a=x; x=10; x=20; b=x; leads to(a=V , b=20).
redu_ctlon algorithm by Kahlon et al. [26] wher_eas we intégur Run 511 1 (x<=10) asx. x=10. bex; X220, leads o{ =V | b=10
predicate summary-based pruning method with the more ldeala Run 6:i f (x<=10) a=x: b=x; x=10; x=20; leads to{ a=V . b=V)

DPOR algorithm.

We have implemented our method @loud9 [11], a state-of-
the-art symbolic execution tool built upon LLVM and KLEE [8]
to handle multithreaded C/C++ programs. We have implendente
an inter-procedural static program slicing algorithm [2%ecuted
prior to symbolic execution, to further reduce the searatspWe
have also implemented heuristic based minimizations alipate
summary constraints during symbolic execution to redueetm-
putational overhead. In both cases, the main technicaleriy® is
to ensure the overall algorithm remains sound in the presefc
such optimizations. We have conducted experiments on afset o ! b= b=a b=u _ l
standard multithreaded C/C++ applications. Our resulsvsinat : D) : 20; D = 20 = 20@
the new method can reduce the number of explored executions a
well as the overall run time significantly. ey ey sy o<y <y sy

To sum up, this paper makes the following contributions: Figure 2. Our new method only needs to explore one full run and
four partial runs, as opposed to all six runs by existing roesh

The program has six distinct executions, each leading tferdi
ent final state defined by the valueswfindb. According to the
theory of partial order reduction [16], they belong to sifatient
equivalence classes [32], as each has a different final dthie-
ever, exploring all six executions is not necessary for tinppse
of checking the assertion, since some of these executi@re e

same reason why they cannot reach the bad state. Our newdnetho

can reduce the exploration from six executions to one fudicex
tion together with four partial executions, as illustratsdthe red
dotted lines in Figure 2.

Our method first extracts a set of predicates by computing the
weakest preconditions of the assertion condition alongxipéored
executions. These predicates are then combined at the parge
(in the graph) to form a succinct summary that captures thsore
why the bad state has not been reached via executions gtfam
these merge points. During subsequent symbolic execuioa-i
tions, our method needs to explore only those executiondte
not be covered by these predicates, thereby leading to algedn
duction of the search space.

Now, we provide a step-by-step explanation of how our method
works on this example:

e Run 1 is the first and only execution fully explored by our
new method, which goes through nodas n2, n4, n7 in the
graph in Figure 2 before executibgx; i f (a<=b) . Since it
does not violation the assertion, we summarize the reason at
ng andny, respectively, as followsPS[ng] = (a < b) and
PS[n7] = (a < z). Thatis, as long a& < x) holds at node

nz, itwould be impossible for the execution to reach the bad
state.

Run 2 goes through nodes , ns, ns before reaching.r,
where its new path condition jgcon[n7] = (V < 10) and
symbolic memory is\f =(a=10, x=20) . Sincepcon|[n7] —
PS[n~] underM, meaning the set of reachable states falls in-
sidePS[n+~], continuing the current execution froms would
never lead to a bad state. Therefore, we skip the remainder
of this execution.

Run 3 goes through nodes, n2, ns, ns before reaching

no, where its path condition again falls withRS[ne]. We

skip the remainder of this execution and update the summary
atng andns as follows: PS[ns] = (a < b) andPS[ns] =
wplny] A wplng] = (a < 20) A (e < z). By conjoining

the weakest preconditions along both interleavings— nr;
andns — ns, we capture the summary common to both
interleavings.

Run 4 goes through nodes, ns before reachings, with
the new path conditiopcon[ns] = (V' < 10) and symbolic
memoryM =(a=V, x=10) . Sincepcon|[ns] — PS[ns] un-
der M, we skip the remainder of this execution, which would
have led to Run 4 and Run 5 if it is allowed to continue.

Run 6 goes through nodes , ns, ne before reaching:s,
where the new path condition falls withi#t6[ns]. Therefore,
we skip the remainder of this execution.

e At this moment, our method has completed the exploration.

Note that weconjoin weakest preconditions from different in-
terleavings at i-PP nodes such s, but union weakest precon-
ditions from different thread-local paths at b-PP nodeg Sec-
tion 4.) Also note that the amount of reduction achieved by ou
method depends on the program structure as well as thedaaztti
the assertion. For example, if we chandé x>10) toi f (x>11),
our method would have to explore Run 5 instead of skippingit b
causepcon[ns] = (V' < 11) would no longer be subsumed by
PS[ns] = (V < 10).

S [T e [T2]--
a = x; x = 10;
assert (a>0)
S [Tl -mmmmee e [T3]---
b =1y; y = 10;
assert (b>0)
AT [T4]---
= z = 10;
assert (c>0) N e>0)
* Run 1: a=x; x=10; i f (a>0) ; b=y; y=10; i f (b>0) ; c=z; z=10; i f (¢>0).
* Run 2: a=x; x=10; i f (a>0) ; b=y; y=10; i f (b>0) ; z=10; c=z; i f (¢>0).
Run 3:a=x; x=10; i f (a>0) ; y=10; b=y; i f (b>0) ; c=2; 2=10; i f (¢>0) .
*Run4:a=x; x=10; i f (2>0) ; y=10; b=y; i f (b>0) ; 2=10; c=z; i f (¢>0) .
*Run 5:x=10; a=x; i f (a>0) ; b=y; y=10; i f (b>0) ; c=z; z=10; i f (c>0).
Run 6:x=10; a=x; i f (a>0) ; b=y; y=10; i f (b>0) ; z=10; c=z; i f (¢>0) .
Run 7:x=10; a=x; i f (a>0) ; y=10; b=y; i f (b>0) ; c=z; z=10; i f (¢>0) .
Run8:x=10; a=x; i f (a>0) ; y=10; b=y; i f (b>0) ; z=10; c=z; i f (¢>0).

Figure 3. Our new method can reduce the number of executions
from 2* down to(k + 1).

The running example demonstrates that our method differs fr
standard partial order reduction techniques such as DP6JRvHich
could not prune away any of the six interleavings. Furtheemo
our method also differs from the stateful state space eaptor
techniqgues commonly used in model checking, which recoed th
forward reachable states explicitly during explorationptevent
visiting them again. Such methods would not be effectivetlier
example in Figure 2 either because each of the six execugads
to a distinct state. In contrast, our new method can achiesig-a
nificant reduction due to its use of property specific infatioraas
guidance. In this sense, our new method g@perty directede-
duction, whereas the aforementioned POR techniquegraperty
agnostic

However, it can be tricky to combine our pruning method with
the state-of-the-art DPOR algorithm. The main advanta@@RiR
over static POR techniques lies in its dynamic update of tback
sets, which uses runtime information to compute the depwyde
relation between shared variable accesses. Without takipgad-
ditional measure, pruning redundant executions may ietervith
the dynamic update of backtrack sets in DPOR. Consider run 4 i
Figure 2 as an example. If the execution is allowed to coraplet
whenb=x is executed, thread, will be added to the backtrack set
of nodens. However, if run 4 is terminated pre-maturely at node
ns due to our predicate summary-based pruning, thi@adould
not be added to the backtrack set of nodesinceb=x has been
skipped. As a result, the DPOR algorithm would not explomr ru
6. Therefore, integrating DPOR with property specific pngnis
a challenging task. We present our solution to this proble®ec-
tion 5.2.

Our computation of predicate summaries at the thread e#esl
ing merge points in Figure 2 shows that it is different from the
prior work by Wachter et al. [52], and Chu and Jaffar [9]. Sfiec
cally, we combine the summaries from all outgoing edges oy co
joining them together, whereas existing methods do not engrg
terpolants at these i-PP nodes. Furthermore, our methéet«if
from these existing methods in that they both implementegha s
bolic POR whereas our method is integrated with the morabtal
DPOR algorithm.

Now, we use the example in Figure 3 to demonstrate that our
new method has the potential to achieve an exponential tieduc
In this contrived example, the interleaving of instrucian{ a=x,
x=10} is completely independent frofrb=y, y=10} and{c=z,
z=10}. Exploring all feasible executions resultsd runs, each

of which leads to a different final state. However, based eretir
stract search space induced by the assertions, our new anedho
reduce the exploration of eight runs down to one full run thge
with three partial runs, as marked by the *' symbol in Figite
To further generalize the example, a program witimdependent
code segments would hagé distinct interleavings, which can be
reduced by our method 1@ + 1) executions.

3. PRELIMINARIES

We establish the notation and review the baseline symbgée e
cution algorithm for multithreaded programs in this settio

3.1 Multithreaded Programs

For ease of presentation, we consider a simple imperative la
guage with integer variables, assignments, and if-elgeratnts
only. We elide the details for handling of complex languaga-f
tures such as pointers, recursion, and system calls in digvéo
ecution since these are orthogonal issues addressed ysigviny
many symbolic execution tools [8, 11]. A multithreaded peog
P consists of a set of threadq ... T, }, where each thread;;,
is a sequential program. Threads share a seflaifal variables.
Each thread also has a setodal variables.

Let st be an instruction in a thread with the thread indeéx.
Letevente = (tid, [, st,l’) be an execution instance sf, where

I and!’ are locations in the thread before and after executing the

instance ofst. If the same instruction is executed more than once,
e.g., whenitis in aloop or arecursive function call, we medggies

of [, st,1’ to make them unique for each event. Conceptually, this
corresponds to unrolling loops and recursive callgl@bal control
state of the multithreaded program is a tuple= (l1,...,lm),
where eachi; is a location inT;. We regard a global control state
as anabstractstate implicitly containing all concrete states that
have the same thread locations but potentially differehiesof

the local and global variables.

Without loss of generality, we assume that every asserfitimeo
form assert (c) is transformed ta f (! c) abort. We use a spe-
cial eventabort to denote faulty program termination ahdlt to
denote normal program termination. ketdenote a local variable,
vy denote a global variableond; denote a local condition, and
exp, denote an local expression. In additioratwort andhalt, each
instructionst in an event may have one of the following types:

e a-operation, which is a local assignment:= exp,;

e [-operation, which is a local bran@ssune(cond,);

e ~-operation, which is a global operation defined as follows:
— v-lis a global writev, := exp, or readv; := vy;
— ~-Il'is a thread synchronization operations.

For eachi f (c) - el se statement, we usassune(c) to denote
the execution of then-branch, aadsune(—c) to denote the exe-
cution of else-branch. Without loss of generality, we assuihat
all if-else conditions use only local variables or local iespof
global variables [17]. For thread synchronizations, weufoon
mutex locks and condition variables since they are fredyeised
in mainstream multithreaded programming environment$ i
C, C++, and Java. Specifically, we consider the followingety/pf
~-11 operations: thread creation, thread join, lock, unlosignal,
and wait. If other thread synchronizations or blocking agiens
are used they can be modeled similarlyyald events.

During the execution of the prograngoperations are the thread
interleaving points wherea8-operations are thread-local branch-
ing points. Both contribute to the path and interleavinglesion.

ai: a=sx++; bi: b=x++;
az: if(a==0) Aj; bo: if(b==0) Bj;
else Ay el se By;
az: asy++; bs: b=y++;
ayg: if (8220) As; by: i f (b::O) Bs;
el se As; el se Ba;
as b5:
S I 1 cee [T2] ---
{a1,01}
{az.bu} / / \{mJ;z}
B
»
- a, Bi
{ﬂmhl} {ay, bs}
b ,,,,,
{aq, b1} Bﬁ* {“"’”},
{as, ba} B
A, By Au By

{as, b1} {(ls bs}

\ {ru b;} /\

_ B
{as, ba} 6 O {as; b-1} Q
Ay "' R‘
By

{as, bs}

run-i a {as, b > ndi N
Figure 4. A two-threaded program and its generalized e

ing graph (GIG). Black edges represent events from thigaahd
blue edges represent events from thréad

{a1, 05}

{as, b5}
Q

{(lz bs}

\

run-iii

is the thread schedule corresponding to the total order efitev
e1...en. The correspondingymbolicexecution is denoted by
(*, sch), where thex indicates the data input is kept symbolic and
thus may take any value. Each execution of the progfaoan be
represented by a finite wordy, 3, v} * {halt, abort}. If the execu-
tion ends withhalt it is a normal execution. If the execution ends
with abort it is afaulty execution.

3.2 Generalized Interleaving Graph (GIG)

The set of all possible executions of a multithreaded progra
can be captured bygeneralized interleaving graph (GlGNhere
nodes are global control states and edges are events. Tteod®
corresponds to the (symbolic) initial state. The leaf noclase-
spond to normal or faulty ends of the execution. Each interode
may have:

e one outgoing edge corresponding tocoperation;

e two outgoing edges corresponding t@-@peration; or

e k outgoing edges wherk > 2 is the number of enabled
~-operations from different threads.

We call a node with more than one outgoing edgevat point

e If the pivot point corresponds t@-operations we call it a
branching pivot pointig-PP).

o If the pivot point corresponds tg-operations we call it a
threadinterleaving pivot pointitPP).

Figure 4 shows an example program and its GIG. For simplicity

In contrastp-operations are local and thus invisible to other threads; we assume tha=x++ is atomic on the execution platform. The

they do not contribute directly to the path and interleavénglo-
sion.

A concreteexecution of the multithreaded program is charac-
terized byr (in, sch), wherein is the data input andch

root node(a1,b1) corresponds to the starting points of the two
threads. The terminal nodes, bs) corresponds to the end of the
two threads. Nodes such és:, b1) are i-PP nodes, where we can
execute either thread 1 which leads(te, b1), or thread 2 which

leads to(a1, b2). In contrast, nodes such @s, b1) are b-PP nodes, so, M is the symbolic memory map.enabled is the set ofy-
where we can take either th@sunme(a = 0) branch, leading to events when is an i-PP nodes. branch is the set ofS-events when
the code segment,, or theassune(a # 0) branch, leading to the s is a b-PP node, andl done is the set ofa or 8 events already

code segment; . explored froms by the recursive procedure. Initiallyy is set to
Note that the GIG does not have loop-back edges since the GIG (true, M.}, Wheretrue means the state is always reachable and

paths represent unrolled executions. Furthermore, psinédias- Minis represents the initial content of the memory. The execution

ing, and function calls have been resolved as well duringati@n. of each instructiort is carried out by MXTSTATE(s,) as follows:

However, a GIG may have branches, which makes it signifigantl
different from the typical thread interleaving graph usedthie par-
tial order reduction literature.

As is typical in symbolic execution algorithms, we focus ayo
a finite set of executions and assume that each execution fitas a
nite length. Typically, the user of a symbolic executionl toeeds
to construct a proper testing environment that satisfiesatbiwe

e If ¢ ishalt, the execution ends normally.

e If tisabort, ands.pcon is satisfiable under the current mem-
ory maps.M, we have found an error.

e If ¢ is vi=exp, we need to update the current memory map
M by changing the content afto exp.

e If tisassume(c)we change the path condition tacon A c).

assumption. In KLEE [8] an€loud9[11], for example, the user At each pivot point (i-PP or b-PP), we try to flip a decision mad
may achieve this by bounding the size of the symbolic inperehy previously to compute a new execution. Leh, sch) denote the
restricting the execution to a fixed number of paths of firétegths. current execution. By flipping the decision made previowlan

. .) i-PP node, we compute a new execut{en, sch’), wheresch’ is a
3.3 Symbolic Execution of Multithreaded Pro- permutation of the original thread schedule. In contrastlipping

grams the decision made previously at a b-PP node, we compute a new
We present the baseline symbolic execution procedure for mu €xecution(in’, sch), wherein’ is a new data input. Note that in
tithreaded programs in Algorithm 1 following Sen et al. [AZhe both cases, the newly computed execution will be the samleeas t

recursive procedure PLORE s invoked with the symbolic initial ~ original execution up to the flipped pivot point. After thepfling,
stateso. Inside the procedure, we differentiate among three seenar the rest of the execution will be a free run.

ios based on whether, the current state, is @rPP node, ab-PP As an example, consider the GIG in Figure 4, where the current
node, or a non-branching node. execution is represented by the dotted line-i. Flipping at the

If s is ani-PP node where multiple-operations are enabled, we ~ b-PP nodgaa, bs) would lead to the new execution labeleah-ii,
recursively explore the nexi event from each thread. is a whereas flipping at the i-PP nodes, b3) would lead to the new

b-PP node where multiple sequential branches are feasible, we re €xecutionrun-iii.

cursively explore each branch. dfis a non-branching node, we

explore the unique next event. The current execution ends if 4. SUMMARIZING THE EXPLORED EXE-
is a leaf node (normal_end_state, faulty_end_state) onf@asi- CUTIONS

ble_state, at which point we return fronxELORE(s) by popping

the states from the stacks. We first present our method for symbolically summarizing the

reason why explored executions cannot reach the bad statie |
- - - - next section, we will leverage the information to prune anegun-
Algorithm 1 Baseline Symbolic Execution. dant executions.

Initially: Stack.S = {so}; run EXPLORE(s() with the symbolic initial state. Our method for summarizing the explored executions is based

5 by on the weakest precondition computation [13]. We diffeitat
3. if (sisani-PP node) the following two scenarios, depending on whether the ei@tu
‘512 while (3t € (s-enabéed ; s.done)) encounters the assert statement or not.
: s" <= NEXTSTATE(s, t);
6 EXPLORE(s"); e For each execution that encountetsert(c) (and satisfies
7 _s.done + s.done U {t}; the conditiorc), we compute the weakest precondition of the
8 else if(s is a b-PP node) { -) .
while (3 € (s.branch \ s.done)) predicate: along _thls execution.

10: s’ NEXTSTATE(s, £); e For each execution that does not encounter the assert state-
11: EXPLORE(s’); ment at all, we compute the weakest precondition of the pred-
g | _f(’°‘~‘?0”6_<—t S-dl(medu) {th: icatetrue along this execution.

. else If(s IS an internal noae
%é t SNnertS:T _ Since the weakest precondition is a form of Craig’s intempo[34],
18: SEX;OR'éE‘;)_ATE(S’ o it provides a succinct explanation as to why the exploredatien
17: S.pop(); ' cannot reach the bad state guarded-by
18: NEXTSTATE(s, t)
19: lets = (pcon, M, enabled, branch, done); DEFINITION 1. The weakest precondition of the predicate
20: if (tishalt) with respect to a sequence of instructions is defined asasllo
%% s’ < normal_end_state;

© elseif(tisabort) e Fore: s =exp, WP(t,) = ¢lexp/v];
23 ey ol end st Rort mssome WP o e and
%g: if (5.pcon is unsatisfiable undet) o Forsequence; t2, WP(t1;t2, ¢) = WP(t1, WP(t2, 9)).

: s’ + infeasible_state;
27: else, In the above definitionp[ezp /v] denotes the substitution of vari-
%g: 8" = (pcon A ¢, M); ablev in ¢ with ezp. As an example, consider the execution path in
%0 e'si,'fg 'fpiiig'ﬂ?gz;;ﬁ?‘p) the following table, which consists of three branch cowdisi and
31 retum s’; " ’ three assignments. Column 1 shows the control locatiomsydlte

current path. Column 2 shows the sequence of instructioas ex
cuted. Column 3 shows the weakest preconditions computgd ba

Each state € S is a tuple(pcon, M, enabled, branch, done), wardly starting afs. Column 4 shows the rules applied during the
wherepcon is the path condition for the execution to reacfrom computation.

Loc. Instruction WP Computed Rule Applied
lo if(a <0) (a<O)AB<LO)A(c<0) wpAc

1 res :=res+1 b<0)A(c<0) wplexp/v]

12 if(b <0) b<0)A(c<0) wpAc

I3 res :=res + 2 (¢ <0) wplexp/v]

Iy if(c <0) (c<0) wpAc

ls res:=res+3 true wplexp/v)

lg true terminal

4.1 Computing Predicate Summary at b-PP
Nodes

Assume that the baseline symbolic execution procedurerseas
the GIG in a depth-first search (DFS) order, meaning thatdkba
trackss, a branching pivot point (b-PP), only after exploring both

assume(c) assume(—c)
— —

outgoing edges s’ ands s, This also in-
cludes the entire execution trees starting from these tge®d._et
wpls’] andwp[s”] be the weakest preconditions computed from
the two outgoing executions, respectively.

Following the classic definition of weakest preconditioaypded
by Dijkstra [13], we compute the weakest precondition atiteP
nodes as follows:

wpls] == (¢ Awpls)) V (~e A wpls”]) .

Then, we usevp[s] computed from these outgoing edges to update
the global predicate summary.

The predicate summarS[s], defined for each global control
states, is the union of all weakest preconditions along the outgoin
edges. Recall that each nosglenay be visited by EPLORE mul-
tiple times, presumably from different execution pathsitirs, to
s). Therefore, we maintain a global m&$ and update each pred-
icate summary entr{?S[s] incrementally. InitiallyPS[s] = false
for every GIG nodes. Then, we merge the newly computegh|s]
to PS[s] every time ExPLOREbacktracks frons.

The detailed method for updating the predicate summangis-hi
lighted in blue in Algorithm 2, which follows the overall floaf
Algorithm 1, except for the following two additions:

e We computeup[s] before the procedure backtracks from state
s. At this momentawp[s] captures the set of all explored ex-
ecutions froms as a continuation of the current execution.

e We update the summary as followBS[s] = PS[s] V wp][s].

Here,PS[s] captures the set of execution trees as a continua-

tion of all explored executions fromy to s, includingwp]s],
which represents the newly explored execution tree.

4.2 Computing Predicate Summary ati-PP Node

In contrast to the straightforward computation of weakeston-
dition at the sequential merge point, the situation at tterieaving
merge point is trickier. In fact, to the best of our knowledtiere
does not exist a definition of weakest precondition in therditure
for thread interleaving points.

A naive extension of Dijkstra’s original definition would fre
efficient since it leads to the explicit enumeration of alkgible
interleavings. For example, assume that an i-PP node hasutwo
going edges % s’ ands —2» s”, one may attempt to define the
weakest precondition at nodeas follows:

(71 <nb 72) Awpls']) V ((v2 <np 1) Awpls"]) ,

where (y1 <ns 72) means that we choose to execytebefore
2, (72 <mp 1) Means that we choose to executebefore~y,,
andwp[s'] andwp|s’'] are the weakest preconditions along the two
interleavings, respectively.

Although the above definition serves the purpose of summariz
ing the weakest preconditions along all explored execatioom
s, it has a drawback: the size afp[s] computed in this way can

Algorithm 2 Assertion Guided Symbolic Execution.

Initially: summaryPS[n] = false for all noden; stackS = {so}; run Ex-
PLORK(s() with initial statesg .
. EXPLORK(s)
S.pushg);
if (s is an i-PP node)
wp[s] := true;
while (3t € (s.enabled \ s.done))
s" < NEXTSTATE(s, t);
EXPLORE(s’);
wp[s] < wp[s]A COMPUTEWP (s, t, s');
s.done < s.done U {t};

©oONO AWM

10: elseif(s is a b-PP node)

11: wpls] = false;
2: while (3t € (s.branch \ s.done))

13: s’ < NEXTSTATE(s, t);

14: EXPLORE(s’);

15: wp[s] < wp[s]V COMPUTEWP (s, t, s');

16: s.done < s.done U {t};

17: elseif(s is an internal node)

18: t + s.next;

19: s" « NEXTSTATE(s, t);

20: EXPLORK(s');

21: wpls] < COMPUTEWP (s, t, s”);

22. elsell end state

23: wpls] < true;

24: PS[s] := PS[s] V wpls];

25: S.pop();

26: coMPUTEWP(s, t, s’)

27: if (tis assume(c))

28: return (wpls’] A ¢);

29: elseif(tisassignment := ezp)

30: return substitute(up[s’], v, exp);

31: else

32: return wpl[s'];

33: NEXTSTATE(s, t)

34. let s be tuple(pcon, M, enabled, branch, done);
5. if (tishalt)

36: s’ «< normal_end_state;

37: elseif(tisabort)

38: s’ + faulty_end_state;

39: else if(¢t isassume(c))

40: if ('s.pcon is unsatisfiable undet)

41 s’ « infeasible_state;

42: else if(pcon — PS[s])

43: s’ « early_termination_state;

44. else

45: s’ < (pcon A ¢, M);

46: elseif(tis assignment := exp)

47: s' « (pcon, M[exp/v]);

48: return s’;

quickly explode when there are a large number of threadsalRec

dhat in a multithreaded program the number of outgoing edgan

i-PP node equals the number of enabled threads and the naifnber

interleavings ofk concurrent threads can Béin the worst case.
However, for the purpose of pruning redundant executidres, t

weakest precondition computation does not have to be preéais

be effective. To mitigate the aforementioned interleadrplosion

problem, we resort to the following definition, which can ewed

as an under-approximation of the naive definition:

/\ wpls'],

1<i<k

wp[s] :

where eachwp[s'] is the weakest precondition computed along one

of the k outgoing edges of the form —% s, such thatl < ¢ <
k. Consider Figure 2 as an example. We compute the weakest
precondition at nodes by conjoining weakest preconditions at the
two successor nodes; andns. That is, wp[n5| wplnz] A
wplns] = (a < 20) A (a < z).

For the purpose of pruning redundant executions, conjgiwieak-
est preconditions from different interleavings at i-PP e®ds a
sound approximation. Although it may not capture all thelesqal

executions and thus fail to prune certain redundant exausitiall
the pruned executions are guaranteed to be redundant.

5. PRUNING THE REDUNDANT EXECU-
TIONS

to the bad state, may deprive DPOR the opportunity to prppgr
date its backtrack sets, thereby leading to unsound restucti

As we have shown in Section 2, when the current executiomis ru
4 in Figure 2, by the time nodes is reached DPOR has not had
the opportunity to update its backtrack sehat Ideally, threadl»
should be put into the backtrack setrof, that is, after KPLORE

We present our method for leveraging the predicate summarie backtracks tas, it should proceed to explore run 6.

to prune away redundant executions in this section.

5.1 Assertion Guided Pruning

To decide if we can skip executions starting from a globatin
states wheres has been visited by ¥PLORE previously through
some executions fromy to s, but is reached again through a new
execution, we check whether the current path conditigion is
subsumed byPS[s] under the current memory mapM. Intu-

itively, the path conditiors.pcon represents the set of states reach-

able along the current execution fromto s, wherea$®S|s] repre-
sents the set of states from which it is impossible to reaetbtd
state.

Within the NEXTSTATE procedure in Algorithm 2, we check for
the pruning condition as follow:

e If s.pcon — PS[s] holds unders. M, extending the current
execution beyond would not lead to a bad state. Therefore,
we backtrack immediately by setting as anearly termina-
tion state

e Otherwise, therenayexist an extension of the current execu-

tion beyonds to reach the bad state. In this case, we need to

continue the forward symbolic execution as usual.

The validity of s.pcon — PS|[s] can be decided by checking the
satisfiability of (s.pcon A =PS[s]) using an SMT solver. That is,
s.pcon — PS[s] holds if and only if(s.pcon A =PS[s]) is unsatis-
fiable.

However, sincens.pcon — PS[ns] along run 4, our pruning
method would force EPLOREto backtrack fromms, thereby skip-
ping the remainder of run 4 and run 5. Here, the technicalehgé
is how to properly update the backtrack set at nagdefore Ex-
PLOREbacktracks froms.

Fortunately, similar problems were encountered duringldwel-
opment of stateful DPOR algorithms [60]. In this work, weldal
the solution by Yang et al. [60]. We maintain two global tabhle
RVar[s] and WVar|s], for each global control state The RVar
table stores the set of global variables that have been readrbe
thread during previously explored executions startingifeo Sim-
ilarly, the WVar table stores the set of global variables that have
been written to by some thread during previously exploreztex
tions starting frons. These two tables are updated at the same time
the globalPS table is updated.

For the example in Figure 2, after exploring run 1, run 2, amd r
3, we would havelWVar[ns] = {(z,T1)} representing that=20
has previously been executed by thrdadat some point aftens.
Similarly, we haveRVar[ns] = {(z,T>)} representing that=x
has previously been executed by thr@adat some point aftens.

Whenever KPLORE decides to skip the execution tree from a
nodes, we can leverage the information stored liiVar[s] and
RVar]s] to properly update the backtrack sets for DPOR. For ex-
ample, the original DPOR algorithm waits until assignment is
executed by thread; before it can update the backtrack setgf
Now, using the entry{x,T2) € RVar[ns], it can put thread

Our new pruning method is complementary to partial order re- into the backtrack set ofs, as ifb=x has been executed by thread

duction techniques. POR is a generic reduction that rebésys
on commutativity between concurrent operations. Theegftwo
executions are considered equivalent as long as they liasthie
same program state. Our new method, in contrast, usesiassert
to guide the pruning. Therefore, even executions that ré@sulif-
ferent program states may still be regarded as equivalent.
Consider the GIG in Figure 4, which has 54 feasible execation

To make the presentation simple, we have assumed that x++ is

atomic in this example. However, note that a= x++ andbl: b=
x++ do not commute, because from a state wher@, for instance,
executingal; b1 leads toa=0,=1,2=2, but executing1; a1 leads

to a=1,=0,x=2. As shown in Table 1, without applying any reduc-
tion technique, the program has a total of 54 distinct rurestid

T» at some point aftens.

The correctness of this solution follows Yang et al. [60] lie t
context of stateful DPOR, which ensure that DPOR remainacou
in the presence of assertion guided pruning. For more irdtion
on the dynamic update of backtrack sets, please refer taitieal
description of DPOR [16].

5.3 Proof of Correctness

Now, we state and prove the correctness of our overall dtguri
Let SE,.i4 be the baseline symbolic execution procedure described
in Algorithm 1, andSE,..., be our new symbolic execution proce-
dure with predicate summary-based pruning, as describAtho+
rithm 2. We say thafSE,..., is a sound reduction afE,, if it

order reduction (POR) alone can reduce the 54 runs down to 34 always reaches the same set of error state#as, .

runs. Our new predicate summary-based pruning method atone
reduce the 54 runs down to the 18 runs. Finally, applying both
method and POR can reduce the 54 runs down to 13 runs.

Table 1. Applying various reduction techniques to Figure 4.
Reduction Technique

Number of Paths

None 54
Partial order reduction (POR) 34
Our predicate summary-based pruning method 18
Both POR and our new pruning method 13

5.2 Interaction with DPOR

However, there is a caveat in combining our predicate suiysmar
based pruning method with dynamic partial order reducti8,[
because DPOR is a delicate algorithm that relies on the dignam
computation of thebacktrack sets Without taking precautions,
naively pruning away redundant executions, even if theyaddaad

THEOREM 1. Given a programP and an error location®. Our
new symbolic execution procedus&,.., reachesE if and only if
the original symbolic execution procedu$é’,,, reachesk .

Proof: We divide the proof into two steps. First, we provettha
if SE,e., reachest, thenSE,,., also reached’. This is straight-
forward becaus&E,..., explores a subset of the execution paths
explored bySE,.,, as shown by a comparison of the two versions
of NEXTSTATE in Algorithms 1 and 2.

Second, we prove that BE,,;, reachesZ, thenSE,..., reaches
E. We do this by contradiction. Assume th&E,., can reach
E along a pathr but SE,.,, cannot. Since Lines 42—-43 in Algo-
rithm 2 are the only places whef&#,,.., can skip a path, there must
exist an events, t, s’) in pathn such thats.pcon — PS[s] holds
unders. M.

e Since pathr is feasible, the subpath affrom s’ to E must
also be feasible. To skip in SE,.., the subpath must have

been explored and then summarizedPi®[s’], presumably
whenSE,.., first explored the subpath.

e Butif PS[s’] already includes this common subpath frem
to E, by definition,SE,.,, must have reached the error block
E. This contradicts our assumption that the new symbolic
execution procedurSE,.., cannot reach the error blodk.

Therefore, our assumption is incorrect. The theorem holds.

6. OPTIMIZATIONS

In our new method, the size of the summary table as well as
the size of the logical constraint in each entry may becomgesn
formance bottleneck. Since large logic formulas are experts
compute and store, we would like to reduce the associateguom
tational cost without affecting soundness of the overadkcpdure.
Toward this end, we propose two optimizations.

6.1 Leveraging Static Program Slicing

Ouir first optimization is to combine our assertion guidechpry
with static progranslicingto achieve a more significant state space
reduction. Given an assertion statemeéntve define theliceof st
as the set of all statements in the program that may affecethét
of st. The slice is computed based on two dependency relations:
the control dependency relation and the data dependereiyorel
Intuitively, a statementt’ is a control dependency of a statement
st if the execution ofst’ determines whethest can be executed.
Whereas a statemestt” is a data dependency ef if the execution
of st may affect the data used in.

if (p)
y =v;
z =w=x* 5;
if (a)
X =z x 2
assert(x);

O WNE

) ;
@ assert(c)

Figure 5. Example for static Figure 6. Using Type A and
program slicing computation. B nodes outside the slice.

Consider the example in Figure 5. The writextat Line 5 has
a control dependencyt Line 4, and alata dependencgt Line 3.
Thesliceof Line 5 is defined as the transitive closure of its control
and data dependencies, which consists of Lines 3-5. Inasintr
the branching statement at Line 1 and the writg tat Line 2 are
irrelevant since their execution witlot affectthe value written to
at Line 5 nor the reachability of Line 5. Therefore, for thegmse
of checking the assertion at Line 6, which is related to tHeevaf
x at Line 5, we can simply ignore Lines 1-2. In other words, the
slice of Line 5 (and Line 6) defines a sub-program producing an
equivalent result as the full program as far as assertiookitg is
concerned.

We implemented the inter-procedural slicing method of Harw
et al. [22, 40] together with an Andersen [3] style flow-insiéime
alias analysis to compute the program slice statically. kivielé-
mented the method in LLVM using the Datalog engine inside the
Z3 SMT solver [12]. The overall method is flow-insensitivada
safe for handling multithreaded program with sequentiatipsis-
tent memory. Due to the lack of space, we do not go over thésleta
here. Readers can refer to [27, 22, 15, 3] for more details.

We combine static program slicing with symbolic executien a
follows. First, we compute the static program slice prioth® start
of symbolic execution. Then, inside the symbolic execufoo-
cedure as described in Algorithm 2, for eachbe-executed-PP

or i-PP nodes, we check if the corresponding branch condition or
global operation belongs to the static slice of the assexiate-
ment. If the answer is no, we handle a pivot pairftvhich can be

an i-PP or a b-PP) in one of the following ways depending on the
node type as illustrated in Figure 6.

e Type A: If sis not on any path from, to the assertion state-
ment, we treat each outgoing edge freras if it is halt. In
other words, we stop the current execution and backtrack
from s immediately. Note that backtracking will automati-
cally trigger the computation of weakest precondition.

Type B: If s is on some GIG path from, to the assertion
statement, we cannot simply treeas the end of the program
since outgoing paths from may still lead to the assertion
failure. As shown in Figure 6, we have to symbolically exe-
cute at least one of the outgoing edges from the Type B node,
while skipping the other outgoing edges.

The correctness of this approach directly follows from teé-d
nition of slicing. For both Type A and Type B nodes outside the
program slicewhich outgoing edge to execuiees not affect the
reachability of the bad state. Due to the relative efficieotyhe
static slicing algorithm, the overhead of computing theesis min-
imal compared to the subsequent symbolic execution preeedu
However, we will show through experiments that, by levemggi
static program slicing results, we can significantly deseeaf the
number of executions to be explored, thus decreasing theleam
ity of the overall analysis.

6.2 Approximating the Summary Constraints

Following Theorem 1, we can prove that in general, any kind
of underapproximation dPS[s] may be used in Algorithm 2 to re-
placePS[s], while maintaining the soundness of our pruning method.
Our optimization is to heuristically reduce the computasiocost
associated with predicate summaries. Toward this end, agoge
the following two underapproximations.

First, we use a global hash table with a fixed numbeof en-
tries to limit the storage cost f&S. With such bounded table, two
global control locationss and s’ may be hashed to the same en-
try. Whenever this happens, instead of storing both suneasamia
linked list for that entry, we limit the overall cost by drdpg one
of them. That is, whekey(s) = key(s’), we heuristically remove
one entry, effectively setting the corresponding predicaimmary
false.

Second, we use a fixed threshold to bound the size of each in-
dividual logical constraint folPS[s]. In other words, when the
predicate summary becomes too large, we will stop adding new
weakest-preconditions to it, thereby dropping all subsetjy ex-
plored subpaths. That is,

if (sizgPS[s]) < bnd) PS[s]:=PS[s] V wpls] .
This is again an underapproximation|s].

A main advantage of this on-demand constraint minimization
framework is that it allows various forms of underapproxiioias
to be plugged into it without affecting the soundness prdahe
overall algorithm. With underapproximations, it is possithat we
may no longer be able to prune away all redundant executhang,
ever, we can guarantee that all pruned executions are &dlynr
dant. In particular, the baseline symbolic execution inokithm 1
(no pruning) can be viewed as an extreme form of underapproxi
mation, wherePS[s] is underapproximated tfalse for all global
control locations.

7. EXPERIMENTS

We have implemented our method@oud9[11], which in turn
builds upon the LLVM compiler [2] and the KLEE symbolic vir-
tual machine [8]. Note that KLEE does not by itself support-mu
tithreading, and althougfloud9 has extended KLEE to support

Table 2. Summary of our experimental results.

Cloud9 +DPOR +DPOR+AG
Name LOC Threads Runs Time (s) Runs Time (s) Runs Time (s)
fibbenchfalsel 44 2 924 614 48 2.0 15 1.8
fibbenchfalse2 44 2 — >1800 628 36.2 34 3.9
fibbenchfalse3 44 2 — >1800 8704 503.8 378 13.7
indexertrue 85 2 — >1800 81 2.8 24 6.0
lazyO1false 51 3 11 0.5 3 0.3 3 1.1
reorder2falsela 85 2 7 0.3 3 0.3 3 1.2
reorder2falselb 85 3 91 14 26 0.6 9 1.2
reorder2falselc 85 4 2421 89.1 205 3.2 39 1.6
reorder2false2a 85 2 23 0.6 14 0.5 14 15
reorder2false2b 85 3 479 8.9 233 5.0 64 2.2
sigmafalsel 49 2 12 0.4 6 0.3 2 12
sigmafalse2 49 3 180 3.2 50 1.0 2 1.2
sigmafalse3 49 4 4830 2224 862 18.6 2 1.2
singletonfalse 57 4 60 11 24 0.6 19 11
stackfalse 120 2 527 8.6 236 3.9 49 2.8
stateful0ltrue 55 2 6 0.4 6 0.4 5 1.2
twostage3false 129 3 4862 302.1 88 11 34 2.2
dekkertrue 55 2 — >1800 280 3.6 6 1.5
petersontruel 43 2 — >1800 1052 22.7 64 2.7
petersontrue2 43 2 — >1800 2566 86.6 85 8.1
readwritelktruel 52 2 24 0.6 4 0.3 4 11
readwritelktrue2 52 4 — >1800 - >1800 436 14.9
timevarmutextrue 55 2 41 0.8 4 0.3 2 1.0
szymanskitrue 55 2 — >1800 - >1800 6 1.8
unveriftrue 40 2 — >1800 221 2.9 27 1.7
bluetoothbad 88 2 — >1800 1789 25.1 95 4.0
art-example 71 2 450 115 146 3.1 9 15
fsbenchbad 86 8 — >1800 256 9.2 9 20.9
tickettrue 76 2 1062 19.6 274 4.8 44 1.9
accountbad 60 3 8 0.4 8 0.4 8 1.0
circularbufbadl 109 2 118 1.7 118 1.9 58 3.8
circularbufbad2 109 2 358 55 358 55 132 6.4
readreadwrite 50 3 96 14 19 0.5 3 11
queuefalse 167 2 252 3.9 252 3.8 26 3.9
nbds-slUla 1942 2 — >1800 133 8.9 5 7.8
nbds-slUlb 1942 2 - >1800 - >1800 76 @ 16.2
nbds-slUlc 1942 2 — >1800 - >1800 202 352
nbds-slU2a 1942 2 — >1800 241 253 29 12.8
nbds-slU2b 1942 2 — >1800 -— >1800 118 245
nbds-slU2c 1942 2 — >1800 - >1800 717 164.8
nbds-skiplist 1994 3 — >1800 - >1800 1 25.1
nbds-hashwla 2322 2 — >1800 1339 1674 123 1778
nbds-hashwlb 2322 2 — >1800 6501 1568.9 675 222.8
nbds-hashwlc 2322 2 — >1800 — >1800 2399 476.9
nbds-hashw2a 2234 2 — >1800 5852 6741 369 155.3
nbds-hashw2b 2234 2 — >1800 -— >1800 1735 257.4
nbds-hashw2c 2234 2 — >1800 - >1800 4017 528.4
nbds-hash 2375 2 — >1800 - >1800 2283 333.8
nbds-list 1887 3 — >1800 10274 1130.7 1 5.9
nedmalloc 6303 4 — >1800 - >1800 1 12.0
Average 986.9 518.5 51.6

a limited number of POSIX thread routines, it does not attemp
to cover all feasible thread interleavings. Inde€tioud9 allows
for context switches only before certain POSIX thread symch
nizations but not before shared variable reads/writesthErmore,
Cloud9does not support partial order reduction. Instead, it farks
new execution every time a POSIX synchronization is encarent,
which can cause the number of executions to explode quickly.

We have extende@loud9to implement the baseline symbolic
execution in Algorithm 1, which systematically exploredtbmtra-
thread paths and thread interleavings. Then, we implerdeht
DPOR algorithm [16]. Based on these extensions, we havesimpl
mented our new assertion guided pruning (Algorithm 2) wiié t
optimizations presented in Section 6.

T T T T T T

F T T THHW T T THHW T T THHW T 1 A o =
Q B H > sl]
< 10% = + 10° =
+ E = @ E i E=|
x [o [e] [1
102k . 4 8102k i
a S =% + S E
+ F Ji—e LI F o8 |
2 10! & * . 4 = ; 10t ;:
2 E o £ =
@ = i U R il £ e :
[~ ° ° ‘* [- § e o ') H |
100 I | P 1 100 el 7 [TM mmm\(\ 1
10° 10' 102 10% 10 10" 10% 10®
Runs Cloud9 Time (s) Cloud9

Figure 7. Scatter plots comparing our new method with Cloud9

structures, andedmalloc[36], a thread-safe malloc implementa-
tion. Each of these programs has between 40 to 6,500 linexief c
with a combined total of 40,291 lines of code. Each benchmerk
gram is first transformed into LLVM bitcode using Clang/LLVM
before given to the symbolic execution tool with a set of wsero-
tated variables as symbolic input.

Table 2 summarizes the results of our experimental evalnati
Columns 1-3 show the name, lines of code, and the number of
threads for each program. Columns 4-9 compare the perf@enan
of three different methods in terms of the number of explotet
and the total run time in secondSloud9denotes the baseline sym-
bolic execution algorithm in Algorithm 1, +DPOR denotesiase-
line algorithm with dynamic partial order reduction, andROR +
AG denotes our new method, which augments the baseline algo-
rithm with DPOR and assertion guided pruning. The runtime of
+DPOR + AG includes the time to compute the slice. For alktest
we used a maximum time of 30 minutes.

In the remainder of this section, we analyze the experinhenta
results in more details, to answer the following researastjans:

1. How effective is our proposed pruning technique? Is itenor
effective than DPOR alone?

2. How scalable is our technique? Is it practical in handling
realistic C/C++ programs?

First, we show the comparison of Cloud9 and +DPOR + AG in
two scatter plots in Figure 7, where theaxis in each scatter plot
represents the number of runs (or time) of the baseline ighgor
(Cloud9), and they-axis represents the number of runs (or time)
of our method (+DPOR + AG). Each benchmark program is repre-
sented by a dot in the scatter plots; dots below the diagames |
are winning cases for our method. The results show that our ne
method can significantly reduce the number of runs explosed b
symbolic execution as well as the overall execution timembany
cases, the baseline algorithm timed out after 30 minutekevahir
new method finished in a few seconds.

Next, we show the comparison of +DPOR and +DPOR + AG in
the scatter plots in Figure 8. Our goal is to quantify how much
of the performance improvement comes from our new assertion
guided pruning as opposed to DPOR. Again, dots below the di-
agonal lines are winning cases for our method (+DPOR + AG)
over DPOR. For most of the benchmark programs, our new method
demonstrated a significant performance improvement ovédRP
For some benchmark programs, however, +DPOR + AG was slightl
slower than +DPOR despite that it executed the same, or desmal
number of runs. This is due to the additional overhead of run-
ning the supplementary static slicing algorithm, as welpeedi-
cate summary-based pruning, which did not provide suffigien-
formance boost to offset their overhead.

We have conducted experiments on two sets of benchmarks. The However, it is worth noting that, where our combined optianiz

first set consists of multithreaded C programs from the 20df¢- S
ware Verification Competition (SV-COMP) benchmark [48] and
programs from [14, 29]. The second set consists of two red mu
tithreaded applicationsnbds[35], a collection of lock-free data

tion of slicing and pruning is able to bring a performance liave-
ment, it often leads to a drastic reduction in the execuiime tom-
pared to DPOR alone. For example,rindmalloc(Table 2), our
new method was able to identify that the property does no¢wlep

T T T T T T T T T T T

A

TTT

103

-
(=]
w
T T 1T
-

TTTTTIT

ImEat =

Runs +DPOR + AG
=
o
[V
TTTTTIT
i High
Time (s) +DPOR + AG

. * o." 10 E =

£4. S : |
o

10t l. o0 = 1015. ® ° ..'g

F . E Fe o i

|- ;| B ..

100 | :Hm\ | u.mu\ Py mm.\\ L1 100 \,\.\HH\ o [T [e T
10° 10t 102 10 10 100 10% 10®

Runs +DPOR Time (s) +DPOR

Figure 8. Scatter plots comparing our new method with DPOR.

104 [Cloud9 /. | {~e— Cloud9
=~ +DPOR |-=— +DPOR
—e— +DPOR + AG {~e— +DPOR + AG
P @ 107 - *
c
=]
o 2 [— £
10 £
10° - .
|
2 4 6 2 4 6
Number of Threads Number of Threads
Figure 9. Parameterized results feorder2falseexperiment.

on any shared variables. In such cases, it can safely skipraxgp
the entire interleaved state space and finish in just one run.

age static program slicing before symbolic execution andibic
minimization of summary constraints during symbolic exemu

to further reduce the search space. Finally, our pruninchotet

is designed to work seamlessly with the more scalable DPOR al
gorithm [16] whereas the existing methods implemented sjimb
POR. Neither of these previous methods demonstrated mandli
C/C++ code with more than a thousand lines of code as in out.wor

Kusano and Wang [29] introduced a notion of predicate depen-
dence in the context of dynamic partial order reduction. gvan
al. [58, 53] proposed similar property-driven pruning noets for
dynamic model checking. However, these methods were geared
toward stateless model checking, which can be viewed asna for
of systematic testing with fixed data input, as opposed tdsjim
data inputs. Furthermore, these methods relied on conicbtiata
dependency relations as opposed to symbolic constrainesaed
from weakest precondition computation, and therefore wable
to merge non-failing executions reaching different finates. In
this sense, our new method is a more general and more acearate
sion of these prior works. Furthermore, it is orthogonal aadh-
plementary to the symmetry-reduction method proposed mgYa
et al. [61].

Our method also differs from the various heuristic statespa-
duction techniques [43, 38, 47] which do not guarantee thado
ness of the reduction. For example, Farzan et al. [14] and\Rat
al. [39] proposed methods for exploring certain subsethrefd in-
terleaving scenarios in symbolic execution of concurreagmms.
The idea of selective thread interleaving exploration was ased

We also evaluated the growth trends of the three methods whenPY Wang et al. [57] to cover the interleaving of certain paifs

the complexity of the benchmark program increase. Figuto®s

the results of comparing the three methods on a paramedqrive
gram namedeorder2false In these two figures, the-axis repre-
sents the number of threads created in the parameterizgcapnp

and they-axis represents, in logarithmic scale, the number of runs

dependent operations captured by a history aware predecsss
There are also many predictive bug detection methods basttto
use of SMT solvers [55, 28, 56, 24, 25, 45, 41, 46, 45, 54], whic
explore only thread interleavings under fixed program isput

The GREEN tool by Visser et al. [50] provides a wrapper around

explored and the execution time in seconds. As shown by these Constraint satisfiability solvers to check if the resulte atready

two figures, the computational overhead of all three mettinds
creases as the complexity of the program increases. Howawer
new method increases at a significantly reduced rate comhpare
the two existing methods.

8. RELATED WORK

As we have mentioned earlier, for sequential programsetiser
a large body of work on mitigating path explosion in symbefie-
cution, including the use of function summaries [18], maystrab-
straction [20], demand-driven refinement [31], state miatefb1],
state merging [30], and structural coverage [37]. McMillano-
posed a method callddzy abstractiorwith interpolants [33, 34],
which has been shown to be effective in model checking seiglien
software [6]. Jaffar et al. [10] used a similar method in tloa-c
text of constraint programming to compute resource-cairstd
shortest paths and worst-case execution time. Howevenreatdi
extension of such methods to multithreaded programs waelid-b
efficient since they lead to the naive exploration of all #urénter-
leavings.

Wachter et al. [52] extended McMillan’s lazy abstractiorhain-
terpolants method [34] to multithreaded programs while loioing
it with a symbolic implementation of the monotonic partieder re-
duction algorithm [26, 59]. The idea is to apply interpoléiased
reduction to each interleaved execution while applying lsgic
POR to reduce the number of interleavings. Chu and Jaffar[®]

available from prior invocations, and reuse the resultwvéilable.
As such, they can achieve significant reuse among multiple toa
the same solvers during the symbolic execution of diffepaths.
GREEN achieves this by distilling constraints into theiseattial
parts and then representing them in a canonical form. Theereu
achieved by GREEN is at a much lower level, and thereforers-co
plementary to our new pruning method.

Finally, we assume the sequential consistency memory model
although it is possible to integrate our method with the dyica
partial order reduction methods for relaxed memory modé& [
1]—we leave this for future work.

9. CONCLUSIONS

We have presented a predicate summary-based pruning method
for improving symbolic execution of multithreaded progra®ur
method is designed to work with the popular DPOR algorithmal, a
has the potential of achieving exponential reduction. Weshmn-
plemented the method Bloud9and demonstrated its effectiveness
through experiments on multithreaded C/C++ benchmarksfu-o
ture work, we plan to conduct more experiments to identiy th
sweet spotis using heuristic minimizations of summary constraints
to exploit the trade-off between increasing the pruning groand
decreasing the computational overhead.

10. ACKNOWLEDGMENTS

posed a similar method, where they improved the symbolic POR This work was primarily supported by the NSF under grants

algorithm by considering not only the standard independeria-

tion but also a nevsemi-commutativityelation. However, these

existing methods [52, 9] differ from our method significantl
First, we merge predicate summaries at interleaving pigattp

CCF-1149454, CCF-1405697, and CCF-1500024. Partial stippo
was provided by the ONR under grant N0O0014-13-1-0527. Any
opinions, findings, and conclusions expressed in this liahtare
those of the authors and do not necessarily reflect the viétreo

whereas the existing methods [52, 9] do not. Second, we-lever funding agencies.

11. REFERENCES

[1] P. A. Abdulla, S. Aronis, M. F. Atig, B. Jonsson,

C. Leonardsson, and K. F. Sagonas. Stateless model
checking for TSO and PSO. International Conference on
Tools and Algorithms for Construction and Analysis of
Systemspages 353-367, 2015.

[2] V. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke.
LLVM: A low-level virtual instruction set architecture. In
ACM/IEEE international symposium on Microarchitecture
San Diego, California, Dec 2003.

[3] L. O. Andersen. Program analysis and specializatiorifer
¢ programming language. Technical report, University of
Copenhagen, 1994.

[4] T. Ball. A theory of predicate-complete test coveragd an
generation. IrFormal Methods for Components and Objects,
Third International Symposium, FMCO 2004, Leiden, The
Netherlands, November 2 - 5, 2004, Revised Lectpazes
1-22, 2004.

[5] T. Bergan, D. Grossman, and L. Ceze. Symbolic executfon o

multithreaded programs from arbitrary program contexts. |
ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages, and Applicatipages
491-506, 2014.

[6] D. Beyer and P. Wendler. Algorithms for software model
checking: Predicate abstraction vs. impactiniternational
Conference on Formal Methods in Computer-Aided Design
pages 106-113, 2012.

[7] P. Boonstoppel, C. Cadar, and D. R. Engler. RWset:
Attacking path explosion in constraint-based test geimrat
In International Conference on Tools and Algorithms for
Construction and Analysis of Systemages 351-366, 2008.

[8] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for cample
systems programs. MSENIX Symposium on Operating
Systems Design and Implementatipages 209-224, 2008.

[9] D. Chu and J. Jaffar. A framework to synergize partialesrd
reduction with state interpolation. International Haifa
Verification Conferencepages 171-187, 2014.

[10] D.-H. Chu and J. Jaffar. A complete method for symmetry
reduction in safety verification. Imternational Conference
on Computer Aided Verificatiopages 616—633, 2012.

[11] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and
G. Candea. Cloud9: a software testing servigperating
Systems Review3(4):5-10, 2009.

[12] L. M. de Moura and N. Bjgrner. Z3: An efficient SMT solver.
In International Conference on Tools and Algorithms for
Construction and Analysis of Systemages 337-340, 2008.

[13] E. Dijkstra.A Discipline of ProgrammingPrentice Hall, NJ,
1976.

[14] A. Farzan, A. Holzer, N. Razavi, and H. Veith. Con2colic
testing. INACM SIGSOFT Symposium on Foundations of
Software Engineeringpages 37-47, 2013.

[15] J. Ferrante, K. J. Ottenstein, and J. D. Warren. Thernarag

dependence graph and its use in optimizat®@M Trans.

Program. Lang. Syst9(3):319-349, July 1987.

C. Flanagan and P. Godefroid. Dynamic partial-order

reduction for model checking software. ACM

SIGACT-SIGPLAN Symposium on Principles of

Programming Languagegages 110-121, 2005.

P. Godefroid Partial-Order Methods for the Verification of

Concurrent Systems - An Approach to the State-Explosion

Problem Springer, 1996.

[16]

[17]

[18] P. Godefroid. Compositional dynamic test generation.
ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languagepages 47-54, 2007.

[19] P. Godefroid, N. Klarlund, and K. Sen. DART: directed

automated random testing. Rrogramming Language

Design and Implementatiopages 213-223, June 2005.

P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali.

Compositional may-must program analysis: unleashing the

power of alternation. IACM SIGACT-SIGPLAN Symposium

on Principles of Programming Languaggsages 43-56,

2010.

S. Graf and H. Saidi. Construction of abstract statplysa

with PVS. InComputer Aided Verification (CAV'97)ages

72-83. Springer, 1997. LNCS 1254.

S. Horwitz, T. W. Reps, and D. Binkley. Interprocedural

slicing using dependence graphsAGM SIGPLAN

Conference on Programming Language Design and

Implementationpages 3546, 1988.

J. Jaffar, V. Murali, and J. A. Navas. Boosting concolic

testing via interpolation. IACM SIGSOFT Symposium on

Foundations of Software Engineerimgages 48-58, 2013.

V. Kahlon and C. Wang. Universal Causality Graphs: A

precise happens-before model for detecting bugs in

concurrent programs. limternational Conference on

Computer Aided Verificatigrpages 434—-449, 2010.

V. Kahlon and C. Wang. Lock removal for concurrent trace

programs. Innternational Conference on Computer Aided

Verification pages 227-242, 2012.

[26] V. Kahlon, C. Wang, and A. Gupta. Monotonic partial arde

reduction: An optimal symbolic partial order reduction

technique. Irinternational Conference on Computer Aided

Verification pages 398-413, 2009.

K. Kennedy and J. R. AllerDptimizing Compilers for

Modern Architectures: A Dependence-based Approach

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2002.

S. Kundu, M. K. Ganai, and C. Wang. CONTESSA:

Concurrency testing augmented with symbolic analysis. In

International Conference on Computer Aided Verification

pages 127-131, 2010.

M. Kusano and C. Wang. Assertion guided abstraction: a

cooperative optimization for dynamic partial order redet

In IEEE/ACM International Conference On Automated

Software Engineeringpages 175-186, 2014.

V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficie

state merging in symbolic execution. ACM SIGPLAN

Conference on Programming Language Design and

Implementationpages 193-204, 2012.

R. Majumdar and K. Sen. Hybrid concolic testing. In

International Conference on Software Engineeripgges

416-426, 2007.

[32] A. W. Mazurkiewicz. Trace theory. IAdvances in Petri Nets
pages 279-324. Springer, 1986.

[33] K. L. McMillan. Lazy abstraction with interpolants. In
International Conference on Computer Aided Verification
pages 123-136. Springer, 2006. LNCS 4144.

[34] K. L. McMillan. Lazy annotation for program testing and
verification. InInternational Conference on Computer Aided
Verification pages 104-118, 2010.

[35] Non-blocking data structures. URL:
https://code.google.com/p/nbds/.

[36] ned productions: nedmalloc URL:
http://www.nedprod.com/programs/portable/nedmalloc/

[20]

[21]

[22]

(23]

[24]

[25]

[27]

(28]

[29]

[30]

[31]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

R. Pandita, T. Xie, N. Tillmann, and J. de Halleux. Gulde
test generation for coverage criterialEEE International
Conference on Software Maintenance (ICSM 2010),
September 12-18, 2010, Timisoara, Romapages 1-10,
2010.

S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atoryicit
violation bugs from their hiding places. Architectural
Support for Programming Languages and Operating
Systemgspages 25-36, 2009.

N. Razavi, F. lvancic, V. Kahlon, and A. Gupta. Concutre
test generation using concolic multi-trace analysisi$ian
Symposium on Programming Languages and Systeages
239-255, 2012.

T. Reps, S. Horwitz, and M. Sagiv. Precise interprocatiu
dataflow analysis via graph reachability. ACM
SIGACT-SIGPLAN Symposium on Principles of
Programming Languagepages 49-61, New York, NY,
USA, 1995. ACM.

M. Said, C. Wang, Z. Yang, and K. Sakallah. Generating da
race witnesses by an SMT-based analysifNASA Formal
Methods pages 313-327, 2011.

K. Sen.Scalable Automated Methods for Dynamic Program
Analysis PhD thesis, UIUC, 2006.

K. Sen. Race directed random testing of concurrent
programs. IPACM SIGPLAN Conference on Programming
Language Design and Implementatigages 11-21, 2008.
K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C. IACM SIGSOFT Symposium on
Foundations of Software Engineeringages 263-272, 2005.
A. Sinha, S. Malik, C. Wang, and A. Gupta. Predicting
serializability violations: Smt-based search vs. dpmsedoh
search. IrHaifa Verification Conferengepages 95-114,
2011.

N. Sinha and C. Wang. On interference abstraction&Giv
SIGACT-SIGPLAN Symposium on Principles of
Programming Languagepages 423-434, 2011.

F. Sorrentino, A. Farzan, and P. Madhusudan. PENELOPE:
weaving threads to expose atomicity violationsAGM
SIGSOFT Symposium on Foundations of Software
Engineering pages 37-46, 2010.

SV-COMP. 2014 software verification competition. URL:
http://sv-comp.sosy-lab.org/2014/, 2014.

N. Tillmann and J. de Halleux. PEX — white box test
generation for .NET. Innternational Conference on Tests
and Proofs pages 134-153, 2008.

W. Visser, J. Geldenhuys, and M. B. Dwyer. Green: redaci
reusing and recycling constraints in program analysis. In
ACM SIGSOFT Symposium on Foundations of Software
Engineering page 58, 2012.

[51] W. Visser, C. S. Pasareanu, and R. Pelanek. Test input
generation for java containers using state matching. In
International Symposium on Software Testing and Analysis
pages 37-48, 2006.

[52] B. Wachter, D. Kroening, and J. Ouaknine. Verifying
multi-threaded software with Impact. Formal Methods in
Computer-Aided Design (FMCADpages 210-217, 2013.

[53] C. Wang, S. Chaudhuri, A. Gupta, and Y. Yang. Symbolic
pruning of concurrent program executions AGM
SIGSOFT Symposium on Foundations of Software
Engineering pages 23-32, 2009.

[54] C.Wang and M. Ganai. Predicting concurrency failures i
generalized traces of x86 executabledniternational
Conference on Runtime Verificatigmages 4-18, Sept. 2011.

[55] C.Wang, S. Kundu, M. Ganai, and A. Gupta. Symbolic
predictive analysis for concurrent programslnternational
Symposium on Formal Methqgdsages 256-272, 2009.

[56] C.Wang, R. Limaye, M. Ganai, and A. Gupta. Trace-based
symbolic analysis for atomicity violations. International
Conference on Tools and Algorithms for Construction and
Analysis of Systempages 328-342, 2010.

[57] C. Wang, M. Said, and A. Gupta. Coverage guided
systematic concurrency testing.llternational Conference
on Software Engineeringpages 221-230, 2011.

[58] C.Wang, Y. Yang, A. Gupta, and G. Gopalakrishnan.
Dynamic model checking with property driven pruning to
detect race conditions. International Symposium on
Automated Technology for Verification and Analypsges
126-140, 2008.

[59] C. Wang, Z. Yang, V. Kahlon, and A. Gupta. Peephole phtrti
order reduction. Innternational Conference on Tools and
Algorithms for Construction and Analysis of Systepages
382-396, 2008.

[60Q] Y. Yang, X. Chen, G. Gopalakrishnan, and R. Kirby. Effiti
stateful dynamic partial order reduction. &®IN Workshop
on Model Checking Softwarpages 288-305, 2008.

[61] Y. Yang, X. Chen, G. Gopalakrishnan, and C. Wang.
Automatic discovery of transition symmetry in multithread
programs using dynamic analysis.liernational SPIN
workshop on Model Checking Softwapages 279-295,
20009.

[62] Q.Yi, Z.Yang, S. Guo, C. Wang, J. Liu, and C. Zhao.
Postconditioned symbolic execution.|EBEE International
Conference on Software Testing, Verification and Validgtio
pages 1-10, 2015.

[63] N. Zhang, M. Kusano, and C. Wang. Dynamic partial order
reduction for relaxed memory models. ACM SIGPLAN
Conference on Programming Language Design and
Implementation2015.

