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Abstract—A software birthmark is a unique characteristic of a program. Thus, comparing the birthmarks between the plaintiff and
defendant programs provides an effective approach for software plagiarism detection. However, software birthmark generation
faces two main challenges: the absence of source code and various code obfuscation techniques that attempt to hide the
characteristics of a program. In this paper, we propose a new type of software birthmark called DYKIS (DYnamic Key Instruction
Sequence) that can be extracted from an executable without the need for source code. The plagiarism detection algorithm based
on our new birthmarks is resilient to both weak obfuscation techniques such as compiler optimizations and strong obfuscation
techniques implemented in tools such as sandMark, Allatori and Upx. We have developed a tool called DYKIs-pPD (DYKIS
Plagiarism Detection tool) and conducted extensive experiments on large number of binary programs.

The tool, the benchmarks and the experimental results are all publicly available.

Index Terms—software plagiarism detection, software birthmark

1 INTRODUCTION

PEN source software allows its usage, modifi-
Ocation and redistribution under certain types
of licenses. For example, GPL (GNU General Pub-
lic License) allows users to modify GPL compliance
programs freely, as long as the derivative works also
follow the tenets of GPL. However, driven by com-
mercial interests, some companies and individuals
incorporate third party software without respecting
the licensing terms. In addition, many downstream
companies integrate into their projects software com-
ponents delivered in binary form from upstream com-
panies without knowing possible license violations.
These intentional or unintentional software license vi-
olations lead to serious disputes from time to time. For
example, Verizon was sued by Free Software Founda-
tion for distributing Busybox, developed by Actiontec
Electronics, in its FIOS wireless routers [1]. A second
example is the licensing dispute between Skype and
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Joltid that almost terminated Skypes voice-over-IP
service [2]. Software plagiarism detection techniques
are, therefore, welcomed by both programmers who
want to protect their code and companies who want
to avoid costly lawsuits.

In order to prevent software theft some program-
mers use semantics-preserving code obfuscations to
make their programs obscure. Yet code obfuscations
can only prevent others from understanding the un-
derlying logic, but cannot hinder direct copy. Even
worse, plagiarists can in turn further obfuscate the
source code and distribute it in binary form to evade
detection. Software watermarking [3] is one of the
earliest and most well-known approaches. By embed-
ding a unique identifier, i.e. a watermark, that is hard
to remove but easy to verify in the software before
its distribution, it can serve as a strong evidence
of software plagiarism. However, besides the need
to insert additional data in the original program,
code obfuscations can often destroy watermarks. It is
believed that a sufficiently determined attacker will
eventually be able to defeat any watermark [4].

In order to address the problem a different soft-
ware plagiarism detection technique called software
birthmarking [5], [6] has been proposed. Unlike wa-
termarking where unique identifiers are inserted into
a program, birthmarking attempts to extract a set of
characteristics that can be used to uniquely identify a
program. Two programs with same birthmarks indi-
cate software theft. As illustrated by Myles and Coll-
berg [7], a birthmark may identify software theft even
after the watermarks are removed by code obfusca-
tions. Although this technique is promising, extracting
high-quality birthmarks, unfortunately, turns out to
be a very challenging task. State-of-the-art software
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birthmarking can only provide very limited help due
to several reasons. Firstly, many existing approaches
[8]-[10] require source code. However, unless other
evidence are obtained, programs suspected of plagia-
rism are usually available only in the form of binary
executable to conceal plagiarism. Secondly, many ap-
proaches are applicable to specific types of operating
systems or programming languages. For example, the
API based birthmarks [11], [12] rely on features of
Java or Windows system, thus unable to detect cross-
platform plagiarism. Thirdly, with the help of various
powerful automated semantics-preserving code ob-
fuscation tools [13], [14], plagiarists are able to make
significant changes to copied code without changing
its functionality. As a result, it is still a daunting task
to extract birthmarks that remain the same before and
after code obfuscations.

In this paper, we propose to compute birthmarks
based on execution sequences. Extracting birthmarks
from assembly instructions not only enables us to
detect plagiarisms without source code, but also
makes our approach independent of programming
languages and operating systems. The dynamic ap-
proach also make it possible for us to focus on the
program logic, i.e. how the inputs are processed,
rather than its syntax. Instead of considering complete
execution sequences, our birthmark is based on a
subset of executed instructions. Complete execution
sequences are not desirable due to several reasons.
Firstly, an execution sequence of a non-trivial program
is usually very large. A birthmark consisting of large
number of instructions is computationally expensive
to process. Secondly, many instructions, such as mov
that moves data between memory and registers, are
added by compilers and are irrelevant to the pro-
gram logic. Complete execution sequences with large
amount of such common instructions bear similar-
ity even they are obtained from different programs.
Since plagiarism is measured by similarity instead of
exact match in practice, birthmarks based on com-
plete execution traces leads to high false positive!
rate. Therefore, we consider only the key instructions
executed under a given input vector for the compu-
tation of birthmarks. The ideal key instructions are
inherent to program logic and any change to such
instructions leads to malfunction of copied code. In
our implementation, we consider key instructions as
those that both generate new values (value-updating
instructions) and propagate taints from input (input-
correlated instructions). These instructions reflect how
inputs are processed, thus are inherent to program
logic. Since a particular execution is an abstraction of
the whole program, we use multiple executions and

1. In plagiarism detection literature, false positive refers to the
case that an independently developed program is considered a
copy of another program, and false negative refers to the case
that a copied program is considered an independently developed
program.

the k-gram algorithm [7] to compute the similarity of
birthmarks.

The contributions of this paper are summarized as
follows:

e A new dynamic birthmark called DYKIS (DY-
namic Key Instruction Sequence) is proposed to
enrich the birthmark-based plagiarism detection
family.

o« We have implemented algorithms to extract
DYKIS birthmarks from binary executables and
to detect software plagiarisms by comparing such
birthmarks. Our tool is publicly available for
download. To the best of our knowledge there are
very few birthmark-based plagiarism detection
tools that are publicly available.

o We have conducted experiments on 342 versions
of 28 different programs. Our empirical study
shows that our approach is not only able to detect
cross-platform plagiarisms but also resilient to al-
most all the state-of-the-art semantics-preserving
obfuscation techniques. Our benchmarks are pub-
licly available.

o We illustrate five possible whole program pla-
giarism scenarios, against all of which DYKIS is
tested for effectiveness. We believe such study is
beneficial for researchers to design experiments
and present their findings.

o We compare our approach against SCSSB, an
existing birthmark-based approach. The compar-
ison indicates that our approach achieves higher
accuracy and superior performance with respect
to metrics including URC (Union of Resilience
and Credibility), F-Measure and MCC (Matthews
Correlation Coefficient).

The remainder of this paper is organized as fol-
lows. After describing necessary background on soft-
ware birthmarks in Section 2, we present our DYKIS
birthmark in Section 3 that includes its definition,
generation and comparison. Section 4 gives an ex-
tensive evaluation on resilience and credibility of
DYKIS birthmarks. The section also includes a com-
parison between DYKIS and an existing birthmark.
In Section 5 we discuss threats to the validity of our
approach. Section 6 reviews related work and finally
Section 7 concludes the paper.

2 PRELIMINARIES

The goal of software plagiarism detection is to deter-
mine whether a plaintiff is a copy of a defendant. In this
paper, a plaintiff refers to a program that is suspected
of plagiarism. A defendant is a program used to
compare with the plaintiff. If convicted, the plaintiff
is a copy of the defendant program. Otherwise the
plaintiff is independently developed.

A software birthmark is a set of characteristics
extracted from a program that reflects intrinsic proper-
ties of the program. It can be used to uniquely identify
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a program. Definition 1 gives its typical definition
that has led to several works that extract birthmarks
statically by analyzing the syntax of a program.

Definition 1: Software Birthmark [15]. We say pg is
a birthmark of the program p if and only if both of
the following conditions are satisfied:

- pg is obtained only from p itself.

- Program ¢ is a copy of p = p = ¢z.

Since static birthmarks are usually ineffective
against semantics-preserving obfuscations that can
modify the syntactic structure of a program, dynamic
software birthmarks, as defined in Definition 2, were
introduced to remedy the problem.

Definition 2: Dynamic Software Birthmark [6]. Let
p be a program and I be a input to p. We say pk is
a dynamic birthmark of p if and only if both of the
following conditions are satisfied:

- pk is obtained only from p itself when executing
p with input 1.

- Program ¢ is a copy of p = pg = q.

The two definitions give conceptual description
without offering any implementation details. In ad-
dition, there are many practical issues not addressed
by the definitions. For example, even if ¢ is a copy
of p, in practice the birthmarks of the two programs
are not identical. As a result, various algorithms for
generating and comparing software birthmarks have
been derived from the definitions.

Let p and pp be the plaintiff and its birthmark,
and ¢ and ¢z be the defendant and its birthmark.
In practice the plagiarism is decided by a threshold
¢ and a function sim that computes the similarity
score between pp and ¢p. The range of a similarity
score is between 0 and 1, and a typical value of ¢ is
0.25. Equation 1 gives a conceptual definition of sim
that returns a three-value result: positive, negative or
inconclusive. We say sim gives a false classification if it
reports false positive or false negative, and we say sim
gives incorrect classification if it reports false positive,
false negative or inconclusiveness.

>1—¢ positive: pis a copy of q
< e mnegative: pis not a copy of q
otherwise inconclusive

@™

There are different ways to implement the function
depending on the format of birthmarks. For example,
for birthmarks in the format of set, the widely used
methods for the implementation of sim include Co-
sine distance and Jaccard index. More details regard-
ing similarity computation are given in Section 3.2.

A high quality birthmark must have a low ratio
of incorrect classifications for a given . However,
high precision is not necessarily required, because,
birthmark technique is not a proving technique but
rather a detecting technique. In other words, false
negative is more critical than false positive because
further investigation is conducted once a program is

stm (plga QB) =

TABLE 1
Average similarity scores between a program and its
compiler-obfuscated version utilizing whole and key
instruction sequences

Program  WholeTrace KeyTrace
bzip2 0.642 1.00
gzip 0.397 0.899
md5sum 0.30 0.789

considered a copy. Two properties, resilience and cred-
ibility, are widely adopted in the literature to evaluate
the quality of a birthmark. The existing definitions of
resilience [7] and credibility [16] are absolute in the
sense that they do not consider programs or inputs.
In practice birthmarks are often relative. For example,
birthmarks extracted using the same algorithm are
resilient to code transformations for p under input I,
but are not resilient for ¢ under input /5. In this paper
we make the definitions relative in order to match the
dynamic nature of our approach.

Definition 3: Resilience. Let p be a program and
q be a copy of p generated by applying semantics-
preserving code transformations 7. A birthmark is
resilient to T and input I if sim (pg,qf) >1—¢.

Definition 4: Credibility. Let p and ¢ be indepen-
dently developed programs that may accomplish
the same task. A birthmark is credible under input
I if it can differentiate the two programs, that is

sim (p{s, qlfs) <e.

3 SOFTWARE PLAGIARISM DETECTION
BASED ON DYKIS

3.1 Dynamic Key Instruction Sequence Birth-
marks

A high quality birthmark must be closely related to
the semantics of a program in order to be resilient to
semantics-preserving code transformations. An obvi-
ous candidate is the instruction sequences recorded
during a program execution, as they clearly reflect
how an input vector is processed by the program.
However taking the whole sequence as a birthmark is
often too large for further analysis. For example, for
the three programs bzip2, gzip and md5sum that are
used in our experiments, the number of instructions
recorded during an execution are 1.73M?, 4.54M and
0.32M, respectively, with a tiny 5K-byte text file as the
program input. Even after filtering out system library
instructions, 1.53M, 4.4M and 0.05M instructions still
remain for the three executions.

Besides being computationally expensive, birth-
marks extracted from whole instruction sequences are
easily defeated by simple code transformations due to
the equal treatment of all kinds instructions [17]. For

2. In this paper M refers to 106 and K refers to 103.
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the three programs, we generate a set of weakly ob-
fuscated versions for each of the program by utilizing
different compilers and optimization levels to compile
the source code. We then generate birthmarks from
the whole execution sequences after removing Linux
library instructions, and compare the similarity be-
tween birthmarks with the approach to be discussed
in Section 3.2. Table 1 gives the similarity scores of the
compiler-obfuscated versions of the same program.
As indicated by Column WholeTrace, the similarity
scores between the compiler obfuscated versions of
the same program are all below 0.65. Considering
the most common value of ¢ is 0.25, whole execu-
tion sequence based birthmarking fails to detect any
plagiarisms. Besides the issue of false negatives, birth-
marks extracted from whole instruction sequences can
also report false positives. For example, the similarity
between birthmarks of md5sum and cksum using the
whole instruction sequence is as high as 0.9. This is
due to the fact that the common system libraries used
by the two applications constitute significant portion
of the execution sequences.

The aforementioned issues can be solved if we
consider only the key instructions in an execution se-
quence. Ideally the key instructions should constitute
a small portion of a whole execution sequence and
must be relatively unique. By studying the execution
sequences at assembly level, we have found that there
exist a large number of data-transfer instructions, such
as mov, push and pop, in all the applications. These
instructions can be discarded because they usually
facilitate computations rather being part of program
logic. On the other hand, instructions whose execution
will generate new values, such as add and sh1l, reflect
the inherent logic of a program. These so called value-
updating instructions [18] usually represent program
semantics. In addition, program semantics is a formal
representation of how inputs are processed by the
program, so instructions not handling inputs are usu-
ally dispensable. Based on dynamic taint analysis [19],
we can obtain the correlation between instructions
and inputs. The dynamic taint analysis treats program
inputs as tainted data. Initially a taint label is associ-
ated with the register or memory unit where an input
resides to indicate that the location is tainted. During
the execution, taint labels are propagated according to
taint policies. A variable (register or memory unit) is
marked tainted if it is data dependent on a variable
that has already been associated with a taint label. We
call instructions whose execution introduce new taint
labels to registers or memory units as input-correlated
instructions. Definition 5 summarizes the types of key
instructions.

Definition 5: Dynamic ~ Key Instruction. Let
trace(p, I) be a sequence of executed instructions of
Program p under input I. For each instruction ¢ in
trace(p, I), we say c is a key instruction if both of the
following conditions are satisfied:

- ¢ is a value-updating instruction.
- cis an input-correlated instruction.

We use key(p,I) to denote the sub-sequence of
trace(p, I) that consists of key instructions only.

After removing non-key instructions, the size of dy-
namic key instruction sequences of gzip, bzip2 and
md5sum are 10K, 1.6K and 28K respectively, which
are about 173 times, 2800 times and 11 times less
than their corresponding whole sequences. Moreover,
as illustrated by Column KeyTrace in Table 1, there
exists strong similarity between the DYKIS birthmarks
extracted from dynamic key instruction sequences.
This indicates that the key instructions are superior
to whole trace for code transformations provided by
different compilers and optimization levels.

Despite the fact that key instructions greatly re-
duces the number of instructions to analyze, the
size of reduced key instructions is still unbound. In
order to address the problem, we adopt the k-gram
algorithm, also used in [7], [11], [12], to bound key
instruction sequences with a length £ window.

Definition 6: k-gram. Let opcode = {(e1,ea,- -, e€n)
be a sequence of executed operation codes. Given
a predefined length k, a subsequence opcode;(k) =
<ej;ej+l7"’»€j+k—1> (1 < ] § n—k + 1) can be
generated by sliding the window over t with stride
one each time. We refer to opcode;(k) as a k-gram.

Finally we give the definition of DYKIS birthmarks.

Definition 7: DYKIS birthmark. Let key(p,I) =
(ins1,insa,---,ins,) be a key instruction sequence
recorded during execution of program p under input
vector I. Let opcode (p,I) = (e1,e2, -,e,) be the
corresponding sequence of operation code. That is,
e; is the operation code of ins;. Let gram (p,I,k) =
(gilg; = (ejrejrn,-vejpn-1)) (1 < j <n—k+1)
be a sequence of k-grams. We call the key-value pair
set ps(k) = {(gm, freq(gm))lgm € gram(p,I,k) A
Viny#ma-Gmy # 9ms }, Where freq(gm) represents the
frequency of g, occurred in gram(p,I,k), as the
DYnamic Key Instruction Sequence based (DYKIS)
birthmark of p under the input I.

Example 1. Suppose the dynamic key instruction
sequence key(p, I) obtained from an execution of pro-
gram p is as the following:

add ecxebx
rol ecx,0x7
and ebx,ecx
add ebx,esi
rol ebx,0xc

The corresponding sequence of operation codes
is therefore opcode(p,I) = (add,rol,and,add,rol).
When k = 2 the k-gram sequence is gram (p,1,2) =
({add,rol), (rol,and), {and, add), (add, rol)). After
counting the element frequencies, we get DYKIS:
pk (2) = {({(add, rol),2), ({rol,and), 1), ({and, add), 1) }.
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3.2 Similarity Calculation

In the literature of software birthmarking, different
methods of similarity measurements are used depend-
ing on different birthmark formats that in general are
sequences, sets or graphs. Similarity of sequences can
be computed by pattern matching methods, such as
calculating the longest common subsequences [12],
[18]. There are many methods for calculating simi-
larity of sets, including Dice coefficient [16], Jaccard
index [11], Cosine distance [20], [21]. Computing the
similarity of graphs is relatively more complex. It is
conducted by either graph monomorphism [22] or
isomorphism algorithms [10], [23], or by translating a
graph into a vector using algorithms such as random
walk with restart [24].

Our birthmark is a set composed of key-value pairs.
The types of keys are not as rich as other static k-
gram birthmarks [7], [25] or dynamic birthmarks [17],
[26] extracted from the whole instruction sequences.
Therefore DYKIS birthmarks have higher probability
to be similar if we adopt calculation methods such
as Jaccard index [11] and Dice coefficient [16] that
ignore element frequency in a sequence. Besides, the
execution frequency of an instruction, which is not
available to static methods, indicates how inputs are
processed and thus should be an integral component
of a birthmark. Based on these considerations, we
transform the birthmarks into frequency vectors, and
then make use of the Cosine distance, the most com-
monly used similarity metric for vectors, to measure
the similarity of two birthmarks.

Formally, given two DYKIS birthmarks
ps = {(k,v1) 5+, (kn,v)}  and  gp =
(k301 -, (ks )}, let U = kset (pis) U kset (qs)
where kset (pg) = {ki,---,kn} and kset(qg) =
{ki,---,kl.}. We convert set U to vector

= (t1,---,tjy)) by assigning an arbitrary order to
the elements in U. Let vector 7'z = (a1,---,ay)). For
each element in 'z we have
v;, if t; € kset (pB)

4= { 0, if t; & kset (ps) ’

where v; is the value of key ¢, in pg (1 < i < |U)).
Likewise we define @z = (b1, -,bjy)). The simi-
larity of two DYKIS birthmarks pg and ¢z is calcu-

iy where 17| =

@

lated with sim (pg,qs) =

S . [7sl= [T B

a;€ps bi€an

Example 2. Assume the DYKIS birthmark of an-
other program ¢ executed with the same input
I as the program p in Example 1 is: ¢5(2) =
{é(add, rol), 1), ({rol,and), 1), ({and, sub),2)}. We have

= ((add, rol}, (rol,and), {and, add), {(add, sub)). Cor-
respondingly the two DYKIS birthmarks can be con-
verted into the following vectors: pg = (2,1,1,0) and
a4 = (1,1,0,2). Finally the similarity score of the two
DYKIS birthmarks is sim(pg(2), g5(2)) = 0.5.

e S.,S,,*+,Sn are similarity values under different inputs

Detection Result

Birthmark Similarity
Calculator

Plaintiff
Binary
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Analysis Module

Key Instruction
Sequence

Operand Stripper

Fig. 1. Overview of DYKIS-PD
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3.3 Plagiarism Detection

Although a single execution of a program p faithfully
reveals the behavior of p, it is an abstraction and thus
may lead to false positives in plagiarism detection.
For example, two independently developed programs
adopting standard error-handling subroutines may
exhibit identical behavior under error-inducing in-
puts. In order to alleviate this problem, the calcula-
tion of the similarity score between two programs is
based on various birthmarks obtained under multiple
inputs.

Let p and g be the plaintiff and defendant. Given
a series of inputs {I,...,I,} to drive the execution
of the programs, we obtain n pair of DYKIS birth-
marks {(pg1,451), - -, (PBn, qBn)}. The similarity score
between program p and ¢ is calculated by sim (p, q) =

>~ sim (ppi, qs:)/n, whose value is between 0 and 1.

i=1

That is, the existence of plagiarism between p and ¢
is decided by the average similarity scores of their
DKYIS birthmarks and the predefined threshold ¢.

3.4 System Design and Implementation

Figure 1 depicts the overview of our DYKIS-based
software plagiarism detection tool called DYKIS-PD
that consists of five modules: the dynamic analysis
module, the operand stripper, the birthmark genera-
tor, the similarity calculator and the decision maker.
DYKIS-PD has been demonstrated at a conference [27]
and is now publicly available for download.

o Dynamic Analysis Module. The dynamic anal-
ysis module, as depicted in Figure 2, is imple-
mented as a PIN [28] plugin called DKISExtrac-
tor. There are two sub-modules that are imple-
mented on top of the libdft [29] data flow analy-
sis framework. TaintAnalyzer performs dynamic
taint analysis, which includes the recognition of
taint sources and the propagation of taints to
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DKISExtractor

Taint Key Instruction

Program o Analyzer || Recognizer&Recorder ey Instruction
Input Pin ﬁ* - Sequence
npu \/ﬁldﬂ API

‘ Libdft ‘

Fig. 2. Structure of the dynamic analysis module

assist the identification of input-correlated in-
structions. The input-correlated instructions are
then processed by the sub-module of Key In-
struction Recorder to produce the key instruction
sequence. In order to compare with the existing
system call based birthmark SCSSB [12], we have
also implemented another PIN plugin called Sys-
Tracer for capturing system calls.

o Operand Stripper. Given the same source code,
the register and memory usage in the binary
executable can be totally different if different
compilers or optimization levels are adopted.
Even with the same compiler and optimization
level, due to the difference of memory layout
during compilation, the operands across binary
files corresponding to the same source code can
be different. Therefore, the operands in the key
instructions are not helpful in plagiarism detec-
tion and we use operand stripper to remove
them.

 Similarity Calculator and Decision Maker. Sim-
ilarity calculator measures similarity of two
DYKIS birthmarks by their cosine distance with
a value between 0 and 1. Decision maker decides
plagiarism by the average value 1 of multiple
similarity scores against a predefined threshold
e. We adopt a default value of ¢ = 0.25 as
in previous studies [11], [16], [30], [31]. That is,
two programs are classified as independent if
¥ < 0.25, as plagiarized if 1) > 0.75.

4 EVALUATION

We have conducted extensive experiments to evaluate
the resilience and credibility of DYKIS birthmarks.
Our first empirical study is to identify a proper value
of k, because k-gram algorithms with different &
values may produce different birthmarks even for the
same instruction sequence. Once the value of % is fixed
we evaluate DYKIS on large number of programs, var-
ious compilers, different implementation languages,
and multiple semantics-preserving code obfuscators.

Table 2 lists the names and some other basic infor-
mation of our benchmarks. Column #Versions gives
the number of versions that include the original pro-
grams, their successive releases and the obfuscated
versions. L and W mark whether there exist Linux or
Windows binaries, respectively. Column Size shows

the number of bytes of the largest version, with its ver-
sion number listed in column Version. In the following
we give a summary of our testing environment.

o The benchmarks consist of 342 versions of 28
programs implemented in C or Java, including;:

- four image processing software: sixiv, feh,
pho and giv;

- five compression/decompression software:
gzip, bzip2, zip, rar, and 1zip;

— seven Java applications: JLex, a lexical an-
alyzer generator; JavaCUP, a LALR parser
generator for Java; a Calculator imple-
mented using the JavaCUP specification;
as well as Avrora, Antlr, Luindex and
Lusearch from the Dacapo benchmark;

— six security libraries: md5sum,
openesslSHA, openessl1SHAL,
openesslMD4, openssl1MD5,
openessl1lRMD160.

— five text-based web browsers: elinks,

links, links2, 1lynx and w3m;

o We use two compilers gcc and 11vm with vari-
ous optimization levels to generate binaries from
source code.

e We apply many publicly available code
obfuscators, including SandMark, Zelix
KlassMaster, Allatori, DashO, JShrink,
ProGuard and RetroGuard.

o We utilize many packing tools including UPX,
AS-Protect, Fsg, Nspack, PECompact and
WinUpack, as well as a specialized binary obfus-
cator binobf to obfuscate the binaries.

The quality of DYKIS birthmark is further com-
pared with an existing type of birthmark called SC-
SSB [12]. Finally we evaluate the sensitivity of DYKIS
to inputs.

4.1

The value of %k used in the k-gram algorithm plays
an important role, as its variation leads to different
DYKIS birthmarks even with the same key instruction
sequence. In this section we study the impact of
k on efficiency and effectiveness of our plagiarism
detection tool. Intuitively, larger value of k incurs ad-
ditional overhead but gives better picture of program
semantics. Surprisingly our empirical study contra-
dicts the intuition: there is no clear benefit using large
k values even not considering computational cost.
Based on our experiments we are able to determine
a fixed k value that is appropriate for all our experi-
ments.

Impact of Parameter £

4.1.1

We conduct three groups of experiments. In the first
group we extract DYKIS birthmarks from the pro-
grams within the same category, and then compute

Impact of k on efficiency
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TABLE 2
Benchmark programs.

Name Size (bytes) Version #Versions | Name Size (bytes) Version #Versions
gzip 1,953,792 1.24 25/1IW JLex 282,624 14 44/L
bzip2 2,011,136 1.0.6 19/ILW JavaCUP 421,888 0.10k 39/L
zip 189,256 3.0 2/L Calculator 421,888 0.10k 41/L
rar 577,796 5.0 2/L Avrora 5,827,287 Dacapo09 17/L
lzip 87,784 1.13 2/L Luindex 3,661,824 Dacapo09 26/L
sxiv 46,980 1.0 2/L Lusearch 3,678,208 Dacapo09 25/L
feh 489,287 2.2 8/L Antlr 2,469,888 Dacapo06 25/L
pho 63,720 0.9.8 2/L md5sum 1,728,512 8.13 3/L
qiv 60,612 224 3/L openssIMD4 510,224 1.0.1 9/IW
elinks 1,200,128 0.12 2/L openssISHA 510,224 1.0.1 9/IW
links 1,011,712 21 2/L openssISHA1 510,224 1.0.1 9/LW
links2 2,797,568 2.6 2/L opensslRMD160 510,224 1.0.1 9/IW
lynx 1,396,736 288 2/L openssIMD5 510,224 1.0.1 9/ILW
w3m 1,282,048 0.5.3 2/L UurXx 319,292 3.91 2/IW
' expect very low similarity scores. Obviously the larger
90 —e— DifferentCategory

—&— SameCategory

—4— Plagiarized

1 2 3 4 5 7 10 50
K

100 300 500

Fig. 3. Impact of £ on time consumption of similarity
calculation

pair-wise similarity scores. In the second group we
conduct pair-wise comparison of software across dif-
ferent categories. Finally in the third group we com-
pare different versions of the same program com-
piled by different compilers or optimization levels.
The programs in the first two groups are considered
independent, while the programs in the third group
are considered plagiarized.

Figure 3 depicts the time consumption under dif-
ferent values of k with three colored lines. The blue,
green and orange lines give average time spent on ob-
taining and comparing DYKIS birthmarks of software
in different categories, software in same categories
and plagiarized software, respectively. As expected,
time consumption increases as the value of k in-
creases. The time usage is trivial when the value of
k is small, and becomes significant when k is more
than 100.

4.1.2 Similarity scores of independent software in
different categories

Since plagiarism does not exist between image pro-
cessing software and other types of software, we

the value of k, the smaller the similarity scores. The
question here is whether the benefit of a large & value
justifies its cost.

The blue rows in Table 3 illustrate how similarity
changes between the imaging processing software
sxiv and other types of programs by varying the
value of k. 1-gram is apparently a bad choice as all the
scores are above the default threshold 0.25. The scores
decrease sharply starting from 2-gram and there is
no false positive when k = 3. Under 3-gram the
largest similarity score is 0.168 and the average is
0.075. Although k£ = 500 gives lower average score
0.004, there is no clear benefit over £ = 3 since the
average score of the latter is also well below 0.25.

We have conducted experiments on the other three
image processing software against other types of pro-
grams, and have obtained similar results. The grey
row gives the average similarity scores on all our
comparisons.

4.1.3 Similarity scores of independent software in the
same category

The functionality of programs in the same cate-
gories overlap to a great extent, even they are de-
veloped independently. Therefore a low value of
k may have greater risk of false positives. In this
group of experiments we study the impact of &
values on the similarity scores between indepen-
dently developed programs in the same category. In
particular, we compare DYKIS birthmarks between
compression/decompression software bzip2, gzip,
zip, rar, lzip, between encryption/decryption
software md5sum, openesslSHA, openesslSHAI,
openesslMD4, openessl1RMD160, and between im-
age processing software pho, feh, giv, sxiv. Table
3 randomly chooses 8 pairs of comparisons. As ex-
pected, the average similarity scores decreases as k
increases. However, the speed of decrease becomes
trivial once k reaches 3. For example, the average sim-
ilarity scores are 0.116 and 0.101 for £ = 4 and k& = 500,
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TABLE 3
Impact of parameter k on similarity scores between independently developed programs in different categories
(blue) and in same categories (green), and between programs and their copies (orange).

ComparisonPairs K=1 =2 =3 =4 =5 =7 =10 =50 =100 =300 =500
(sxiv,bzip2) 0414 0.074 003 0018 0.006 O 0 0 0 0 0
(sxiv, gzip) 0578 0.062 0 0 0 0 0 0 0 0 0
(sxiv, md5sum) 0.614 0308 0.03 0.016 0 0 0 0 0 0 0
(sxiv,openssIMD4) 0552 0242 0.168 0.163 0.162 016 015 0.071 001 0 0
(sxiv, openssIMD5) 0564 0322 0.126 0132 0.132 0.128 0.118 0.034 0.004 0 0
(sxiv, openssIRMD160) 0.606 0205 0.099 0.084 0.084 0.082 0.072 0.019 0004 0 0
(sxiv, openssISHA) 052 0227 0.128 0.116 0.118 0.123 0.113 0.044 0.006 0 0
(sxiv, zip) 0568 0.074 0.022 0.021 002 0.02 0018 0.018 0019 0.024 0.03
Average Score of Software Listed Above 0.552 0.189 0.075 0.069 0.065 0.064 0.059 0.023 0.005 0.003 0.004
Average Score of All Software in Different Categories Tested 0.523 0.183 0.089 0.081 0.078 0.078 0.074 0.051 0.037 0.039 0.024
(bzip2, gzip) 0702 0 0 0 0 0 0 0 0 0 0
(bzip2, zip) 0.568 0.001 0 0 0 0 0 0 0 0 0
(md5sum, openssIRMD160) 0919 0.602 0312 0144 0059 0.023 0 0 0 0 0
(md5sum, openssISHA) 0.895 0.558 0295 0.116 0.041 0.005 0 0 0 0 0
(md5sum, openssISHAT) 0.709 0209 0.019 0.009 0 0 0 0 0 0 0
(md5sum, openssIMD4) 0.879 0499 02 0.107 0.054 0.029 0.007 0 0 0 0
(pho,feh) 0.628 0336 0297 0296 0298 0304 0311 0386 0453 0475 0.342
(giv,feh) 054 0274 0256 0257 0259 0266 0276 0364 0452 0493 0462
Average Score of Software Listed Above 0.730 0310 0.172 0116 0.089 0.078 0.074 0.094 0.113 0.121 0.101
Average Score of All Software in the Same Categories Tested 0.450 0214 0.158 0.139 0.130 0.126 0.125 0.137 0.136 0.104 0.088
bzip2(gce_dbg_ol, llvm_release_o3) 0973 0968 0957 0952 0947 0921 0864 0771 0703 0.634 0.493
bzip2(gcc_dbg_ol, gec_dbg_02) 0984 0981 0976 0976 0976 0976 0976 0904 0.832 0.758 0.613
bzip2(gcc_dbg_ol, llvm_release_o3) 0973 0968 0957 0952 0947 0921 0864 0771 0.703 0.634 0.493
bzip2(llvm_dbg_o1, gcc_release_o3) 0968 0904 0873 0.838 0.824 0785 0713 0.687 0.619 0.623 0.627
bzip2(llvm_dbg_o1, gec_dbg_ol) 0951 0896 0.866 0.838 0.827 0.794 0.733 0.642 0574 0511 0.378
bzip2(llvm_dbg_o1, llvm_dbg_o2) 0972 0906 0877 0.858 0.843 0.826 0816 0.819 0794 0.765 0.781
Average Score of Software Listed Above 0970 0937 0918 0902 0.894 0871 0.828 0.766 0.704 0.654 0.564
Average Score of All Plagiarized Software Tested 0983 0962 0949 0938 0931 0911 0.874 0.840 0.790 0.763 0.722

respectively. There is almost no benefit to have a k
value beyond 4. Surprisingly, there are same number
of false positives for both £ =4 and k = 500, and the
maximal similarity score is 0.296 when k = 4 versus
0.462 when k& = 500 for giv and feh. This is because
their key instructions are quite similar to some extent
(we will explain this in Section 4.6), and meanwhile
the birthmark similarity calculation considers both k-
grams and their frequency. With the increase of k, the
impact of frequency is weakened and the type of k-
grams starts to play a leading role. Finally, the grey
row gives the average similarity scores of all the 26
pairs of comparisons we have conducted. As the data
indicate, a small k value such as 4 is almost as good
as a large k value such as 500.

4.1.4 Similarity scores of plagiarized software

We treat binaries compiled from the same source code
but with different compilers or optimization levels as
copies of each other. When we compare such binaries
we expect large similarity scores to be above 1 — €
to indicate plagiarism. In the experiment setup we
choose a program such as bzip2 and compile it
with two compilers, one is 11vm with different flags
such as dbg and 01, the other is gcc with various
flags. From the 12 versions of binaries we compare
their DYKIS birthmarks against each other. Table 3
lists comparison data of randomly chosen pairs. As
expected, the similarity scores decrease as k increase.
There are false negatives starting from £ = 10, and the

average scores indicate false negatives starting from
k = 300. Small %k values have a clear advantage over
large values.

Based on the above observations, we believe a k
value between 3-10 is appropriate due to the following
reasons

o The algorithm based on small k£ values is more
efficient than that based on large & values.

o For independently developed software, a lower
k value, i.e. 1 or 2, incurs significant risk of false
positives.

o A larger k value leads to lower similarity score
for independently developed software, but the
difference is minimal.

o Large k values, i.e. greater than 10, reports much
more number of false negatives for plagiarized
software.

Therefore, in the rest of the paper, we set the default
k value at 4 for all the experiments.

4.2 Resilience to Weak Code Obfuscation

Plagiarized software presented in binary format is
often compiled with a different compiler or com-
piler optimization levels. Therefore, it is essential
for binary based birthmarking techniques to han-
dle such relatively weak semantics-preserving code
transformation. In our experiments, we choose two
open-source compression software gzip-1.2.4 and
bzip2-1.0.6 as experimental subjects. We also se-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X

TABLE 4
Statistical difference between bzip2 versions
generated with different compilers and optimization
levels

Size(Kb) #Functions#Instructions #Blocks #Calls
Max. 204 241 22968 3028 681
Min. 76 185 12440 2341 472
Avg. 1337 210.4 16127 2725.1 562.1
Stdev. 44 20.1 2874.1 237.5 67.8

lect two compilers 11vm3.2 and gcc4.6.3 to com-
pile the two programs with multiple optimization
levels (-01, —02 and -03) and the debug option (-g)
switched on or off. Such setup leads to 12 different
executables for each program. Table 4 gives statistical
differences on the size, number of functions, number
of instructions, number of basic blocks and number of
functional calls of the 12 executables of bzip2. The
table for gzip is similar so we omit it here. The data
indicate that even weak code transformation can make
significant differences among the produced binaries.
Table 5 summarizes the pair-wise DYKIS birthmark
similarity scores between different versions of bzip2.
It can be observed that the similarity scores are all
quite high, with an average value of 0.922. In addition,
there are no false positives. The lowest score 0.796
happens between two versions compiled by 1lvm
and gcc, both with 01 and debug flag switched on.
Similar results are observed for gzip as illustrated
in Table 6. Not surprisingly the type of compiler has
greater impact than optimization flags. The experi-
mental results indicate that DYKIS birthmarks exhibit
strong resilience against weak code obfuscations.

4.3 Resilience to Strong Obfuscations

Sophisticated code obfuscation techniques may be
used to purposely defeat plagiarism detection tools.
In this group of experiments we study the resilience of
DYKIS against strong code obfuscations. In particular,
we use Java bytecode obfuscation tool SandMark [13]
to generate a group of obfuscated versions, which
are then converted to x86 executables by GCJ [32],
the GNU ahead-of-time compiler for Java. SandMark
implements a series of advanced semantics-preserving
transformation techniques, including 15 application
obfuscations, 7 class obfuscations and 17 method ob-
fuscations. It can defeat almost all birthmark-based
plagiarism detection methods targeting a specific lan-
guage [6], [7], [11], [22], [33].

Our experimental subjects include three Java pro-
grams widely used in the birthmark-based plagiarism
detection literature, including JLex, a lexical ana-
lyzer generator, JavaCUP, a LALR parser generator
for Java, and a Calculator implemented using the
JavaCUP specification. In addition, there are four
larger programs, Avrora, Luindex, Lusearch and

Antlr, from the Dacapo [34] benchmark suite®. We
design similar experiments as those conducted in [18]
to measure the resiliency of DYKIS against single
obfuscations, where only one obfuscation technique
is applied at a time, and multiple obfuscations, where
multiple obfuscation techniques are applied to one
program at the same time.

4.3.1 Resilience to single obfuscation

We apply the 39 obfuscation techniques implemented
in SandMark on the experimental subjects one at a
time and generate a series of obfuscated versions. In
order to ensure correctness of these transformations,
all obfuscated versions are tested with a set of inputs
and the versions with wrong outputs are eliminated.

The similarity scores are calculated between the
original program and its obfuscated versions. Table
7 summarizes the results by listing the maximal, min-
imal and average similarity scores between the orig-
inal program and its transformed versions. Column
ACCy 75 gives the percentage of comparisons that
report a similarity score above 1-0.25. Note that only
the data obtained from the successfully transformed
versions are considered in the first three columns.
Columns S/Fp; and S/Fpy give the number of suc-
cessful and failed obfuscations using SandMark and
GCJ, respectively. The failures refer to those trans-
forms that cannot be compiled or the transforms
that give wrong outputs. The data indicate strong
resilience against single obfuscation: the average sim-
ilarity scores are well above the threshold except one
incorrect classification where the similarity score be-
tween the original program Ant1lr and its sandmark-
obfuscated version Ant1r_StaticMethodBodies is
0.738.

To give a more intuitive presentation, the compari-
son results of JavaCUP to its 29 obfuscated versions
are depicted in Figure 4, where the x-axis lists the
obfuscation techniques and the y-axis gives the corre-
sponding similarity scores.

4.3.2 Resilience to multiple obfuscations

A plagiarist may attempt to apply multiple obfusca-
tion techniques to a single program in order to gen-
erate deeply obfuscated versions. However, deriving
a semantics-equivalent disguised copy is not always
easy. Transformations with even a single obfuscation
are not always successful, as indicated by the columns
S/Fpi and S/Fpy in Table 7. Applying multiple obfus-
cations simultaneously can significantly increase the
failure rate. In order to facilitate our experiments we
adopt the method used in [12], [18] where the obfus-
cators in SandMark are classified into two categories:
data obfuscators and control obfuscators. Only the
obfuscators in the same category are applied sequen-
tially to the same experimental object. That is, there

3. We failed to compile other programs in Dacapo with GC]J.
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TABLE 5
Similarity scores between bzip2 binaries generated with different compilers and optimization levels

GCC 4.6.3 LLVM 3.2
COMPILER Debug Release Debug Release
OPTLevel ol 02 03 ol 02 03 ol 02 03 ol 02 03
ol 1.000 0.823 0.823 1.000 0.823 0.823 0.796 0.798 0.798 0.796 0.798 0.798
Debug o2 - 1.000 1.000 0.823 1.000 1.000 0.941 0.964 0.964 0941 0964 0.964
GCC 1.6.3 03 - - 1.000 0.823 1.000 1.000 0.941 0964 0964 0941 0964 0.964
e ol - - - 1.000 0.823 0.823 0.796 0.798 0.798 0.796 0.798 0.798
Release 02 - - - - 1.000 1.000 0941 0964 0964 0941 0.964 0.964
03 - - - - - 1.000 0.941 0964 0964 0941 0964 0.964
ol - - - - - - 1.000 0971 0971 0971 0971 0.971
Debug o2 - - - - - - - 1.000 1.000 0971 1.000 1.000
03 - - - - - - - - 1.000 0971 1.000 1.000
LLVM 3.2 ol - ; ; - ; ; - ; ) 1.000 0971 0971
Release 02 - - - - - - - - - - 1.000 1.000
03 - - - - - - - - - - - 1.000
Statistical Values Max. 1.000 Min. 0.796 Avg. 0.922 Acco.75 100%
TABLE 6

Similarity scores between gzip binaries generated with different compilers and optimization levels

GCC 4.6.3 LLVM 3.2
COMPILER Debug Release Debug Release
OPTLevel ol 02 03 ol 02 03 ol 02 o3 ol 02 03
ol 1.000 1.000 1.000 1.000 1.000 1.000 0.812 0.812 0.812 0.812 0.812 0.812
Debug o2 - 1.000 1.000 1.000 1.000 1.000 0.812 0.812 0.812 0.812 0.812 0.812
GCC 4.6.3 03 - - 1.000 1.000 1.000 1.000 0.812 0.812 0.812 0.812 0.812 0.812
e ol - - - 1.000 1.000 1.000 0.812 0.812 0.812 0.812 0.812 0.812
Release 02 - - - - 1.000 1.000 0.812 0.812 0.812 0.812 0.812 0.812
03 - - - - - 1.000 0.812 0.812 0.812 0.812 0.812 0.812
ol - - - - - - 1.000 1.000 1.000 1.000 1.000 1.000
Debug o2 - - - - - - - 1.000 1.000 1.000 1.000 1.000
03 - - - - - - - - 1.000 1.000 1.000 1.000
LLVM 3.2 ol - - - - - - - - - 1000 1.000 1.000
Release 02 - - - - - - - - - - 1.000 1.000
03 - - - - - - - - - - - 1.000
Statistical Values Max 1.000 Min 0.812 Avg. 0.897 Acco.75 100%
. TABLE7 . 1A0<Illlllllllllllllll..llllll.ll
Resiliency of DYKIS against single obfuscation
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are no transformations that utilize obfuscators from
both categories. The specific SandMark obfuscators
that we use in this group of experiments are listed in
Table 8. The order we apply the obfuscators in each
category is random.

Besides the SandMark obfuscators, six commer-
cial and open source obfuscation tools, includ-

Fig. 4. Similarity scores between JavaCUP and its
SandMark-obfuscated versions

ing Zzelix KlassMaster? Allatori’, Dasho®,

4. http:/ /www.zelix.com /klassmaster

5. http:/ /www.allatori.com
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TABLE 8
Sandmark Obfuscators that are used to generate deeply obfuscated versions

Obfuscators JLex JavaCUP Calculator Avrora Luindex Lusearch Antlr
Transparent Branch Insertion v VA 4 4 vV vV v
Dynamic Inliner Vv v Vv
Control Method Merger V4 v v Vv v v
Obfuscation Reorder Instructions Vv Vv v v v v
False Refactor Vv Vv v 4 Vv
Branch Inverter Vv v Vv Vv v v
Simple Opaque Predicates 4 v V4 4
Array Folder v vV Vv
Integer Array Splitter 4 4 4
Data Promote Primitive Registers v V4 Vv v 4 V4
Obfuscation Variable Reassigner Vv Vv v Vv 4
Duplicate Registers v Vv Vv
Merge Local Integers Vv Vv v v v
Boolean Splitter v v Vv v 4 4 v
TABLE 9

Jshrink’, ProGuard® and RetroGuard’, that sup-
port renaming, encryption and control flow obfus-
cations are also selected. Under the requirement of
semantic equivalence between the original and the
transformed programs, we turn on as many obfusca-
tors as possible for each tool. Semantic equivalence
is confirmed via empirical study rather than theo-
retical proof. We consider a transformed program is
equivalent to the original one if they produce the
same outputs in our experiments. Together with the
two categories of SandMark, such experimental setup
can produce up to eight deeply obfuscated versions
for each program. However, not all transformations
are successful. For example, the Ret roGuard fails to
obfuscate the four Java programs from the Dacapo
benchmark, while GCJ fails to compile the Allatori-
obfuscated versions of the four programs into executa-
bles.

Similarity scores are calculated between each origi-
nal program and its successfully obfuscated versions.
Table 9 shows the experimental results, where column
headings are abbreviations for SandMark_Control,
SandMark_Data, KlassMaster,Allatori, DashoO,
JShrink, ProGurad, and RetroGuard, respectively.
Table cells marked with “-” indicate failed transfor-
mations. It can be observed that all but two similarity
scores are above 0.89, which indicates that DYKIS is
resilient even to rather complex obfuscations.

4.4 Resilience to cross-platform plagiarisms and
binary obfuscation techniques

In this section, we evaluate the resilience of DYKIS
against another two possible plagiarism scenarios. In
the first scenario a plagiarist steals a program in a plat-
form (e.g. Linux) and then compiles and distributes
it in another platform (e.g. Windows). In the second

6. https:/ /www.preemptive.com/products/dasho

7. http:/ /www.e-t.com/jshrink.html

8. http:/ /proguard.sourceforge.net

9. http:/ /java-source.net/open-source/obfuscators/retroguard

Resilience against multiple obfuscations

SC SD KM AT DO ]S PG RG
JLex 1.0 098 10 0977 1.0 1.0 1.0 1.0
JavaCUP 0.996 0.975 0.988 0.987 0988 0.978 1.0 1.0
Calculator 1.0 1.0 1.0 1.0 0592 1.0 1.0 1.0
Avrora 0.947 0.999 0936 - 0.898 0921 0.92 -
Luindex 0.998 1.0 0957 - 0986 1.0 0.997 -
Lusearch 1.0 1.0 0998 - 0999 1.0 1.0 -
Antlr 0.599 0.939 0.965 - 0975 - 0.903 -

scenario a plagiarist generates copies using binary
obfuscation techniques [14], [35]-[37] implemented in
specialized binary obfuscators and packing tools.

4.4.1 Resilience to cross-platform plagiarisms

Cross-platform plagiarism is common because it does
not require too much efforts and can effectively evade
platform-dependant plagiarism detection techniques.
For example, system call based birthmarking SCSSB
[12] is ineffective in detecting cross-platform plagia-
risms because different system calls are used depend-
ing on whether the program is executed in Windows
or Linux. This problem may be alleviated by main-
taining a mapping between system calls in different
platforms. However, creating such mapping is not
easy, since it is labor intensive and the mapping may
be incorrect due to various reasons. For example,
documentations about system calls in Windows is
incomplete [38].

In order to evaluate the resilience of DYKIS
against cross-platform plagiarisms, we use experi-
mental subjects that have both Linux and Windows
versions. They include the two compression programs
bzip2-1.0.2 and gzip-1.2.4, the five openssl
programs and the UPx' packing tool. These programs
are compiled with gcc under Linux, and with the
Microsoft C/C++ compiler c1 under Windows. The

10. http:/ /upx.sourceforge.net/
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Fig. 5. Similarity scores between the Linux and Win-
dows versions

experimental results are illustrated in Figure 5, where
the similarity scores are calculated between the Linux
and Windows version of each program. It can be
observed that most scores are greater than the thresh-
old 0.75 (1-0.25). On the other hand, similarity varies
for different programs depending on the degree of
dependency on platforms. For example, the similarity
score between the two versions of openssI1MD5 is
0.997, while the score between the two versions of
openss1SHA is just 0.601. We believe DYKIS can be
used to detect cross-platform plagiarism as long as
the programs do not have too many platform-specific
operations such as system calls. Otherwise we need
to modify the dynamic key instructions to exclude
platform-specific operations.

4.4.2 Resilience to binary obfuscation techniques

Binary obfuscation techniques [14], [35]-[37] are
widely used to hide the maliciousness of malware or
to prevent illegal modification of software. The same
techniques can be used to hinder plagiarism detection.
Despite many binary obfuscation techniques are pro-
posed, few binary code obfuscators are publicly avail-
able. The one that we have successfully downloaded
is binobf!!l. On the other hand, many binary obfusca-
tion techniques have been incorporated into packing
tools [14], [39], [40]. These packers incorporate other
techniques such as compression and encryption. By
significantly modifying the copies, these packers can
defeat most static software birthmarks.

In this group of experiments, we firstly evaluate
DYKIS against the the binary obfuscator binobf that
implements strong obfuscation techniques [35], [36].
We have managed to generate obfuscated versions
for three programs: bzip2, gzip and md5sum!?. Af-
ter obfuscation, the size of the three programs in-
creases about 18, 25 and 94 times, respectively. Despite
such significant changes, the similarity scores between

11. http://www.cs.arizona.edu/ debray/binary-obfuscation/

12. There are several limitations to use binobf. For example,
it cannot handle binaries produced by gcc newer than version 3,
and it requires the input binaries to be statically linked but still
relocatable.
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Fig. 6. Similarity scores between a program and its
UPX-packed version

bzip2, gzip and md5sum and their obfuscated ver-
sions are 0.778, 1.0 and 0.999, respectively. The exper-
iments confirm that DYKIS correctly recognizes the
copies obfuscated by binobf.

Next we evaluate DYKIS against various packing
tools that also implement binary obfuscations. The
only publicly available packing tool that we know for
the ELF-format, executable file format under Linux,
is UPX. On the other hand, packing tools for the
PE-format, executable file format under Windows,
are abundant. Thus under Linux, we utilize UPX
to pack all the ELF binaries in our benchmarks as
listed in Table 2. Figure 6 depicts the similarity scores
between each program and its corresponding ver-
sion processed by UPX. It can be observed that all
similarity scores are above the threshold 0.75. As
for Windows, we select six widely used PE-format
packers that include ASProtect!?, Fsg!4, Nspack!®,
PECompact!®, WinUpack!, and UPX (Windows ver-
sion). These packers are applied to obfuscate the PE-
format binaries of bzip2, gzip and five openssl
programs. Not all transformations are successful. For
example ASProtect and WinUpack are not able to
process bzip2. For those binaries that can be success-
fully transformed, we compute the similarity scores
between the original programs and their packed ver-
sions. All the similarity scores are 1.0, which indicates
strong resilience of DYKIS against packing tools.

4.5 Similarity between successive releases of the
same program

The successive releases of a software is likely to be
similar to each other. Comparing similarity between
consecutive releases can be a good robustness indi-
cator of DYKIS birthmarks. We choose five releases

13. http:/ /www.aspack.com/asprotect64.html

14. http:/ /fsg.soft112.com

15. http:/ /nspack.download-230-13103.programsbase.com
16. http:/ /bitsum.com/pecompact

17. http:/ /de.wikipedia.org/wiki/Upack
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TABLE 10
Similarity scores between different releases of gzip

gzipl.2.4a gzipl.2.4 gzipl.3.13 gzipl4 gzipl.5

gzipl.2.4a 1.000 1.000 0.995 0.992 0.997

gzipl.2.4 - 1.000 0.995 0.992 0.997

gzip1.3.13 - - 1.000 0.997 0.992

gzipld - - - 1.000 0.995

gzipl5 - - - - 1.000
TABLE 11

Similarity scores between different releases of feh

feh1.4 feh1.12 feh2.3 feh2.9 feh2.10
feh1.4 1.000 1.000 0.887 0.872 0.735
feh1.12 - 1.000 0.887 0.872 0.735
feh2.3 - - 1.000 0.759 0.847
feh2.9 - - - 1.000 0.863
feh2.10 - - - - 1.000

of gzip and compile all of them with gcc 4.6 and
optimization level 02 as our experimental subjects.

As illustrated in Table 10, the average similarity
scores between different releases of gzip are all above
0.99. The high similarity is due to the fact that gzip
is a relatively mature software with focused func-
tionality. We further compare two different adjacent
versions of two image processing software: feh2.9.1
versus feh2.9.2,and giv2.2.3 versus giv2.2.4.
The similarity scores are 0.994 and 0.98 respectively.
By examining the upgrade reports of giv2.2.4 and
feh2.9.2, we find that the newer releases just fix
several bugs submitted in the previous releases, in-
dicating few code changes. For feh, similarity scores
between 5 major releases published from year 2010 to
2014 are further calculated and summarized in Table
11. The scores become relatively lower since many
slight changes are made for each yearly published
version.

4.6 Credibility

In this section, we compare independently developed
programs to evaluate the credibility of DYKIS. Three
types of software are selected, including four image
processing programs, five compression and decom-
pression programs, and six encryption and decryption
programs. To give an overall view, Figure 7 depicts
the basic distribution of the similarity scores between
pairs of different programs. The x-axis represents the
similarity ranges between DYKIS birthmarks, and the
y-axis represents the percentage of birthmarks pairs
that belong to each range. For example, range 10-19
means a similarity score between 0.10 and 0.19. It can
be observed that about 90 percent similarity scores are
below the threshold 0.25, indicating very few incorrect
classifications.

o
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Similarity ranges (%)

Fig. 7. Distribution of similarity scores between inde-
pendently developed programs

4.6.1 Similarity between independent programs in the
same category

The comparison data are presented in green, yellow
and pink colors in Table 12. The data give mixed
results, with similarity scores ranging from 0 to 0.93.
Following is our explanation.

o Except for the gzip-zip pair, the similarity
scores of the compression programs are close to
0. The low similarity scores exhibited by compar-
isons between gzip, bzip, rar and lzip are
due to the fact that each program adopts a dif-
ferent compression algorithm. On the other hand,
gzip and zip are both based on the same com-
pression algorithm deflate that is implemented in
the zLib library. The high similarity score 0.811 is
because gzip contains code from zLib and zip
is dynamically linked to system-wide zLib [18].

o The similarity scores between the encryp-
tion/decryption programs are slightly higher but
most are still below 0.25. This is because these
programs share the same front-end, even though
their kernel modules are implemented differently
to realize different types of encryption and de-
cryption. The similarity score between mdSsum
and openss1MD5 is around 0.9, since they both
simply implement the MD5 algorithm.

« The relatively high similarity scores between the
image processing software can be explained by
many shared image processing libraries. Image
processing libraries constitute a major component
of these programs because few instructions re-
main once we remove instructions from the li-
braries. The sharing of image processing libraries
is confirmed by checking the dependencies of
each program with the apt-cache depends
command. The high similarity achieved by the
pho-qgiv pair is because the dependencies of pho
are totally included in those of giv. The relatively
low similarity of the giv-feh pair is because
giv is implemented mainly on top of imlib2
and gtk2, while feh is based on imlib2 and
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TABLE 12
Similarity scores between independently developed programs

Compression and Decompression

Image Processing Encryption and Decryption

Category
. . . . . . md5 OL- OL- OL- OL- OL-
gzip bzip2 zip  rar lzip qiv. feh  pho sxiv sum MD4 MD5 RMDI60 SHA SHA1
gzip 1.000 0.000 0.811 0.058 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.002 0.003 0.004
Compression  bzip2 - 1.000 0.000 0.000 0.000 0.036 0.033 0.041 0.118 0.000 0.000 0.000 0.000 0.000 0.000
and zip - - 1.000 0.077 0.000 0.011 0.025 0.012 0.015 0.001 0.000 0.000 0.000 0.000 0.000
Decompression rar - - - 1.000 0.000 ~0.084 0.129 0.099 0.072 0.000 0.000 0.006 0.013 0.009 0.000
lzip - - - - 1.000 0.007 0.002 0.023 0.002 0.000 0.000 0.000 0.000 0.000 0.000
Qiv - - - - - 1.000 0.302 0.930 0.462 0.034 0.145 0.128 0.076 0.107 0.185
Image feh - - - - - - 1.000 0.301 0.478 0.000 0.000 0.003 0.006 0.004 0.000
Processing pho - - - - - - - 1.000 0.430 0.015 0.131 0.107 0.068 0.096 0.173
sXiv - - - - - - - - 1.000 0.013 0.121 0.099 0.064 0.089 0.156
md5sum - - - - - - - - - 1.000 0.238 0.927 0.159 0.142 0.010
OL-MD4 - - - - - - - - - - 1.000 0.312 0.053 0.174 0.285
Encryption OL-MD5 - - - - - - - - - - - 1.000 0.166 0.196 0.150
and OL-RMD160 - - - - - - - - - - - - 1.000 0.077  0.068
Decryption OL-SHA - - - - - - - - - - - - - 1.000 0.109
OL-SHA1 - - - - - - - - - - - - - - 1.000
Statistical Values Max. 0.930 Min. 0.000 Avg 0.093 ACCy.25 90.5%
several other libraries such as imagemagick and 4.7.1 Performance evaluation with respect to URC

giblibl. With only five out of eighteen shared

dynamic libraries, their similarity score is 0.302.
Although initially puzzled at the wide range of sim-
ilarity scores, we find that the scores match the
documentation and our source code analysis. Incor-
rect classifications, as indicated by the bold fonts in
Table 12, occur mainly because the corresponding
program pairs share parts of the program code or
implement exactly the same algorithms. The validity
of this group of experiments can be further verified
by manual adjustment based on our findings. For
example, we are able to reduce the similarity scores
between encryption programs by detaching PIN from
their front-end. However, we believe such manual
efforts are not desirable in practice so we choose not
to present the data.

4.6.2 Similarity between independent programs in dif-
ferent categories

The blue area in Table 12 gives the comparison results
between the software in different categories. The data
show that all the similarity scores are below the
threshold 0.25, indicating no incorrect classifications.

4.7 Comparison With SCSSB Birthmarks

This section compares DYKIS against SCSSB [12],
an existing birthmark extracted from dynamic sys-
tem call sequence, with respect to three performance
metrics URC, F-Measure and MCC. URC measures
resilience and credibility, while the other two are more
comprehensive metrics introduced for amending the
problem of URC that focuses on the rate of correct clas-
sifications. All the pairs of programs from Section 4.2
to Section 4.6 are taken as the experimental subjects,
except those in Section 4.4.1 because SCSSB cannot
detect cross-platform plagiarisms.

As discussed earlier resilience and credibility reflect
different qualities of a birthmark. URC (Union of
Resilience and Credibility) [25], defined below, is a
metric proposed to evaluate birthmarks that considers
both aspects.

RxC
R+C’

where R represents the ratio of correctly classified
pairs where plagiarism exists and C represents the
ratio of correctly classified pairs that plagiarism does
not exist. The value of URC ranges from 0 to 1, with
higher value indicating a better birthmark. Let EP be
the set of pairs of programs such that V(p,q) € EP,
p is a copy of ¢, and JP be the set of pairs such that
V(p,q) € JP, a plagiarism detection tool claims that
p is a copy of ¢. Similarly, let EI be the set of pairs
such that V(p,q) € EI, p and ¢ are independent, and
JI be the set of pairs that are claimed independent
by a plagiarism detection tool. R and C are formally
defined as:

_|EPNJP|
~ |EP

URC = 2 X

®)

IEInJI|

and C = Bl

Figure 8 depicts the experimental results, where the
red and blue lines denote the data for DYKIS and
SCSSB, respectively. Obviously the threshold value ¢
has an impact on plagiarism detection. In the extreme
case of 0, no conclusion can be made because a
similarity score has to be greater than 1 to claim
plagiarism and has be to smaller than 0 to claim the
opposite. Therefore in our experiments we vary the
value of € from 0 to 0.5, as shown in the x-axis. Note
that € cannot be greater than 0.5, otherwise plagiarism
can be claimed to exist and non-exist at the same time.
As illustrated in Figure 8, DYKIS performs better than
SCSSB.
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Fig. 8. DYKIS vs. SCSSB with respect to URC.

4.7.2 Performance evaluation with F-Measure and
MCC metrics

Equation 1 indicates that the birthmark-based plagia-
rism detection methods give three-value results. That
is, if the similarity score between two birthmarks is be-
tween € and 1 —¢, there is no definite answer whether
plagiarism exists or not. The inconclusiveness reflects
the nature of birthmark-based techniques, which are
mostly used to collect evidence rather than prove or
disprove the existence of plagiarism. Such three-value
outcome explains the reason why in Figure 8 URC
gives better results with higher value of e. This is
because URC mainly measures the rate of correct clas-
sifications, while inconclusiveness is considered an
incorrect classification. As the value of € increases, the
chance of inconclusiveness becomes smaller, leading
to less number of incorrect classifications. In order to
study the impact of the threshold on incorrect clas-
sification, we formally define the inconclusive ratio
(InconRatio) and false classification ratio (FCRatio) as:

|EP|+ |EI| — |JP|— |JI
|EP| + |EI|

InconRatio =

_ |EP|+|EI| - |[EPNJP|— |EINJI|
FCRatio =
aro |[EP| + |EI|

Figure 9 depicts how the ratios of inconclusiveness
and false classification change by varying the value of
e from 0 to 0.5. It can be observed that DYKIS has less
inconclusiveness and false classification than SCSSB.
At the same time, both ratios of DYKIS and SCSSB
decrease as e increases. This clearly indicates that URC
favors large € values. On the other hand, as pointed
out by Schuler [11], a smaller ¢ is desired in practice.

In order to address the problem, we further com-
pare DYKIS and SCSSB with two other metrics,
F-Measure and MCC (Matthews Correlation Coef-
ficient) [41], that are widely used in the areas of
information retrieval and machine learning. However,

the two metrics cannot be directly applied as they can
measure binary classifications only. In the following
we revise the definition of sim by removing incon-
clusiveness:

> €

pis a copy of q @)
<eg

sim (ps, qB) = { p is not a copy of q

F-Measure is based on the weighted harmonic
mean of Precision and Recall:

_— 2 x Precision x Recall 5)
-Measure =
Precision + Recall ’

where Precision and Recall are defined as:

|[EP N JP| |[EP N JP|
|JP| |EP|

MCC, defined below, is regarded as one of the

best metrics that evaluate true and false positives and
negatives by a single value.

TPxTN —-FPxFN

Precision = and Recall =

MCC = 75 and 6)
D=(TP+FP)(TP+FN)(TN+FP)(TN + FN),
@)

where TP, TN, FP and FN are the number of
true positives, true negatives, false positives and false
negatives, respectively. They can be computed using
the following formulas:

TP =|EPNJP|;
FP=|EINJP|;

FN = |EPN JI|
TN = |EIN JI|

The left and right sub-figures in Figure 10 depict
the experimental results with respect to F-Measure
and MCC, respectively. The data for DYKIS are shown
in red while the data for SCSSB are shown in blue. It
can be observed that DYKIS always performs better
than SCSSB except when e = 0.85.

4.8 Impact of Inputs

As discussed in Section 3.3, plagiarism detection be-
tween two programs is based on the average of sim-
ilarity scores calculated under multiple inputs. Since
in most cases an exhaustive testing of all inputs is
not possible, how to choose inputs to improve the ef-
ficiency and validity of plagiarism detection becomes
a valid research question. While this question is out
of scope of this paper, in this section we evaluate the
impact of different types of inputs on plagiarism de-
tection. For example, many image processing software
can take inputs of various file formats such as jpeg,
png, and bmp because different parse routines are
used to process different types of inputs. If our plagia-
rism detection gives different results under different
types of inputs, we say DYKIS is sensitive to inputs;
otherwise it is not. Note that during comparison,
each pair of programs is still taking the same inputs.
However, we run the comparison multiple times with
different types of inputs.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X

1Q —
—e— DYKIS

0.97 —8— SCSSBl|

0.8} ]

2 0.7t 1

Inconclusive Rat

© Q0 o o o o
- v w0 o
s

0 L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Threshold (€)

1 —

—o— DYKIS
0.91 —8—5C5SB)|
0.8f 1
0.7 1
0.6f 1
0.5} 1
0.4} 1
0.3} 1
0.2 1
0.4t !

False Classification Ratio

1]

0 L L L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Threshold (g)

Fig. 9. The inconclusiveness and false classification ratios of DYKIS and SCSSB.
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Fig. 10. DYKIS vs. SCSSB with respect to F-Measure and MCC.

TABLE 13
Standard deviation of similarity scores for each program pair executed with multiple inputs

name bzip2 gzip zip lzip md5sum OL-MD4 OL-MD5 OL-RMD160 OL-SHA OL-SHA1
bzip2 0 0 0 0.0106 0 0 0 0 0 0
gzip - 0 0.0343 0 0 0 0 0 0
zip - - 0 0 0.0002 0 0 0 0 0
Izip - - - 0 0 0 0 0 0 0
md5sum - - - - 0 0.0102 0.0130 0.0009 0.0142 0.0005
OL-MD4 - - - - - 0 0.0355 0.0236 0.0298 0.1093
OL-MD5 - - - - - - 0 0.0120 0.0184 0.0682
OL-RMD160 - - - - - - - 0 0.0101 0.0328
OL-SHA - - - - - - - - 0 0.0483
OL-SHA1 - - - - - - - - - 0

In this group of experiments we select 10 pro-
grams, including bzip2, gzip, zip, 1zip, md5sum,
openssl, MD4,MD5, RMD160, SHA and SHA1, that can
handle different types of input files. We calculate the
standard deviation o of the similarity scores for dif-
ferent inputs. Table 13 gives the experimental results,
from which we observe that the standard deviation
for each pair of programs under comparison is very
small. It indicates that the similarity scores between
two programs do not vary significantly under differ-
ent inputs.

5 THREATS TO VALIDITY

Two obvious attacks to DYKIS are noise injection and
instruction rearrangement. By injecting different noise
instructions during executions, DYKIS may compare
these instructions and report false negatives. We ar-
gue that such strategy will not succeed because the
noise instructions are not key instructions, otherwise
the program logic will be changed. As a result, the
noise instructions are removed from the dynamic key
instruction sequence. In fact, the obfuscators binbof
and Sandmark implement noise injection, and our
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experimental results confirm that DYKIS is resilient to
this type of attack. In the second attack, a plagiarist
may attempt to change the dynamic key instruction
sequence by adjusting the order of executed instruc-
tions. However, due to the complex control and data
dependencies among instructions, evading plagiarism
by such approach is almost impossible. Light-weight
rearrangement will not cause observable impact to the
similarity scores, while heavy-weight rearrangement
will affect the semantics of the original program.
The obfuscators used in our experimental evaluation
section, as well as the compiler optimization levels,
perform instruction reordering to some extent. As
indicated by the experimental results, DYKIS is robust
against them.

DYKIS relies on dynamic taint analysis to extract
key instructions. As a result, a plagiarist may exploit
the weakness of current taint analysis techniques [42],
to evade detection. Consider the statement x=input,
where x is data-dependent on input. It can be trans-
formed into the following code snippet:

if (input==0)
x=0;
else if
x=1;

(input == 1)

else if (input == N)
x=Nj;

The compound if statement also implements
x=input. However, by using the if statement x
is no longer data-dependent on input. Since most
existing taint analysis techniques do not consider
control dependency, x is not tainted, i.e. not related
to program inputs. In such case the assignments to x
are not considered key instructions in our approach,
which leads to false negatives. This problem will be al-
leviated by the advances in taint analysis techniques.
For example, several recent approaches [43], [44] have
been proposed to consider control dependencies in
taint propagation.

DYKIS is suitable for whole program plagiarism
detection, where a complete program is copied and
then disguised through various automatic transforma-
tions or manual modifications without changing the
semantics of the original programs. An example of
whole program plagiarism is cheating on homework
where a student copies another student’s program
and then make slight changes such as renaming vari-
ables and reordering program statements [8], [45]. In
recent years, whole program plagiarism on mobile
markets start to rise [46], where plagiarists tag their
own names or embed advertisements in stolen mobile
applications (apps). Many of the stolen apps have
been processed with code obfuscations to evade pla-
giarism detection. According to a recent study [47],
about 5% to 13% of apps in the third-party app
markets are copied and redistributed from the official

Android market.

Besides whole program plagiarism, there exist
many cases that only part of a program is copied.
Unfortunately DYKIS, same as other dynamic birth-
marks, cannot be directly applied to such partial
program plagiarism detection. Because it relies on
the comparison of dynamic key instruction sequences,
DYKIS will give very low similarity scores if only
partial sequences are the same between two programs.
That is, if there is a small portion of a code being
copied, DKYIS is not able to detect such plagiarism.
A straightforward solution is to extract only those key
instructions from the suspected components. But this
requires manual efforts and domain knowledge.

6 RELATED WORK
6.1 Software Watermarking

Software watermarking [3] is one of the earliest and
most well-known approaches to software plagiarism
detection. Watermarks are classified into four main
types according to their functionality [48]: authorship
mark (watermarks for identifying authors), finger-
printing mark (watermarks for identifying the serial
number or purchaser), validation mark (watermarks
for verifying that the software is still the same as it
has been authored) and licensing mark (watermarks
for controlling how the software can be used). Wa-
termarks are highly susceptible [7], [49] to semantics-
preserving obfuscations [13]. It is believed that a suf-
ficiently determined attacker will eventually be able
to defeat any watermark [4].

6.2 Static Source Code Based Birthmarks

Four types of static birthmarks were proposed by
Tamada [5] that include constant values in field vari-
ables, sequence of method calls, inheritance structure
and used classes. The average similarity scores of the
four birthmarks are used to determine plagiarism.
These birthmarks are vulnerable to obfuscations and
are only applicable to Java programs. Birthmarks pro-
posed by Prechelt and Ji [8], [9] were computed with
token sequences generated by parsing source code.
Such approaches are weak to junk code insertion and
statement reordering. Plagiarism was determined by
mining program dependency graphs (PDGs) in Gplag
[10] and similarity between PDGs was calculated by
graph isomorphism algorithms. By taking control and
data flow relations into account, as we also do in this
paper, the method showed better robustness against
semantics-preserving code transformations. However,
source code is required and similarity calculation
based on graph isomorphism is costly.

6.3 Static Binary Code Based Birthmarks

Myles and Collberg [7] proposed k-gram based static
birthmarks, each of which was a set of Java byte-
code sequences of length k. The similarity between
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two birthmarks was calculated through set operations
that ignore the frequency of elements in the set. Al-
though being more robust than birthmarks proposed
by Tamada [5], the birthmarks were still vulnerable to
code transformation attacks. Weighted k-gram based
static birthmarks [25] improved upon Myles and Coll-
berg’s [7] by taking the frequency of each k-length
operation code sequence into consideration. However,
the improvement in detection ability seems minor
while introducing extra cost in computing change
rate of k-gram frequencies. A static birthmark-based
on windows API calls disassembled from executa-
bles was proposed by Choi [16] to detect plagiarism
of windows applications. The requirement for de-
obfuscating binaries before applying their method is
too restrictive and thus reduces its availability. Lim
[33] used control flow information that reflected run-
time behaviors to supplement static approaches. Re-
cently he proposed to analyze stack flows obtained by
simulating operand stack movements to detect copies
[30]. Yet they are only available to Java programs.
Hemel et. al. [50] suggested three methods to find
potential cloned binaries within a program repository
by simply treating binaries as normal files. Specifi-
cally, similarity between two binaries were evaluated
by calculating the ratio of shared string literals, by
calculating the compression ratio, and by computing
binary deltas. Since no syntactic or semantic attributes
of binary executables are considered, low detection
accuracy is expected. An obfuscation-resilient method
based on longest common subsequence of semanti-
cally equivalent basic blocks was proposed by Luo et.
al. [51]. They utilized symbolic execution to extract
from basic blocks symbolic formulas, whose pair-
wise equivalence were checked via a theorem prover.
Yet this method has difficulty in handling indirect
branches. In addition, symbolic execution combined
with theorem proving is not scalable.

6.4 Dynamic Software Birthmarks

Myles and Collberg [6] suggested to use the com-
plete dynamic control graph of an execution as a
birthmark. Even with compression our study shows
that such method does not scale. Schuler [11] treated
Java standard API call sequences at object level as
birthmarks for Java programs. The same principle
was applied in Tamada’s works [15], [52] where API
call sequences of windows executables were used to
derive birthmarks. Apparently API based birthmarks
are all language dependent. To address the problem
Wang et. al. [12] proposed two dynamic birthmarks
based on system calls: System Call Short Sequence
Birthmark (SCSSB) and Input Dependent System Call
Subsequence Birthmark (IDSCSB). SCSSB treated the
sets of k-length system call sequences as birthmarks.
IDSCSB was introduced to avoid system call insertion
attack. However both birthmarks have limited appli-

cability to software that has few system calls, such as
scientific computing programs.

In Lu’s work [17], a complete dynamic instruction
trace was recorded during program execution, from
which a dynamic birthmark was extracted by apply-
ing the k-gram algorithm. However such birthmark
could not even identify two versions generated from
the same program with different compiler optimiza-
tion levels. By treating the slice rather than the whole
instruction sequence as program characterizations, Bai
[26] proposed a dynamic birthmark for Java based
on MSIL instructions rather than assembly instruc-
tions. Besides being language and operating system
dependent, their approach is also weak against code
obfuscations.

By introducing data flow and control flow depen-
dency analysis, Wang et. al. [23] proposed a system
call dependency graph based birthmark, and graph
isomorphism is utilized for calculating similarity be-
tween birthmarks. Patrick et al. [22] proposed a heap
graph birthmark for JavaScript utilizing heap mem-
ory analysis, and graph monomorphism algorithm
was applied for similarity computation. But to be
effective, these graph based birthmarks require that
the programs under protection to have prominent
referencing structures. Also, since graph isomorphism
and monomorphism algorithms are NP-complete in
general, several thousand nodes will make the meth-
ods impractical to use.

6.5 Related Work in Other Domains

One of the most relevant research fields to software
plagiarism detection is clone detection, which aims
to find duplicate code within a single program to
improve software maintenance, program comprehen-
sion, and software quality. With such purpose most
clone detection algorithms operate on source code
only. There exist several mature systems [53]-[56] that
are able to detect clones accurately on large scale soft-
ware. Similar to plagiarism detection, clone detection
identifies cloned fragments by abstracting the pro-
gram into a set of characteristics. The abstraction can
be categorized into the following types: String-based
[57], [58], Token-based [53], [54], AST-based [56], [59]-
[61], PDG-based [62]-[64], Behavior-based [65], and
Memory-State-based [55]. Sebjornsen et. al. [66] pro-
posed a clone detection algorithm for binary executa-
bles by converting assembly instructions to a higher
level representation. Clone detection techniques may
be used for plagiarism detection. However, existing
clone detection approaches are fragile against code
obfuscations [12]. String-based schemes are weak to
even simple identifier renaming. AST-based schemes
are weak against reordering and control replacement.
Token-based approaches are easily defeated by junk
code insertion and the others are vulnerable to trans-
formations such as function inlining and outlining.
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Malware detection aims to determine unknown
attributes of a suspicious program against a set of
programs by extracting features and performing clas-
sification or clustering. The techniques can generally
be classified into two types according to program fea-
tures applied: signature-based [67]-[70] and behavior-
based [71]-[73]. However, due to the uniqueness of
malware samples, these techniques can not be applied
directly to software plagiarism detection. Researches
in code based search engine [20], [74]-[77] also involve
program characterization. However these techniques
mainly target small source code snippets and merely
consider obfuscations, since their goal is to retrieve
certain piece of code to assist development.

7 CONCLUSION AND FUTURE WORK

In this paper we have proposed a dynamic birthmark
called DYKIS, which we believe is resilient to weak
and strong code obfuscations. Based on its defini-
tion we have implemented algorithms to extract such
birthmarks from binary executables and to compare
their similarities using cosine distance. Our intensive
experiments on 342 versions of 28 different programs
indicate our approach is efficient and effective. The
benchmarks are available online at
http://labs.xjtudlc.com/labs/wlag/benchmark.html
To the best of our knowledge this is the first publicly
available benchmark suite for software plagiarism
detection.

Our implementation leads to a software plagiarism
detection tool DYKIS-PD that has been successfully
demonstrated at a conference [27]. DYKIS-PD is pub-
licly available for download at
http://labs.xjtudlc.com/labs/wlag/dbpd/site/

In recent years, whole program plagiarism of mo-
bile apps has become a serious problem. About 5% to
13% of apps in the third-party app markets are copied
and redistributed from the official Android market.
We plan to conduct case studies and optimize DYKIS
for this domain. In addition, DKYIS is suitable for
whole program plagiarism detection. We will explore
whether DKYIS can be adapted to detect partial pro-
gram plagiarisms.
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