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Abstract—Symbolic execution is a powerful technique for systematically exploring the paths of a program and generating the
corresponding test inputs. However, its practical usage is often limited by the path explosion problem, that is, the number of explored
paths usually grows exponentially with the increase of program size. In this paper, we argue that for the purpose of fault detection it is not
necessary to systematically explore the paths, and propose a new symbolic execution approach to mitigate the path explosion problem
by predicting and eliminating the redundant paths based on symbolic value. Our approach can achieve the equivalent fault detection
capability as traditional symbolic execution without exhaustive path exploration. In addition, we develop a practical implementation called
Dependence Guided Symbolic Execution (DGSE) to soundly approximate our approach. Through exploiting program dependence,
DGSE can predict and eliminate the redundant paths at a reasonable computational cost. Our empirical study shows that the redundant
paths are abundant and widespread in a program. Compared with traditional symbolic execution, DGSE only explores 6.96% to 96.57%
of the paths and achieves a speedup of 1.02X to 49.56X. We have released our tool and the benchmarks used to evaluate DGSE*.

Index Terms—symbolic execution, path coverage, program dependence

1 INTRODUCTION

YMBOLIC execution [1] [2] [3] [4] [5] [6] has re-
Scently regained the prominence as a technique for
various software engineering tasks [7] [8]. It uses the
symbolic inputs instead of concrete inputs to drive pro-
gram execution. Through encoding the path condition
as a quantifier-free, first-order logic formula and then
deciding the formula with a constraint solver, symbolic
execution can systematically explore the paths of a
program and generate the corresponding test inputs.
The desire for exhaustive path exploration is because
program paths capture the underlying program be-
havior [4]. Covering more paths usually means more
program behavior coverage and is more rigorous soft-
ware testing. However, in practice such goal is often
not achievable due to the path explosion problem, that
is, the number of paths in a program usually grows
exponentially with the increase of program size. Even
for a medium-size program, systematically exploring the
paths is also prohibitively expensive.

In this paper, we argue that exploring more paths does
not necessarily reveal more program behavior. If the pro-
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gram behavior exhibited in a path has been collectively
manifested by other previously explored paths, such
path is redundant and thus needs not be explored. Based
on this observation, we propose a path reduction that
is enabled by the concept of symbolic value. Through
pruning away those paths without unique symbolic val-
ues at its statement instances, our approach can achieve
the equivalent fault detection capability as traditional
symbolic execution without exhaustive path exploration.

We utilize a simple program shown in Figure 1 to
illustrate our idea. The program is used to compute the
absolute values of two inputs z and y. The right-hand
side of Figure 1 shows that two paths 7 = [17,2,57, 6]
and my = [17,4,5% 8] have been explored, and a path
w3 = [17,2, 58] is being explored. Note that the super-
scripts T and F' are used to indicate whether the true
or false branch is taken at a conditional statement. We
exploit symbolic value to explain whether 73 needs to be
explored. The symbolic value at a statement instance is
the symbolic expression connecting the instance with the
symbolic input variables [9]. In fact, the symbolic value
at an instance represents a way in which the instance is
computed from the symbolic input variables and thus
can be considered as a "unit” of program behavior. For
example, the symbolic values at four instances of 73 are:
mi(zo > 0), m2(a = x0), m(yo < 0) and 7m3(b = —yp).
Consider other two previously explored paths m; and
7. The symbolic values at 7{ and w3 are equivalent
because they both are x¢ > 0. Similarly, there exist other
three equivalent pairs: (72, 73), (r3, 73) and (r3,73). In
this case, m3 needs not to be explored as the symbolic
values at its all instances have been collectively covered
by previously explored paths 7; and 7.

In summary, we believe that program paths collec-
tively cover the program behavior. However, some pro-
gram paths may not exhibit unique program behavior
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void Test (int x,
int a, b;

int y){

0: mlif (x>0) w2 a=x ni3:if (y>0) m* b=y
1: if (x>0) inputs: X,y ® PS ® »
2 a=x;
3: else mol: if (x>0) m22: a=-X 23 if (y>0) T4 b=-y
4: a=-x; inputs: X,y P
5: 1f(y>0)
6: b=y;
. i w3l if (x>0) |m3%: a=x m33: if (y>0)
7: else inputs: X,y — — — — —
8: b=-vy;
9: }

Fig. 1: Intuition behind Path Reduction based on Symbolic Value.

and such paths can be considered redundant. Therefore,
it is very promising for the path reduction based on
symbolic value. However, a straight-forward implemen-
tation that stores and compares the symbolic values is
impractical due to the following two main obstacles.
First, checking the equivalence of symbolic values is
prohibitively expensive. The large overhead may neu-
tralize the gain achieved by the path reduction. Second,
we must be able to predict which paths are redundant.
Identifying the redundant paths after they have been
explored brings no benefit.

In this paper, we develop a practical implementation
called Dependence Guided Symbolic Execution (DGSE)
to soundly approximate our approach. Instead of directly
checking the equivalence of symbolic values, we rely
on the analysis of program dependencies to determine
whether different visits to a statement instance produce
the same symbolic value. Therefore, there is no need to
store the symbolic values in DGSE. In order to address
the second obstacle, we exploit the program depen-
dencies to guide path exploration so that the redun-
dant paths can be predicted and eliminated. However,
traditional program dependencies that include control,
data and potential dependence are not sufficient for the
soundness of DGSE. Therefore, we introduce a new type
of program dependence called interactive dependence,
which describes the relationship that two program state-
ments interact at the third statement. DGSE is sound if
it does not miss any path with unique symbolic values.

We can prove that DGSE has the equivalent fault
detection capability as traditional symbolic execution,
as long as the potential faults are modeled as condi-
tional abort statements. For example, the statements
assert (c) and x=y/z can be modeled as if (!c)
abort and if (z==0) abort; else x=y/z, respec-
tively. Therefore, we claim that exhaustive path ex-
ploration is not necessary for the fault detection. We
also show through empirical study that even though
the potential faults are not modeled, DGSE explores
significantly fewer paths but has almost equivalent fault
detection capability as traditional symbolic execution.

We have implemented a prototype for DGSE based
on Symbolic PathFinder (SPF) [6]. The evaluation on
Siemens suite [10] and several medium-size benchmarks
shows that, compared with traditional symbolic execu-
tion, DGSE explores only 6.96% to 96.57% of the paths
and achieves a speedup of 1.02X to 49.56X. Additional

experiments show that, given the same amount of time,
DGSE explores more distinctive paths than traditional
symbolic execution does. Furthermore, we demonstrate
that DGSE can be applied to regression testing. The
initial version of our research has been presented in [11].
The main improvements of this paper include: (1) we
have added a theoretical model; (2) we have significantly
revised the core algorithms; (3) we have conducted more
larger experiments, etc. The contributions of this paper
include the following.

o We propose a new symbolic execution approach to
mitigate the path explosion problem by predicting
and eliminating the redundant paths based on sym-
bolic value. Our approach can achieve the equiva-
lent fault detection capability as traditional symbolic
execution without exhaustive path exploration, as
long as the potential faults are modeled as condi-
tional abort statements.

o We develop a practical implementation called De-
pendence Guided Symbolic Execution (DGSE) to
make our new approach feasible. Through exploit-
ing program dependence, DGSE is able to predict
and eliminate the redundant paths at a reasonable
computational cost.

o We define a new type of program dependence
called interactive dependence. Together with tra-
ditional program dependencies they enable de-
pendence guided symbolic execution to avoid the
redundant paths. Without interactive dependence
some distinctive paths may be missed, which leads
to an unsound optimization.

o We have implemented a prototype based on Sym-
bolic PathFinder. The experiments conducted on
Siemens suite and three medium-size benchmarks
show that the redundant paths are abundant and
widespread, and DGSE is effective in reducing the
number of explored paths as well as the time usage.

o DGSE leverages static dependence analysis and
symbolic execution to enable efficient path explo-
ration. The static dependence analysis of DGSE can
be adapted to accomplish various software engi-
neering tasks. In this paper, we demonstrate that
DGSE can be adapted for regression testing.

The remainder of this paper is organized as follows.
In Section 2, we review the related work. After giv-
ing the motivating example in Section 3, we introduce
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traditional symbolic execution with test generation and
the relevant definitions in Section 4. Then, we present
DGSE in Section 5, followed by experimental results
in Section 6. After discussing the threats to validity in
Section 7, we demonstrate the application of DGSE in
Section 8. Finally, Section 9 provides the conclusion and
future work.

2 RELATED WORK

In recent years, we have seen a significant growth
in the research of symbolic execution, first proposed
by Clarke [1] and King [2]. The aims of the research
can be roughly divided into three directions: (1) to
improve its efficiency [9] [12] [13] [14] [15] [16] [17]
[18] [19] [20] [21] [22] [23] [24] [25] [26]; (2) to improve its
effectiveness [3] [4] [27] [28] [29] [30] [31] [32] [33] [34];
and (3) to improve its application [35] [36] [37] [38] [39]
[40] [41] [42] [43]. Since the goal of DGSE is to improve
the efficiency of symbolic execution, we mainly discuss
the research in this direction, followed by brief discus-
sion of other two directions.

2.1 Efficiency of Symbolic Execution

The research to improve the efficiency of symbolic exe-
cution can be roughly divided into five categories. The
first category is to attack the path explosion problem,
e.g., [12], by integrating abstraction with symbolic exe-
cution to reduce the search space. In the second category
(e.g., [13] [14]), researchers perform compositional sym-
bolic execution to enable more efficient constraint solv-
ing. It extends symbolic execution by testing functions
in isolation and encodes test results as function sum-
maries expressed using input preconditions and output
postconditions. Then, when testing high-level functions,
those function summaries can be re-used. The research
of the third category, e.g., [9] [16] [19] [21], adopts the
notion of path equivalence to avoid exhaustive path ex-
ploration. However, which paths are considered equiv-
alent depends on the goal of the research. For example,
the research [9] is to guarantee the same input-output
relations. Therefore, two program paths are equivalent if
they have the same symbolic expression for the output.
In contrast, the research [19] is to explore all possible pro-
gram states. Based on this goal, two paths are equivalent
if the symbolic states of all live variables are the same.
The fourth category, e.g., [15] [20] [22] [24] [25] [44],
limits the analysis scope of a program to avoid irrelevant
path exploration. It is a natural idea and can be used
for the target-oriented software engineering tasks, such
as regression testing. For example, the research [22] first
classifies the branches of a program into three categories
Bg, Br and Bp. The category B represents the branches
that lead to the changes would not be reached. The
category B; indicates the branches that lead to the
program states would not be infected. The category
Bp includes the branches that lead to the infectious
states would not be propagated to the output. Then, any

path that executes these three categories of branches is
irrelevant to the changed program behavior and thus
pruned away. Finally, the research, e.g., [17] [18], in
the fifth category exploits the parallelism of a program
to parallelize symbolic execution. For example, the re-
search [18] presents ranged symbolic execution, a novel
technique to parallelize symbolic execution. The key
insight of the research [18] is that the state of symbolic
execution can be encoded succinctly by a test case. By
defining a fixed branch exploration order, e.g., taking
the true branch before taking the false branch at each
non-deterministic branch point during the exploration,
a linear order among the test inputs is determined.
Therefore, two test inputs can define a range, which
facilitate to distribute the path exploration—both in a
sequential setting with a single worker node and in
parallel setting with multiple worker nodes.

DGSE improves the efficiency of symbolic execution
by predicting and eliminating the redundant paths,
which shares the similarity with the research in the third
category. The research that is most similar to DGSE is
path exploration based on symbolic output [9], named as
PESO in this paper. In fact, DGSE is also inspired by the
research of PESO. PESO presents a mechanism to parti-
tion the paths based on symbolic output. Two paths are
placed in the same partition if the symbolic expression
connecting the output with the inputs is the same in both
paths. Since symbolic output cannot be directly used to
guide symbolic execution, PESO uses the relevant slice
instead. If two paths have the same relevant slice with
respect to the output, they are considered equivalent
and placed into the same partition. A relevant slice is
derived from the transitive closure of dynamic control,
data and potential dependence of the output. When
exploring the paths of a program, PESO only executes
one path in each partition and thus greatly improves
the efficiency of symbolic execution. Although PESO
and DGSE both exploit program dependence to guide
symbolic execution, they have different goals. DGSE
aims to achieve the equivalent fault detection capability
as exhaustive path exploration without systematically
exploring the paths. However, PESO only tries to explore
those distinctive paths relevant to the output. In other
words, PESO only considers the fault detection that is
relevant to the output. As a result, some faults that are
irrelevant to the output such as program crash can be
detected by DGSE, however, may be missed by PESO. In
addition, the algorithms of PESO and DGSE are different,
which makes DGSE further tackle the potential threats
of PESO pointed out in the research [9]: (1) only focusing
on the output may miss some faults that are irrelevant
to the output; and (2) the efficiency of PESO may de-
crease significantly when there are multiple outputs. The
motivating example in Section 3 further illustrates the
differences between DGSE and PESO.
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2.2 Effectiveness of Symbolic Execution

The research to enhance the effectiveness of sym-
bolic execution mainly focuses on two areas. First, re-
searchers develop various domain-specific solvers that
are effective for some special operations and library
functions [28] [29] [30]. For example, Z3-str [28] can
be used for reasoning about string operation. The
second area is to work around the traditional lim-
itation of path condition through the mixed tech-
niques [3] [4] [27] [32] [34] [45], such as mixed symbolic-
concrete execution [3] [4] [27], Concolic walk [32], sym-
cretic execution [34]. For example, the research [32]
provides a simple combination of linear constraint solv-
ing and heuristic search to overcome the complex path
condition. The technique first splits the path condition
into linear and non-linear constraints, then finds a point
in the polytope induced by the linear constraints, and
last utilizes adaptive search within the polytope, guided
by the constraint fitness functions, to find a solution to
the whole path condition.

2.3 Application of Symbolic Execution

With the advance of symbolic execution, it has been
applied to various software engineering tasks, such
as regression verification [35] [36], program debug-
ging [37] [39] [46] [47], and dynamic discovery of in-
variants [40] [41]. The research [35] presents partition-
based regression verification. The technique symbolically
groups inputs of two versions, and creates partitions
for a certain subset of inputs, which either guarantee
behavioral equivalence or expose behavioral difference.
In program debugging, DARWIN [37] proposes an auto-
matic approach for debugging evolving programs. The
technique [37] works in two phases. In the first phase,
the technique collects and composes the path constraints
of the failed test case in two versions to generate the
alternative test case. In the second phase, the technique
compares the traces of alternative test case and failed test
case to produce a bug report. Symbolic execution as well
can be used to dynamically discover the program in-
variants. The research [41] introduces iDiscovery, which
leverages symbolic execution to improve the quality
of invariants computed by Daikon [48]. The candidate
invariants generated by Daikon are synthesized into as-
sertions and instrumented into the program. The instru-
mented code is then executed symbolically to generate
new test cases that are fed back to Daikon to help further
refine the candidate invariants.

3 A MOTIVATING EXAMPLE

Figure 2 presents an example program with three input
variables and three conditional statements. The right-
hand table of Figure 2 lists all eight paths 7; to 7g of the
program. Since the branch sequence can uniquely iden-
tify a path, we utilize it to represent the corresponding
path in the paper. For example, we use ms=[2%,4" 8] to

represent mg=[1,2F 477,87 ,11,12,13,14]. We can see that
there are two errors in the program, which are raised
at Lines 13 and 14, respectively. When the values of
variables a and b are both 2 at Line 12, no memory is
allocated for s. This further leads to a segmentation fault
at Line 13. If the values of variables ¢ and ¢ are both 4
at Line 14, a division-by-zero error will happen at Line
14. Column Error in the table indicates the errors that
can be manifested by the corresponding paths.

For the given program, traditional symbolic execution
systematically explores all eight paths, as indicated by
column TraSE in the table. Although traditional sym-
bolic execution is able to detect both errors, exhaustive
path exploration is prohibitively expensive in practice.

Column DGSE lists the paths explored by our ap-
proach. Although paths 74 and 7g are pruned away,
DGSE is still able to detect both errors of the program. At
the first glance, it may be surprising that our approach
eliminates 74 and mg because both are error-revealing
paths. We take mg to explain the rationality of such
reduction, and 74 is pruned away based on the similar
reason. In fact, pruning away 7g does not affect the fault
detection capability because the same error has been
manifested in 7. Two paths 7 and 7g only differ at
Line 4 where mq takes 47 and s takes 4%. Although
taking different branches leads to different values of b,
such variable actually has no impact on Line 14. As a
result, mg and mg produce the same symbolic value at
Line 14 and thus have the same capability to detect the
division-by-zero error at Line 14. Even so, it does not
mean that 7g is exactly equivalent to g because 7 may
cover other symbolic values that are not covered by 7.
For example, the symbolic values at Line 13 are s="abcd”
in mg, and s="ab” in mg. The reason that 7g is pruned
away is because its all symbolic values are collectively
covered by previously explored paths 7 and 7.

In the remaining of this section, we further use the
example to illustrate the differences between DGSE and
PESO [9]. The path partition in PESO is based on the
output. An obvious choice of the output is Line 14 where
the result is returned from the function. Column PESO14
lists the explored paths in PESO by treating Line 14 as
the output. Although PESO explores fewer paths than
DGSE does, it cannot detect the error at Line 13 because
such error is irrelevant to the output. In order to remedy
this problem, a straight-forward solution is to designate
both Lines 13 and 14 as the outputs so that the error at
Line 13 can also be detected by PESO. However, when
multiple outputs are considered, the efficiency of PESO
significantly decreases. As shown in column PESO13¢14,
PESO has to explore all eight paths. Another solution is
to apply PESO multiple times and each time is based on
a different output. The results of such solution are shown
in column PESO;3&PESO14, where PESO is applied twice:
once for Line 13 and the other for Line 14. It can be
observed that paths 74 and wg are pruned away, same
as DGSE. However, paths m; and 75 are explored twice,
making the total number of explored paths still be eight.
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char *s = null;

int Test (int x, int y, int z){

0: int a, b, c;

1: a=4;

2: 1if(x>1) No. Path Error | TraSE | DGSE | PESO14 | PESO;3¢14 | PESO13& PESOy4
3: a=2; m | [2TAT87] v v v v V&
iRy m | [27 AT 8"] v | v v v &/
6: else m | 274787 | 13 Vv Vv W J &
7: b=2; T4 [27 47 ,8F] 13 v v

8: 1f(z<2) ms | [2F,47,87] Vv Vv Vv Vv vV &/
3: c=z; ms | [2FAT8F1| 14 v v v v &/
10: else F gF QT

11: c=4; m | [27478"] Vv Vv Vv V &
12: s=(char x)malloc (a-b); s | [2F 47,81 14 Vv Vv

13: strncpy (s, "abcd", a-b);

=
Is

: return 1/ (a-c);

=
(€]
—

Fig. 2: An Example Program and its Path Coverage.

Algorithm 1 Traditional Symbolic Execution with Test
Generation

1: SymbolicExec(Program P)

2 T+ 0

3 stack.push((true, true))

4: while (stack # 0) do

5: (pcon, ) « stack.pop()

6 if (pcon is satisfiable) then

7 let ¢t be an input that satisfies pcon
8

9

T+ TU{t}
: PathExec(P, t, 1)
10: end if
11: end while
12: return T

13: end procedure
14: PathExec(P, t, 1)

15: execute ¢ in P and compute path condition pcon
16: let pcon < YY1 A ... Ay,

17: d < 0 or index of 14 in pcon that matches v

18: for (i < d+ 1;i < mg;i++) do

19: negate 1; and obtain path condition pcon;
20: statck.push({pcon;, ;)

21: end for

22: end procedure

When PESO is applied multiple times, it may lead to the
repetitive path exploration.

4 PRELIMINARIES

In this section, we first introduce traditional symbolic
execution with test generation, and then present the
relevant definitions.

4.1
ation

Traditional Symbolic Execution with Test Gener-

In this section, we review traditional symbolic execution
with test generation, as shown in Algorithm 1. Given

a program P and an initial task (true,true) (Line 3),
the algorithm systematically explores the paths of P
and generates the corresponding test inputs 7. In the
algorithm, a task is a pair (pcon, 1), where pcon is a con-
junction of constraints used to guide symbolic execution
to explore a particular path, and v is the last constraint
of pcon used to avoid repetitive path exploration. The
term v is called the initiating constraint in the paper.

Presented at Lines 4-11, the main procedure of the
algorithm iteratively generates test inputs based on the
tasks until there is no to-be-explored task in stack.
During each iteration, a to-be-explored task (pcon,)
is popped from stack (Line 5). If pcon is satisfiable,
the algorithm outputs a test input that can drive P to
follow a path prefixed by pcon (Lines 7-8). Note that
the first input is generated through the path condition
true. In theory, the path condition true leads to a random
input, however, in practice it is not that case in many
symbolic execution implementations such as SPF [6]. SPF
takes priority to execute the true (false) branch at a non-
deterministic conditional point in the exploration. As a
result, the first path in SPF is not random and thus the
first input is also not random.

The to-be-explored tasks, which drive the future path
exploration, are generated in the procedure PathExec.
When executing the test ¢ in P (Line 15), a path condition
pcon = Y1 A ... Ay, (Line 16) corresponding to the ex-
ecution is obtained. Line 17 indicates which constraints
in pcon can be negated to generate the to-be-explored
tasks. If the initiating constraint ¢ is true, which indicates
that it is the first path exploration, the algorithm should
negate all the possible constraints and thus d is assigned
0. Otherwise, ¥y must match a constraint g € pcon.
In this case, the algorithm only negates the constraints
behind 14 in pcon. At Lines 18-21, the algorithm negates
the constraints to generate the to-be-explored tasks.

Table 1 shows the path exploration of Algorithm 1
in the program of Figure 2. The first column lists the
index of each explored path. Column From gives the
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TABLE 1: Path Exploration of Traditional Symbolic Execution

No. From Path Input pcon P To-be-Explored Tasks
(F, 2F)

T (true, true) [2T, 47,871 | (2,0,1) | 2TA4TA8T | true (2T NAF | 4F)
(2T AT N8BT, 8T

mo | QTAATA8F, 8Fy | [2T,4T,8F] | (2,0,2) | 2TA4TA8F | 8F -

3 (2T NAF | 4T 27, 4F,8T] | (2,1,1) | 2TAdFA8T | 4F (2T NaF ABE, 8F)

wa | QTAAEA8Y, 8F) | [2T,4F,8F] | (2,1,2) | 2T A4FA8F | 8F -

. (2F , 2F) [2F, 4T, 8T | (1,0,1) | 2FA4TAST | oF (2 A4, 47)
(2F AT A8, 8F)

e | (QFAATA8Y, 8F) | [2F,4T,8F] | (1,0,2) | 2FA4TA8F | 8F -

7 (2F NATF, 4T [2F,4F,8T]1 | (1,1,1) | 2FA4FA8T | 4F (2F NF ASE, 8T

s | QFAAFASE,8F) | [2F,4F 8F] | (1,1,2) | 2FA4FA8F | 8F -

task from which the path is initiated. The next column
shows the path, followed by the corresponding test
input. Column pcon represents the path condition. The
following column 1/ indicates the initiating constraint.
Only those constraints behind v in pcon can be negated
to generate the to-be-explored tasks. The last column lists
the to-be-explored tasks that are generated under the
present path. Note that we use the branch to represent
its corresponding constraint in a path condition. Assume
that the first path is m = [27,47 8T]. At the end of its
exploration, a test input (2,0, 1) is obtained. Meanwhile,
three to-be-explored tasks are generated and pushed into
stack: (2F2F) (2T N 4F 4F) and (27 A 4T A8F, 8F). The
path 75 is initiated from (27 A 47 A 8F 8F). It does not
generate any to-be-explored task because there is no
constraint behind 8 in its pcon. The to-be-explored task
(2T A 4F 4F) leads to path 73 = [27,4F 8T]. Through
negating 87 to 8%, the algorithm generates the to-be-
explored task (27 A 47 A 87 8F) under 3. When Algo-
rithm 1 terminates, all eight paths are explored and the
corresponding test inputs are also obtained.

4.2 Program Dependence

The control flow graph (CFG) of a program can be
formally represented by a tuple (N, E), where N is a
set of program nodes and E C N x N represents the
execution flow between the nodes. If n; is a conditional
statement, we use n! or n!” to represent n; depending
on whether the true or false branch of n; is taken. We
also use br; or br to represent n; when we do not care
whether the branch of n; is true or false. We consider
that n] and n!" (also br; and br}) are opposite, and they
themselves are also considered as the nodes. Let Br C N
be a set of branch nodes.

Definition 1. Control Dependence is a map controlD:
Br x N — {T,F} that returns true for a pair of nodes
(bri,n;) if br; must lead to the execution of n; while br} may
result in m; not being executed; otherwise it returns false.

Our definition of control dependence is slightly differ-
ent from its standard definition. The branch information
is added in our definition to differentiate the different

branches of a conditional statement, which is the same
as the research [16]. Consider the program in Figure 2. In
standard definition, node 3 is control-dependent on node
2. However, in our definition we have controlD (27, 3) =
T while controlD (2% ,3) = F.

Definition 2. Data Dependence is a map dataD: N X N
{T, F'} that returns true for a pair of nodes (n;,n;) if there
exists a path m from n; to n; where n; defines a variable v,
nj uses v and no ni(i < k < j) in © redefines v; otherwise
it returns false.

Definition 3. Potential Dependence is a map potential D:
Br x N — {T,F} that returns true for a pair of nodes
(bri,nj), if (1) there exists a path w from br; to n; where n;
uses a variable v and the definition of v occurs before br;; (2)
n; is not control-dependent on br; and br}; and (3) a different
definition of v could potentially reach n; if br} instead of br;
is taken; otherwise it returns false.

Our definition of potential dependence is adapted
from its original definition [9] [49]. The original po-
tential dependence is defined with respect to a specific
path, which actually is dynamic potential dependence.
However, our definition only requires the existence of
such a path, which can be considered as static potential
dependence. When our definition is applied to a specific
path to consider dynamic potential dependence, it can
obtain the same result as the original definition. Note
that our definition also includes the branch information.
Consider a pair of nodes (2%,14) in Figure 3: (1) there
exists a path [1,2F,4F 7,87 11,12, 13, 14] where node 14
uses variable a and the definition of a is at node 1 that is
before 2; (2) controlD(2T,14) = controlD(2F,14) = F;
and (3) a different definition, which is node 3, of a
reaches node 14 if 27 instead of 27 is taken. According
to Definition 3, potential D(2F,14) = T.

In order to facilitate our discussion, we define Tra-
ditional Dependence as a map traditionalD: N x N
{T,F} that returns true for a pair of nodes (n;, n;)
if controlD(n;,n;) = T V dataD(n;,n;) = T V
potential D(n;,n;) = T; otherwise it returns false.

Although traditional program dependencies have
been widely used in various software engineering tasks,
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14: return 1/(a-c);

Fig. 3: The Examples to Illustrate Infrequently Used
Potential Dependence and Newly Proposed Interactive
Dependence. Two Pairs (27, 14) and (1, 11) are Potential-
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they are insufficient for DGSE to explore all the dis-
tinctive paths. Because they cannot guarantee the path-
prefixing property as traditional symbolic execution. In
traditional symbolic execution, if 91 A - Atp_1 Atp; is
the prefix of a path condition, the path explored based
on 1[)1/\"'/\”(/)1'71 /\"’l/li still has 1!)1 /\"‘/\1/)1'71 /\—‘wi as
the prefix. In order to remedy this problem, we propose
interactive dependence to complement traditional pro-
gram dependencies. An example to explain the necessity
of interactive dependence will be given in Table 4.

Definition 4. Interactive Dependence is a map interac-
tiveD: N x N — {T, F'} that returns true for a pair of nodes
(ni,n;) if there exists a path m = [...n;...n;...ng.. ]
where node ny, is simultaneously dependent on nodes n; and
n; in terms of either traditional dependence or interactive
dependence; otherwise it returns false.

Interactive dependence is recursively defined. The
base case is that node ny, is simultaneously dependent on
nodes n; and n; in terms of traditional dependence. An
example of interactive dependence is shown in Figure 3.
There is a path [1,2F 4 7,8" 11,12,13,14] and where
node 14 is simultaneously data-dependent on nodes
1 and 11. Therefore, node 11 is interactive-dependent
on node 1. In the example, if either node 1 or 11 is
modified, there is a chance for the division-by-zero error
at node 14 to disappear. Therefore, although node 1 does
not impact the value or execution of node 11, it truly
impacts the effect of node 11 on node 14. Table 2 presents
the complete program dependencies of the program in
Figure 2.

5 PRACTICAL PATH REDUCTION APPROACH

A strict implementation of our path reduction based on
symbolic value is impractical due to two obstacles:

TABLE 2: Program Dependencies of Example in Figure 2

Type Program Dependencies

controlD (27 ,3)(47 5)(4F 7)(8T ,9) (8" 11)

dataD (1,12)(1,13)(1,14)(3,12)(3,13)(3,14) (5,12)
(5,13)(7,12)(7,13)(9,14)(11,14)(12,13)

potentialD (2F 12)(2F 13) (2T 14)
(1L2F) (14T ) (1,47 )(1,5)(1,7)(1,8T)(1,8F)
(1,9)(1,11)(1,12) 2F 4T ) (2F 4F) (2F 5)

interactiveD | (2F,7)(2F 8T\ (2F 8F\(2F 9)(2F 11)
(2F 12)(3,47)(3,47)(3,5)(3,7)(3,8T)
(3,85)(3,9)(3,11)(3,12)(5,12)(7,12)

o Itis prohibitively expensive to check the equivalence
of symbolic values, because we have to store and
compare all the symbolic values.

o It is extremely hard to predict the redundant paths
if we do not execute these paths and compute the
symbolic values exhibited in these paths.

In this section, we first present DGSE that soundly
approximates our path reduction based on symbolic
value. DGSE addresses the above two obstacles through
exploiting program dependence. Next, we describe how
to compute program dependence via static analysis and
illustrate why we propose interactive dependence. At
last, we prove the soundness of DGSE.

5.1

The optimization achieved by DGSE is sound in the
sense that it does not miss any path that can exhibit
unique symbolic values. DGSE adopts the following
techniques to optimize symbolic execution:

Dependence Guided Symbolic Execution

o DGSE utilizes the analysis of program dependencies
to check the equivalence of symbolic values, instead
of the direct logic comparison.

o DGSE abandons negating some branches based on
the program dependencies so that it can predict and
eliminate the redundant paths.

In order to explain the above practical techniques, we
first introduce the concept of relevant path slice and
relevant path condition.

Definition 5. Relevant Path Slice and Relevant Path Con-
dition. Let n be a node in the path w. The relevant path slice
7"P%[n] in 7 with respect to n contains all nodes n' € w such
that transitiveD(n’,n) = T, where transitiveD denotes
the transitive closure of dynamic control, data, potential and
interactive dependence. The relevant path condition ©"P°[n] in
7 with respect to n consists of all the branch nodes in ©"P%[n).

Given a path 7 and a branch br that is executed in
7, both relevant path slices #"P*[br] and 7"P*[br'] are
well defined in 7 even though branch br/, the opposite
branch of br, is not executed in 7. Take path 75 =
[1,2F,47 5,87,9,12,13,14] in Figure 2 for example. Since
branch 87 is executed in w5, 7:"°[87] is defined with
value [1,2F,87] in 75. Although 8 is not executed in
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75, ' [8F] is also well defined in 75. Three program
dependence pairs, as shown in Table 2, are relevant to
8 in 75: (1,8F), (2F,8F) and (1,2F). Therefore, we have
P [8F] = [1,2F,8F]. Note that 7.7 [8T] # w:P*[8F]. Such
mechanism is required, because Algorithm 2 needs to
negate branches and compute their relevant path slices
and relevant path conditions.

The relevant path slice 7#"7°[n] allows us to evaluate
the symbolic value at n in 7. Based on Definition 5,
the relevant path slice 7"7%[n] contains all the nodes in
m that possibly affect the symbolic value at n in «. If
m 7% [n] = 747%[n], two paths m; and 72 will have the same
symbolic value at n. Therefore, we can utilize relevant
path slice to check the equivalence of symbolic values.
As a result, if the relevant path slices of all the nodes in
m are collectively covered by previously explored paths,
m will not exhibit any new symbolic value and thus is
redundant. Definition 6 presents the formal definition of
redundant path.

Definition 6. Redundant Path. Let II be a set of program
paths. Given a path © ¢ 11, let 78FS = {7"P$[n]|n € n} be
the set of relevant path slices with respect to all the nodes in .
The path 7 is redundant if 7%F% C Uy, e (nf1P9); otherwise
w is a distinctive path.

Algorithm 2 presents the pseudo-code for DGSE. For
ease of presentation we do not differentiate a branch
and its corresponding constraint. The main procedure
DGSymbolicExec of Algorithm 2 is the same as that of
Algorithm 1 except the call to DGPathExec instead of
PathExec at Line 9. The procedures DGPathExec and
PathExec have two main differences. One is at Lines
20-21 of Algorithm 2, where DGSE utilizes relevant path
condition instead of path condition of Algorithm 1. The
other is at Lines 25-28. In Algorithm 1, all the possible
constraints behind 14 in pcon are negated, while Algo-
rithm 2 negates the constraints that are not only behind
g in pcon but also transitively dynamically dependent
on 4. We explain these differences by comparing Ta-
ble 3, where Algorithm 2 is applied to the program in
Figure 2, against Table 1, where Algorithm 1 is applied.

In traditional symbolic execution, the to-be-explored
tasks generated under the first path m = [27,47 87]
are (27 2F), (2T A 4F 4F) and (27 A 47 A 8F.8F), as
shown in Table 1. However, DGSE generates a different
to-be-explored task (27 A 8%, 8F) as shown in Table 3,
which corresponds to (27 A47 A8F, 81", through Lines 20-
21 in DGPathExec. We know that traditional symbolic
execution utilizes path condition as the first term of its
to-be-explored task, and the path condition includes its
all preceding constraints. Therefore, the path condition
in m with respect to 87 is 27 A 4T A 8F. However,
DGSE utilizes relevant path condition instead. Because
8 is not transitively dynamically dependent on 47 in
w1, the relevant path condition in m; with respect to
8F is 27 A 8F. As a result, DGSE generates a different
to-be-explored task under ;. This is an improvement
that DGSE achieves compared with traditional symbolic

Algorithm 2 Dependence Guided Symbolic Execution

1: DGSymbolicExec( Program P )

2: T+ 0

3: stack.push((true, true))

4: while (stack # 0) do

5: (pcon, ) « stack.pop()

6: if (pcon is satisfiable) then

7: let t be an input that satisfies pcon
8: T+ TU{t}

9: DGPathExec(P, t, )

10: end if

11: end while

12: return T’

13: end procedure

14: DGPathExec(P, t, v)

15: execute ¢ in P and compute path condition pcon
16: let pcon < Y1 A ... ANy,

17: d < 0 or index of 4 in pcon that matches 1
18: if (d = 0) then

19: for (i + 1;i < m;i++) do

20: let ﬂrpc[—\l/)i}(—’(/)i/\.../\wk/\_\wi
21: statck.push({(m"™Pe[—);], 1))

22: end for

23: else

24: for (i < d+ 1;¢ < m;i++) do

25: if (transitiveD(1q, —p;)) then

26: let m™PC[—a);] <= YL A AL A Y,
27: statck.push({(7"P¢[—;], ;)

28: end if

29: end for

30: end if

31: end procedure

execution, since each to-be-explored task leads to a path
exploration and the to-be-explored task (27 A 8% 8F)
in DGSE intuitively matches two to-be-explored tasks
(2T A4TA8F 8F) and (27 A4F A8F 8 in traditional sym-
bolic execution. Therefore, DGSE explores fewer paths
than traditional symbolic execution does.

Starting from (27 A 47 4F), traditional symbolic exe-
cution explores 73 = [27,4F,87]. Meanwhile, it negates
87 to 8F" and generates the to-be-explored task (27 A
47 A 8F 8F), as shown in Table 1. On the other hand,
DGSE does not generate any to-be-explored task due to
the check at Line 25 in DGPathExec. DGSE negates 87
to 8 only if 87 is transitively dynamically dependent
on 4 in 3. If transtiveD(4F,8F) = F, DGSE predicts
such negation is redundant. In fact, if DGSE negates 87
to 8%, it would generate the task (27 A8, 8%"). We know
that such task has been generated under 7; and thus it is
redundant. For the same reason, no to-be-explored task
is generated under 77 in DGSE.

Starting from (2%, 2F), traditional symbolic execution
explores 5 = [27,47 87| and generates two to-be-
explored tasks (2F° A 4F 4F) and (28 A 4T A 8F 8T, as
shown in Table 1. In DGSE, we first check whether 4%
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TABLE 3: Path Exploration of Dependence Guided Symbolic Execution

No. From Path Input pcon P transitiveD (g, —;) To-be-Explored Tasks
(27, 2%)
m (true,true) [27,47,8T1 | (2,0,1) | 2TA4TA 8T | true - (2T NaF | 4F)
(2T A8F, 8F)
T2 (2T A8F, 8Fy | [2T,4T,8F] | (2,0,2) | 2TA 4T A 8F 8F - -
w3 | (QTA4F, 4Fy | 27,4F,8T] | (2,1,1) | 2TA4FA 8T | 4F | transitiveD(4F, 8F) =F -
F AR F 4T oT Fr AT~ oT r | transitiveD(2F, 4F) =T (2F N4, 4T
™ @20 (27,47, 871 | MO | 27A 4T 8 2 transitiveD(2F, 8F) =T (2F n8F, 8F)
e | (2FA8F,8F) | 2F,6T,8F] | (1,0,2) | 2FA 4TA 8F | 8F - -
w7 | QFAAE, 4FY | [2F,4F, 8T | (1,1,1) | 2FA4FA 8T | 4F | transitiveD(4F, 8F) =F -
void test (int xy, ..., 5.2 Program Dependence Analysis
int xn) {
1: if (x1>0) DGSE leverages static dependence analysis and symbolic
x1=1; execution in synergy to enable efficient path exploration.
else > In this section, we introduce the static dependence
x1=2; analysis. Since control, data and potential dependence
.. . have been widely studied [9] [16] [50], we focus on
N: if (xn>0) . newly proposed interactive dependence. First, we utilize
xN=1; the program in Figure 2 to illustrate that traditional
else ¢ dependencies are insufficient for DGSE to explore all the
XN=2; distinctive paths. Table 4 presents the path exploration

}

Fig. 4: Path Reduction: from 2V to N + 1.

and 8% are transitively dynamically dependent on 2%, as
indicated by Line 25 in DGPathExec. Since both pass the
check, DGSE also generates two to-be-explored tasks as
shown in Table 3. Due to the reason of relevant path con-
dition, the second to-be-explored task (2 A 4T A 8F 8F)
also becomes (27 A 87 8% in DGSE.

In summary, DGSE improves traditional symbolic ex-
ecution in two ways. First, DGSE utilizes relevant path
condition instead of path condition. We know that the
path condition includes its all preceding constraints and
is a complete path prefix. This is also the reason that the
number of explored paths in traditional symbolic execu-
tion is usually exponential to the number of conditional
statements of a program. The relevant path condition, on
the other hand, only includes its relevant preceding con-
straints and may be an incomplete path prefix. Second,
DGSE abandons negating some branches based on the
program dependencies to predict and eliminate the re-
dundant paths. We know that the relevant path condition
may be an incomplete path prefix. If DGSE negates all
the possible branches as traditional symbolic execution,
it may generate the identical tasks, which is not neces-
sary. These two main differences provide the potential
for DGSE to achieve the path reduction, even maybe
an exponential path reduction. Consider the program
shown in Figure 4 with IV independent i f-else blocks.
Traditional symbolic execution explores totally 2%V paths.
However, DGSE achieves an exponential path reduction
through exploring only N + 1 paths: [17,...,N7] and
N, . kf ... NT](1 <k < N).

of DGSE without considering interactive dependence, as
indicated by column transTraD (¢4, ;) . In the paper,
transTraD denotes the transitive closure of dynamic
control, data and potential dependence, especially not
including interactive dependence. Assume that the first
path is still = = [2T, 47, 8T]. At the end of its ex-
ploration, three to-be-explored tasks (2, 2F), (47 4F)
and (8% 8%) are generated. Compared with those in
Table 3, the to-be-explored tasks (4f", 4F') and (87, 8") no
longer contain the constraint 27 because 4 and 8% are
not transitively dynamically dependent on 27 without
interactive dependence. The discrepancy appears in 7s.
As shown in Table 3, DGSE generates the to-be-explored
tasks (2F A4F 4F) and (2F A8F 8F) under m5. However,
it does not generate any to-be-explored task as shown
in Table 4, because both 47 and 8" are no longer transi-
tively dynamically dependent on 2/ without interactive
dependence. As a result, DGSE terminates prematurely
without interactive dependence and the division-by-zero
error at Line 14 does not be detected.

In the rest of this section, we discuss how to compute
interactive dependence. Note that we conduct static pro-
gram dependence analysis at the inter-procedural level
through adopting the techniques proposed in [51], even
though the computational procedure introduced in this
section does not make this explicit. The computation is
divided into two phases: we first conduct pair reaching
definition analysis and then leverage the results to com-
pute interactive dependence.

We now introduce the simultaneous reachability of a
pair of nodes. An important concept in the reachability
analysis is under what situation a node is killed by
another node. There are three cases. A definition node
n; is killed by node n; when the variables defined at
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TABLE 4: Incomplete Symbolic Execution without Interactive Dependence

No. From Path Input pcon P transTraD(Yq, —;) To-be-Explored Tasks
(2F, 2F)
T (truetrue) | [27,47,8T] | (2,0,1) | 2TA 4TA 8T | true - 4F, 47
(8%, 81"
T2 (8%, 8F) [27,47,8F1 | (2,0,2) | 2TA 4TA8F | 8F - -
3 (4F, 47y | 27, 47,871 | (2,1,1) | 2TA4FA 8T | 4F | transitiveD(4F, 8F) =F -
oy F Fy _ _
s (2F  2F) [2F, 4T, 877 | (1,0,1) | 2FA 4T A 8T oF transitive D (2%, 4*") =F
transitiveD(2F, 8') =F -

n; and n; are the same. This case is for the analysis of
date dependence. The next two cases happen when n; is
a branch node, and they are for the analysis of control
and potential dependence, respectively. If n; no longer
directly or indirectly controls node n;, n; is killed by
n;. In the last case, we first identify the set of definition
nodes N that are directly or indirectly controlled by the
opposite branch n; of n;. Then, we compute the set of
variables V' that are defined at the set of nodes N. When
the variable v € V' is the same as the variable defined at
n;, n; is killed by n;.

Definition 7. Pair Reaching Definition. Two nodes n; and
n; simultaneously reach node ny, if there exists a path m =
[...ni...nj...ny...] such that n; is not killed between n;
and ny, and n; is not killed between n; and ny, in 7.

We conduct pair reaching definition analysis based
on Equations (1), (2) and (3). In the equations, In[n;]
represents the set of pairs that can reach n;, and Out[n;]
denotes the set of pairs that can flow from n;. The set
Gen[n,] indicates the set of pairs that are generated at n;,
and Kiill[n;] is the set of pairs that are killed at n;. We
use pre(n;) to denote the set of nodes that are immediate
predecessors of n; in CFG. In fact, Equations (1), (2)
and (3) are the classical data flow analysis algorithm [52],
which is implemented via graph reachability [53]. The
complexity of graph reachability is in the order of poly-
nomial time, thus the pair reaching definition analysis is
also in the order of polynomial time.

In[ng] < {} (1)
Out[n;] = Gen[n;] U (In[n;] — Kill[n;])  (2)
ITL[TL]] A Umépre(nj)OUt[ni] 3)

Algorithm 3 leverages the results of pair reaching def-
inition analysis to compute interactive dependence. The
procedure PairReachingDef at Line 2 represents pair
reaching definition analysis. Due to the recursive nature
of Definition 4, we first compute the base case using the
for loop at Lines 3-9 and then compute the inductive
cases using the while loop at Lines 11-28. At Lines 3-9,
we compute interactive dependence based on traditional
dependence. For each nj; in CFG, we obtain the pair
reaching definition (n;,n;) € Inng]. According to Def-
inition 4, if ny is simultaneously traditional-dependent
on both n; and nj, n; is interactive-dependent on n;.

Algorithm 3 Interactive Dependence Computation

1: InteractiveD(CFG cfg)

2 In + PairReachingDef(cfg)

3: for (each ny € ¢fg) do

4 for (each (n;,n;) € In[ny]) do

5 if (traditionalD(n;, ni) A traditional D (n;,

ny)) then
6: Siq — Siq U (ni, nj>
7: end if
8: end for
9: end for
10: worklist < S;q

11: while (worklist # () do

12: (ni, i) < worklist.remove()

13: N « {nj|traditionalD(n;,ny) V interactiveD
(nj, ni)}

14: for (each n; € N) do

15: if ((ns,n;) € In[k]) then

16: Siq — Siq U (ni, nj>

17: if ((n;,n;) has not been added) then

18: worklist <— worklist U (n;, n;)

19: end if

20: end if

21 if ((nj,n;) € In[k]) then

22: Siq — Siq U <’I’Lj, ni>

23: if ((n;,n;) has not been added) then

24: worklist <— worklist U (n;, n;)

25: end if

26: end if

27: end for

28: end while

29: return S,

30: end procedure

The set of all the interactive dependence pairs obtained
in the base case are then added to the worklist at Line
10, which initiates further analysis. For each (n;,n)
such that nj is interactive-dependent on n;, we locate
another n; such that n, is also traditional-dependent
or interactive-dependent on n;. Then we check whether
(ns,nj) € IN[ng]. If so, n; is interactive-dependent on n;.
Similarly, if (n;,n;) € IN[ng], n; is interactive-dependent
on n;. The complexity of Algorithm 3 is O(n?®), where n
is the number of nodes in CFG.
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5.3 Proof of Soundness

In this section, we prove that DGSE has the equivalent
fault detection capability as traditional symbolic exe-
cution, as long as the potential faults are modeled as
conditional abort statements. We also assume that the
constraint solver is sound. If a path condition cannot be
decided by the constraint solver, there is no guarantee
that the paths explored by traditional symbolic execution
and DGSE are complete, thus their equivalence cannot
be proved. Furthermore, we assume that the program
dependencies in a path can be precisely determined.

In the proof, we first prove that any two adja-
cent nodes of a relevant path slice have a transitive-
dependence relation in Lemma 5.1. Then, based on
Lemma 5.1 and Algorithm 2, we prove in Lemma 5.2 that
if a relevant path slice is covered by traditional symbolic
execution, the same relevant path slice is also covered
by DGSE. Finally, based on Lemma 5.2, we prove that
DGSE and traditional symbolic execution are equivalent
in terms of reachability of conditional abort statements.

Lemma 5.1. Given a relevant path slice ©"P%[n,,| =
[n1,n2,...,ny] in the path w, for any n;, € 7P%[n,,]
(1<i<m), we have transitiveD(n;_1,n;) = T.

Proof. We prove the lemma by induction.

1) Base Step: We know that 7"?%[n,,] is the relevant
path slice in = with respect to n,,. According
to the definition of relevant path slice, we have
transitiveD(n;,n,,) = T (1<i<m). Therefore, we
have transitiveD(ng,—1,nm) = T.

2) Inductive Step: The inductive hypothesis is that we
have transitiveD(n;_1,n;) = T (2<i<m). We prove
that we also have transitiveD(n;_s,n;—1) = T.
Note that n;_9 is in 7"7%[n,,,] and therefore we have
transitiveD(n;_2,n,,) = T. Assume that there is
a dependence chain from n,, to n;_s, which is
transitiveD(n;, nmy) = T A transitiveD(n;—9,n;) =
T. There are two cases to consider: (I) If j=i-1,
it has proved that transitiveD(n;,_o,ni—1) = T;
(W) If j>i-1, we have transitiveD(nj_1,n;) = T
based on the inductive hypothesis. In addition,
we also have transitiveD(n;—2,n;) = T based
on the assumed dependence chain from n,, to
n;—q. Therefore, we have transitiveD(n;,_2,n;_1) =
T based on the definition of interactive de-
pendence. As a result, we obtain another de-
pendence chain from n,, to n;_s, which is
transitiveD(nj, ny,) = T A transitiveD(nj_1,n;) =
T A transitiveD(n;—a,n;_1) = T. Repeating such
process, we eventually get a dependence chain
transitiveD(n;, ny) = T AtransitiveD(n;_1,n;) =
TA...AtransitiveD(n;_o,n;—1) = T. Therefore, we
also have transitiveD(n;—o,n;—1) = T.

O

Lemma 5.2. Given a program P, for any relevant path slice
7"P%[n] that lies on a feasible path explored by traditional

symbolic execution, DGSE is also able to explore a feasible
path in P that covers n"P%[n].

Proof. We prove the lemma by induction.

1) Base Step: Let n"7%[n] = [n]. According to the
definition of relevant path slice, n is not control-
dependent on any other node n., otherwise n. is
also in 7"P%[n]. If n is not a branch node, n is reach-
able in the first path exploration and thus 7"7*[n] =
[n] is covered by the first path. If n is a branch node,
we assume that 7"7%[n] = [n] = [br,,] without loss of
generality. If the first path exploration takes branch
bry, at n, ©"P%[n] = [n] = [br,,] is covered by the first
path. Otherwise, the first path exploration must
take the opposite branch br), of br,. According to
Algorithm 2, DGSE negates all the branches in the
first path exploration, and therefore DGSE negates
br], to br,, and generates the to-be-explored relevant
path condition br,. Based on br,,, DGSE explores a
path to cover 7"7%[n] = [n] = [br,,] in Algorithm 2.

2) Inductive Step: The inductive hypothesis is that
any relevant path slice 7#"7%[n;] = [n1,...,n;] with
length less than or equal to ¢ has been covered by
the path in DGSE. Assume that 7"7%[n;] is covered
by the path 7; and its corresponding relevant path
condition is 7"7°[n;]. Consider a longer relevant
path slice 7% [n; 1] = [n1, ..., ni, niy1] with length
i + 1. If n;11 is not control-dependent on any
node, based on the same reason in the base step,
7©"P%[n;41] can be covered by DGSE. In the fol-
lowing we consider the case that n;;; is control-
dependent on a node n. € [ny,...,n;]. If n;qq is
not a branch node, n;;; is reachable in 7; and
thus 7"P%[n,;41] is also covered by m;. The reason
is that the control dependence in DGSE includes
the branch information and thus n. and n;., are
simultaneously reachable in ;. If n;;, is a branch
node, we assume n;;; = br;y; without loss of
generality. If br;y; is taken by m;, the relevant path
slice 7"P%[n;41] is covered by ;. Otherwise, the
path 7; takes the opposite branch brj ; of briy;.
As Lemma 5.1, we know that br;y; is transitively
dynamically dependent on n;. Therefore, DGSE
will negate brj | to bri;1 in 7; and generate a to-
be-explored relevant path condition 7"7°[n;| Abrit1,
which leads to that 7n"?%[n; ;] will be covered in
Algorithm 2.

O

Theorem 5.3. Assume a program P and its potential faults
are modeled as conditional abort statements. Any fault that
can be detected by traditional symbolic execution can also be
detected by DGSE.

Proof. Let a random potential fault be if (—¢)
abort; and n represents the if statement. Since tra-
ditional symbolic execution offers exhaustive path cov-
erage, it can explore a path m# = [...nT .. ] that leads
to abort statement if 7 is feasible. Assume that the
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relevant path slice with respect to n” in 7 is 7"?*[n7].
According to Lemma 5.2, DGSE would also explore a
path to cover 7"P*[nT]. Therefore, if there exists a feasible
path that executes n” and leads to abort statement,
DGSE also explores a feasible path that executes n” and

leads to abort statement. O

6 EVALUATION

We have developed a prototype for DGSE based on
two existing tools Indus [50] and Symbolic PathFinder
(SPF) [6]. Indus is an inter-procedural analysis tool based
on Soot [54]. The control and data dependence can be
simply retrieved from Indus. As for the potential and
interactive dependence, we computed them using the
information flow analysis available in Indus. SPF is a
symbolic execution extension to the Java PathFinder
framework [6]. We extended SPF with a customized
listener to load the results of static program dependence
analysis, and used the results to guide symbolic execu-
tion in SPF.

We compare DGSE against traditional symbolic exe-
cution SPF to answer the following research questions.

1) Compared with SPF, what is the reduction ratio
in terms of the number of explored paths? Can
such reduction in DGSE lead to speedup even with
additional computational overhead?

2) It is often the case that the paths of a program can-
not be systematically explored within reasonable
amount of time. Does DGSE offer better distinctive
path coverage than SPF within a time limit?

3) Search strategies may have an impact on the effec-
tiveness of symbolic execution. How do different
search strategies, such as breadth-first, depth-first
and random search, affect SPF and DGSE?

4) We have proved that DGSE has the equivalent fault
detection capability with traditional symbolic exe-
cution as long as the potential faults are modeled
as conditional abort statements. What if such mod-
eling is not conducted? Does fewer explored paths
in DGSE lead to inferior fault detection capability?

6.1

Siemens suite [10] has been widely used for various
software engineering tasks, such as software testing and
fault localization. The lines of the code in the suite
range from 173 to 570. Since the programs are writ-
ten in C' language, we have manually translated them
to Java language, same as the work [16] [35] [55].
Note that, we omitted two programs Printtokens and
Totinfo from the suite in our evaluation. The program
Printtokens contains numerous arrays and uses the
symbolic variable as the array index, which leads to
the imprecision of symbolic execution. The program
Totinfo has many double type of variables, which
significantly slows the speed of constraint solving and
even leads to the timeout of constraint solving. In the

Experiment Setup

paper, we computed the lines of code for these subjects
based on their C versions. In addition, we add a program
of similar size called Wheel Brake System (WBS) [15],
which has been used as a case study in several papers
on symbolic execution. WBS is a synchronous reactive
component that is used to provide safe breaking of the
aircraft during taxing, landing, and in the event of a
rejected take-off.

Besides above six programs, we choose three larger
publicly available programs: Siena, Apache CLI and
NanoXML. Siena is an internet-scale event notification
middleware for distributed event-based applications. It
consists of 94 procedures and 1256 lines of code. In our
experiments, we used the procedure encode in the class
SENP to serve as the main method as the research [35].
Apache CLI provides an API for parsing command line
options. There are 183 procedures and 3612 lines of code
in the program. We designed its test driver based on the
example shown on its official website [56]. NanoXML is
a small XML parser for Java, which has 129 procedures
and 4608 lines of code. We used DumpXML distributed
with NanoXML as the test driver. Moreover, these three
subjects contain the complex data structures such as
HashMap, which are not supported by SPE. We have
modified them through using the general data structures
to equivalently instead. In the paper, the lines of code for
these three subjects are computed based on their versions
before modification.

All experiments are conducted on a Windows 7 desk-
top with 3.2 GHz Intel Core i5 CPU and 8 GB memory.
The SMT solver Z3 [57] is used for all the subjects
except for Siena, in which Z3BitVec [57] is used. The
default search strategy in our experiments is depth-first
search. Moreover, in theory DGSE is a random process
according to the random first input, and there should be
an assessment of the statistical power of the empirical
results [58]. However, due to the implementation of SPF,
DGSE that is implemented based on SPF would also not
generate a random first input.

6.2 Number of Explored Paths and Time Usage

This group of experiments empirically study how effec-
tive DGSE is in terms of path reduction and whether
such path reduction leads to the speedup. Table 5 com-
pares the numbers of paths explored by DGSE and SPFE.
The first column lists the names of the experimental
subjects, followed by their sizes in terms of lines of the
code. Column Inputs shows the number of symbolic
inputs. Since some subjects have the variable number
of symbolic inputs, we conducted two experiments for
each: one with the minimum number of symbolic in-
puts under which the program can accomplish its all
functionality, the other with the maximum number of
inputs under which symbolic execution can terminate
within 12-hour time limit [59]. The remaining columns
in Table 5 list the detailed results between DGSE and
SPE. Column Feasible Paths shows the number of
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TABLE 5: DGSE and SPF: Number of Explored Paths
Subject LoC | Inputs Feasible Paths ' Infeasible Paths ‘ Total Paths .
DGSE SPF Ratio DGSE SPF Ratio DGSE SPF Ratio
WBS 231 6 324 576 56.25% 0 0 - 324 576 56.25%
Tcas 173 12 344 392 87.76% 1008 1008 100% 1352 1400 96.57%
Schedule? 374 3 127 343 37.03% 0 0 - 127 343 37.03%
6 8191 117649 6.96% 0 0 — 8191 117649 6.96%
Schedule 412 3 127 343 37.03% 0 0 - 127 343 37.03%
6 8191 117649 6.96% 0 0 - 8191 117649 6.96%
Replace 564 5 386 594 64.98% 62 278 22.30% 448 872 51.38%
11 8074 120132 6.72% 2205 16634 13.26% 10279 136766 7.52%
PrintTokens? 570 2 295 438 67.35% 1566 5068 30.90% 1861 5506 33.80%
3 1905 8097 23.53% 9424 87706 10.74% 11329 95803 11.83%
Siena 1256 9 1972 >19713 <10.00% 0 >0 - 1972 >19713 <10.00%
Apache CLI 3612 9 44561 >46187 <96.48% 4207 >37110 | <11.34% 48768 >83297 <58.55%
NanoXML 4608 9 >179040 | >175072 - >0 >3244 - >179040 | >178316 -
TABLE 6: DGSE and SPF: Time Usage
Total Time(s)
Subject Inputs DGSE SPF Speedup
Overhead SE Total
WBS 6 1 1 2 3 1.50
Tcas 12 1 272 273 279 1.02
3 2 4 6 11 1.83
Schedule2 6 73 272 345 8925 2587
3 2 4 6 11 1.83
Schedule 6 108 269 377 9015 2391
Replace 5 1 4 5 8 1.60
11 17 651 668 20642 30.90
R 2 2 25 27 123 4.6
PrintTokens2 3 9 1383 197 24629 4956
Siena 9 12 4127 4139 >43200 >10.44
Apache CLI 9 2758 17366 20124 >43200 > 2.15
NanoXML 9 >172 >43028 | >43200 | >43200 -
TABLE 7: Time Usage Breakdown
Subject Tnputs Solver Calls Solver Time(s) Sat Time(s) Unsat Time(s)
DGSE SPF Ratio DGSE SPF Speedup DGSE SPF DGSE SPF
WBS 6 3780 6720 56.25% 1.0 14 1.40 1.0 14 - -
Tcas 12 22490 23598 95.30% 269 275 1.02 95 98 174 177
Schedule? 3 1126 4312 26.11% 2.3 55 2.39 2.3 55 - -
6 110548 2840383 3.89% 155.9 7396 47.44 155.9 7396 - -
Schedule 3 1126 4312 26.11% 29 7.6 2.62 29 7.6 - -
6 110548 2840383 3.89% 201.7 8101 40.16 201.7 8101 — —
Replace 5 9460 17494 54.08% 1.8 3.2 1.78 1.61 2.34 0.24 0.91
11 927311 5939832 15.61% 513 16360 31.90 284 12219 229 4141
PrintTokens? 2 85140 265084 32.12% 19.1 97.6 5.11 3.8 6.5 15.3 91.1
3 922265 6686020 13.79% 434 24042 55.40 66 1288 368 22754
Siena 9 138631 >1386107 <10.00% 4120 >43168 >10.48 4120 >43168 - -
Apache CLI 9 8063394 >15801652 | <51.03% 12719 >40386 >3.18 11418 >17435 1301 >22951
NanoXML 9 >12565740 | >12671295 - >42666 | >42441 - >42666 | >41046 - >1395

explored paths that are feasible, i.e., the paths that can
produce the corresponding test inputs. In contrast, col-
umn Infeasible Paths lists the number of infeasible
paths that end at an unsatisfiable constraint solving and
cannot produce the corresponding test inputs. The last
column gives the total number of paths that include both
feasible and infeasible paths.

Within 12-hour time limit, SPF and DGSE fail to
terminate in three and one subject, respectively. Among
the six subjects that both DGSE and SPF terminate, DGSE
explores as low as 6.72% of the feasible paths of SPF, and
as low as 10.74% of the infeasible paths of SPF. When
considering both feasible and infeasible paths, DGSE
explores 6.96% to 96.57% of the paths of SPF.

Table 5 confirms that the number of paths explored by

DGSE is significantly smaller than that of SPF. However,
there is still concern whether the path reduction can
compensate the additional overhead in DGSE, which
includes program dependence analysis and the guidance
of symbolic execution. Table 6 shows our study results
on whether DGSE achieves the speedup. We divide
the time usage of DGSE into two parts: overhead and
symbolic execution. It can be observed that the over-
head is not too expensive. Only in WBS it accounts for
50% of total time usage and in fact it is due to the
less total time usage. Even with the overhead, DGSE
still can achieve speedup from 1.02X to 49.56X in our
experiments. The study results also show that the more
paths to be explored, the more significant the speedup
is. This is more obvious in the experiments on the same
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void Test (int x) {
int a=1;
int b=2;
if (x>1)
a=2;
if (x>0)
b=x;
int first_out=a;
int sec_out=b;
}
Fig. 5: An Example for Infeasible Path Reduction

O 1o U W N

subject with different numbers of symbolic inputs. The
speedups in the experiments with minimum number of
symbolic inputs are 1.83X, 1.83X, 1.6X and 4.6X, while
in those with maximum number of symbolic inputs they
become 25.87X, 23.91X, 30.9X and 49.56X.

Another interesting result is that the speedup seems
more significant than the path reduction. Table 5 shows
DGSE explores 6.96% to 96.57% of the paths of SPF, that
is, SPF explores 1.04X to 14.36X of the paths of DGSE.
However, Table 6 shows DGSE achieves a speedup from
1.02X to 49.56X. Considering the existence of the over-
head in DGSE, it is very surprising. In fact, for all the
large subjects, the speedup is more significant than the
path reduction. Obviously, the number of explored paths
alone cannot explain this interesting result.

In order to investigate this issue, we examine how
the time is spent on constraint solving, the most ex-
pensive procedure of symbolic execution. Table 7 gives
the results on the number of constraint solver calls
and the time spent on the constraint solving. The latter
is further divided into the constraint solving time for
the feasible paths (column Sat Time) and the infea-
sible paths (column Unsat Time). The results show
that although DGSE makes fewer calls to the constraint
solver, it achieves more significant speedup. Consider
PrintTokens2 with three symbolic inputs. Although
DGSE only makes 13.79% of constraint solver calls of
SPF, that is, SPF makes 7.25X constraint solver calls over
DGSE, SPF spends 55.40X time over DGSE. The first
reason that explains the speedup is that DGSE not only
conducts fewer constraint solver calls but also produces
the simpler relevant path condition. The average number
of constraints per constraint solver call is 19.48 in DGSE
while 24.00 in SPE. Although not guaranteed, in general
the constraint solving is easier with smaller number
of constraints. In addition, DGSE explores dramatically
smaller number of infeasible paths. As is well known,
solving a unsatisfiable formula usually takes longer time
as it requires exhaustive traversal of the state space, thus
the speedup gained from fewer unsatisfiable constraint
solver calls can be significant. To understand why DGSE
explores fewer infeasible paths, consider the example
program in Figure 5.

Assume that the first path is 71 = [37,57]. At the end

14

TABLE 8: Path Exploration of SPF with Infeasible Paths

No. From Path Input | To-be-Explored Tasks
(37, 37)
T (true, true) [3T, 57 x=2 /
(3T ABF, 5F)
T2 (3T A5F, 5F) | Infeasible - -
T3 (3%, 31 [3F, 5T x=1 (3F A5F, 5I)
ma | (3FASF,5F) | [3F,5F] x=0 -

TABLE 9: Path Exploration of DGSE without Infeasible
Paths

No. From Path Input | To-be-Explored Tasks
T (truetrue) | [37, 57 x=2 (37, 37)
(6", 5")
T4 (5T, 58y | [3F,5F] | x=0 -
T3 (3%, 31 3%, 57 x=1 -

of its exploration, traditional symbolic execution gener-
ates two to-be-explored tasks (3F,37) and (37 A 5%, 5F).
As illustrated in Table 8, the second to-be-explored task
(3T A 5F 5F) leads to an infeasible path 75 because
the path condition 37 A 57, which corresponds to (z >
1) A(z <0), is unsatisfiable. In contrast, DGSE generates
two to-be-explored tasks (3F,3F) and (57, 5") after the
exploration of 71, as shown in Table 9. The second to-be-
explored task (5”,5/") makes DGSE skip the infeasible
path m and execute the feasible path 74 instead. As a
result, the infeasible path w5 is avoided in DGSE.

6.3 Distinctive Path Coverage

Exhaustive path exploration is often not achievable
within reasonable amount of time. In this case we wish
symbolic execution can cover as many paths as possible.
In this group of experiments, we compare the distinctive
path exploration between SPF and DGSE within 12-hour
time limit. We do not consider the redundant paths as
they do not contribute to the unique fault detection.

The subjects used in this group of experiments are
Siena, Apache CLI and NanoXML that have been used
as experimental subjects in several papers on symbolic
execution [22] [35] [60]. Siena has nine symbolic inputs.
The number of symbolic inputs for Apache CLI and
NanoXML are variable. We also fix nine symbolic inputs
for these two programs in our experiments.

Figure 6 shows the experimental results of distinctive
path coverage for Siena, Apache CLI and NanoXML.
The blue solid line and red dashed line give the dis-
tinctive path coverage of SPF and DGSE over time,
respectively. Note that SPF does not complete the full
path exploration in all three subjects within 12-hour time
limit, while DGSE only does not terminate in NanoXML.
In the figure, we can see that DGSE consistently per-
forms better than SPF. As explained in Section 6.2, in
general SPF averagely spends longer time to explore a
path because its path condition is more complicated. A
careful study of Figure 6 reveals another more important
reason for the lower distinctive path coverage in SPE.
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Fig. 6: Distinctive Path Coverage of SPF and DGSE

Some flat lines in blue solid show SPF spends significant
amount of time to explore the redundant paths, which
are avoided in DGSE. Consider the program Apache
CLI that provides an API for parsing the command line
options. Since most of the options are independent of
each other, Apache CLI can be divided into numerous
independent parsing modules. In this case, DGSE would
explore the paths for each parsing module in isolation,
while SPF still combines all parsing modules together to
explore the paths. As a result, DGSE reduces the number
of explored paths from O(2") to O(2" +...+2""), where
n is the accumulated number of branch conditions, n;
is the number of branch conditions in the i-th parsing
module, m is the number of parsing modules and we
have n = >1" | n;.

6.4 Different Search Strategies

Search strategies may have impact on the effectiveness
of symbolic execution technique. For example, postcon-
ditioned symbolic execution [61] offers the most benefit
under the depth-first search and no benefit at all under
the breadth-first search. Although so far we have only
discussed the depth-first search, symbolic execution can
be easily adapted with different search strategies. In this
section, we evaluate the impact of breadth-first, depth-
first and random search on SPF and DGSE. For random
search, we conduct the experiments five times and then
compute the arithmetic mean of the results.

Figure 7 depicts the distinctive path coverage for SPF
with three search strategies. The breadth-first, depth-first
and random search are depicted in blue solid line, red
dashed line and black dotted line, respectively. It can be
observed that the search strategies indeed have impact
on the distinctive path coverage, although there is no
clear winner. That is, in general we cannot know in
advance which search strategy works best in a given
program. The main reason is that SPF cannot predict
when the redundant paths appear. Figure 8 shows three
search strategies for DGSE. It can be observed that DGSE

is less sensitive to the search strategies. In particular, for
the subjects Siena and Apache CLI, there is almost
no difference among three search strategies. This can be
explained by that DGSE strives to explore the distinctive
paths and thus the primary influence is the average time
usage for each path exploration. This is clearly shown in
Figure 8 (c), which indicates breadth-first search works
best while depth-first search works worst. We know that
breadth-first search takes the priority to negate the first
to-be-negated branch, while depth-first search prefers to
negate the last to-be-negated branch. As a result, the
average number of constraints per constraint solving is
smaller in breadth-first search than that in depth-first
search, which further leads to less average time usage for
each path exploration in breadth-first search than that in
depth-first search.

6.5 Fault Detection Capability

DGSE has the equivalent fault detection capability as
traditional symbolic execution if the potential faults are
correctly modeled. Consider an assignment statement
x¢—a/b. After converting the statement to 1f (b==0)
abort; else x<¢a/b, DGSE and SPF have the equiva-
lent capability to detect the division-by-zero error. In the
case that x<—a/b is not modeled, what is the capability
to detect the error at x<—a/b for the test suites generated
by SPF and DGSE?

In this section, we exploit mutation testing [62] [63] to
evaluate the effectiveness of the test suites generated by
SPF and DGSE. Mutation testing makes small changes to
a program and generates a set of faulty versions called
mutants. We say that the test suite kills a mutant if one
test input in the suite can give different outputs between
the original program and its mutated version. For six
subjects that both SPF and DGSE can conduct full path
exploration, we let SPF and DGSE thoroughly explore
the program paths and generate the corresponding test
suite Ispr and Ipgsk. The kill rates of SPF and DGSE
are defined by the percentage of mutants killed by Ispr
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and Ipgsg, and then the fault detection capability can
be measured by their kill rates. In our experiments, we
utilize the tool MuJava [62] to automatically generate the
mutants for our benchmarks. We applied all 15 method-
level and all 28 class-level mutation operators available
in MuJava. Since not all mutation operators are able to
produce mutants, the number of mutants generated by
a mutation operator can be different.

The experimental results are given in Table 10. Column
Mutation lists the number of mutations, ranging from
615 to 3430. Column Test Cases gives the number
of test cases generated by DGSE and SPF, which corre-
sponds to column Feasible Paths in Table 5. Column
Kill shows the number of mutants killed by SPF and
DGSE. It can be observed that the numbers of killed
mutants from SPF and DGSE are very similar. Column
Unique Kill shows the number of mutants that are
killed only by DGSE or SPF. Note that even though the
paths explored by DGSE are the subset of the paths
explored by SPF, the test cases generated by DGSE may
not be the subset of test cases generated by SPF, because
symbolic execution only generates a representative test

case for each explored path. Therefore, it is possible that
a mutant is killed by DGSE but not by SPE. Finally,
column Kill Rate gives the percentage of mutants that
are killed. Although the number of test cases generated
by DGSE are only 37.03% to 87.76% of those of SPF, the
maximal difference in kill rates between DGSE and SPF
is less than 0.2%. This group of experiments indicate that
the redundant paths rarely detect the unique faults.

Table 10 shows that the kill rates among different
programs vary greatly, ranging from about 47% for WBS
to about 70% for Schedule2. There are two possible
explanations. The first is due to the inherent nature of a
program. For a test case to kill a mutant, its execution
must meet the PIE model [64]: the execution must not
only be able to reach the mutated statements, but also
produce different program states and propagate the dif-
ferences to a manifested location. The second reason is
due to the influence of different mutation operators. As
discussed in [62] [65], mutation operators can be classi-
fied into eight categories: AO, RO, CO, SO, LO, AS, DL,
OO, which denote the Arithmetic mutation Operator,
the Relational mutation Operator, the Conditional mu-
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TABLE 10: Kill Rates of Mutation Testing

Program Inputs | Mutation Test Cases Kill Unique Kill Kill Rate
DGSE | SPF | DGSE | SPF | DGSE | SPF | DGSE SPF

WBS 6 836 324 576 392 393 0 1 46.89% | 47.01%

Tcas 12 615 344 392 320 320 0 0 52.03% | 52.03%

Schedule 3 775 127 343 537 538 1 2 69.29% | 69.42%

Schedule2 3 1084 127 343 760 761 0 1 70.11% | 70.20%

PrintTokens2 2 1736 295 438 1108 1108 0 0 63.82% | 63.82%

Replace 5 3430 386 594 1896 1897 0 1 55.28% | 55.31%

TABLE 11: Kill Rates for Different Types of Mutation Operators
WBS Tcas Schedule Schedule2 PrintTokens2 Replace Avg Rate

DGSE SPE DGSE SPF DGSE SPF DGSE SPF DGSE SPF DGSE SPF DGSE SPF
AO | 40.5% | 40.5% | 43.7% | 43.7% | 61.0% | 61.3% | 61.4% | 61.6% | 50.2% | 50.2% | 57.1% | 57.2% | 52.3% | 52.4%
RO | 49.0% | 49.4% | 54.5% | 54.5% | 75.8% | 75.8% | 82.2% | 82.2% | 65.1% | 65.1% | 48.1% | 48.1% | 62.5% | 62.5%
CO | 689% | 68.9% | 84.6% | 84.6% | 88.9% | 88.9% | 84.1% | 84.1% | 72.7% | 72.7% | 67.8% | 67.8% | 77.8% | 77.8%
LO | 60.7% | 60.7% | 54.0% | 54.0% | 80.8% | 80.8% | 83.6% | 83.6% | 654% | 65.4% | 67.8% | 67.8% | 68.7% | 68.7%
DL | 44.6% | 44.6% | 55.7% | 55.7% | 68.6% | 68.6% | 70.8% | 70.8% | 74.4% | 74.4% | 51.5% | 51.5% | 60.9% | 60.9%
00 0.0% 0.0% 20.0% | 20.0% | 87.8% | 87.8% | 64.1% | 64.1% | 22.2% | 22.2% | 14.3% | 14.3% | 34.7% | 34.7%

tation Operator, the Shift mutation Operator, the Logical
mutation Operator, the ASsignment mutation operator
that only includes the short-cut assignment such as ”+="
and "*=", the DeLetion mutation operator that removes
statements, operators, variables or constants, and Object-
Oriented mutation operator such as encapsulation inher-
itance and polymorphism. MuJava does not perform SO
and AS mutation operators in this group of experiments
because our benchmarks do not have the shift operator
or the short-cut assignment. However, SO and AS can
be replaced by other relevant mutation operators and
therefore their absence does not affect the evaluation.
Table 11 shows the detailed mutant kill rates under
different mutation operators. It can be observed that the
kill rates vary greatly, ranging from 34.7% for OO to
77.8% for CO.

Since the mutation operators simulate the failure-
inducing edits made by developers, we can consider that
different mutation operators correspond to different fault
types. Under this assumption, the test cases generated by
DGSE and SPF have different fault detection capability
for different fault types. In Table 11, we can see that
DGSE and SPF have higher detection capability for CO
and LO, and lower detection capability for OO and AO.
The intuitive explanation is that CO and LO are strongly
relevant to the program path, and SPF and DGSE would
explore various paths for them. However, OO and AO
are relevant to the semantic of the program, and which
is not the aim of SPF and DGSE.

7 THREATS TO VALIDITY

The main internal threat to the validity is the potential
presence of errors in our implementation. To minimize
this threat, we tested our implementation on various
programs and manually checking the results. Another
source of threat to validity comes from the experimental
subject selection in the evaluation. Studies on more ex-
perimental subjects can help better assess the efficiency
and effectiveness of DGSE.

Due to the imprecision of the static program analysis
on the issues such as aliasing, we conservatively com-
pute the program dependencies. This leads to an over-
approximation of the program dependencies. As a result,
a redundant path may be wrongly considered distinctive
and thus is explored unnecessarily. On the other hand,
the over-approximation guarantees that DGSE is sound,
which means DGSE would not miss any distinctive path
if the resource is enough.

The effectiveness of DGSE depends on the inherent
dependence relationship of a program. A tightly coupled
program with dense dependence relationship will har-
vest little benefit from DGSE. However, as confirmed by
our experiments, redundancy is usually both abundant
and widespread in a program. In the best case, DGSE
can provide exponential improvement for the loosely
coupled program.

Same as all other symbolic execution techniques,
DGSE relies on the soundness of the constraint solver.
Although SAT/SMT solving has seen tremendous
progress in the last two decades, they may still report
UNKNOWN besides two desirable SAT and UNSAT
answers, due to either unsolvable theories such as non-
linear logic or resource limit. As a result, DGSE, same as
SPF, may miss some paths that should be explored.

8 APPLICATION OF DGSE: REGRESSION
TESTING

DGSE leverages static dependence analysis and symbolic
execution in synergy to enable efficient path exploration.
In fact, the static dependence analysis of DGSE can be
adapted so that it can be applied to other software
engineering tasks. For example, we can only statically
analyse those program dependencies that are relevant
to the program changes. If so, DGSE can be applied
to regression testing. In this section, we illustrate that
DGSE can be adapted to implement a regression testing
technique, which is similar to DiSE [15]. Note that our
objective is to demonstrate the application of DGSE
rather than its effectiveness in this particular application.
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public class WBS{
1: int AltPress=0;
2: int Meter=2;
public void update (int PedalPos,
int BSwitch, int PedalCmd) {
if (PedalPos<=0) // if (PedalPos==0)
PedalCmd=PedalCmd+1;
else i1if (PedalPos==1)
PedalCmd=PedalCmd+2;
else
PedalCmd=PedalPos;
9: PedalCmd=PedalCmd+1;
10: if (BSwitch==0)

O J oy U1 > W

11: Meter=1;

12: else if (BSwitch==1)
13: Meter=2;

14: if (PedalCmd==2)

15: AltPress=0;

16: else if (PedalCmd==3)
17: AltPress=1;

18: else

19: AltPress=2;

20: }

Fig. 9: The Example Program for DiSE
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3: if(PedalPos <= 0)
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Fig. 10: The CFG of Example Program for DiSE
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DiSE is an efficient symbolic execution technique,
which only explores the paths that are affected by the
program changes. Therefore, the test cases generated by
DiSE can be used for regression testing. DiSE performs
a two-phase analysis. The first phase conducts static
analysis to compute a set of locations that are impacted
by the program changes. The set of locations are then
utilized to guide symbolic execution in the second phase.
Figure 9 shows the motivating example in DiSE [15],
which has totally 24 feasible program paths. If Line 3
is the only statement that has been changed, DiSE only
explores eight feasible paths that are impacted by Line 3.
The eight feasible paths are formed by the combination
of the yellow nodes shown in Figure 10.

We use the same example program to demonstrate
that DGSE is able to achieve the same optimization as

TABLE 12: Program Dependencies for Regression Testing

Type Program Dependencies
controlD (3T 4y (3F 5Ty (3F 51" (5T 6) (51" ,8) (14T ,15)
(147 167 (147 167) (16T ,17) (16 ,19)
dataD (4,9 )(6,9)(8,9)(9,147)(9,14F)(9,167)(9,16™")
potentialD -
interactiveD | —

DiSE [15]. First, we revise the static dependence analysis
to only compute those program dependencies that are
relevant to the program changes. The relevant program
dependencies are then used to guide symbolic execution
as described in Section 5.1.

Table 12 shows the program dependencies that are
relevant to the changed Line 3 of Figure 9. With the guid-
ance of the table, we see that the program dependencies
that are irrelevant to the changed Line 3 are ignored,
such as (107,11) and (10F,13). Table 13 illustrates the
path exploration of dependence guided symbolic exe-
cution. Same as DiSE, DGSE also only explores eight
feasible program paths.

Although in this example DGSE and DiSE enjoy the
same improvement, in general DGSE is more efficient
because DiSE does not consider the dependence between
the affected locations. For example, if a change happens
to Line 2 of the program in Figure 2, DiSE considers all
statements except Line 1 are affected and thus explores
all eight paths as Table 1. However, DGSE can still deter-
mine that the affected Lines 4 and 8 are not dependent
and there is no need to consider all the combination of
the branches of Lines 4 and 8. Consequently, DGSE only
explores six paths. The path exploration of such situation
in DGSE is the same as Table 3.

9 CONCLUSION AND FUTURE WORK

In this paper, we propose an optimization to traditional
symbolic execution based on symbolic value. We also
present a practical implementation called Dependence
Guided Symbolic Execution (DGSE) to soundly approx-
imate such optimization. DGSE utilizes static analysis to
compute the program dependencies, which then guide
symbolic execution to selectively explore program paths.
We implemented DGSE based on Symbolic PathFinder
and conducted experiments to evaluate the effectiveness
of DGSE. The experimental results show that, com-
pared with traditional symbolic execution, DGSE can
significantly improve its performance without sacrificing
fault detection capability. Moreover, we demonstrate that
DGSE can be applied to regression testing. In the future
work, we will apply DGSE to more larger subjects,
especially those subjects that contain the complex data
structures. Moreover, at present we utilize the pairs of
nodes to compute the program dependencies. We will
further study whether n length tuples are valuable for
computing the program dependencies.
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TABLE 13: Path Exploration of DGSE for Regression Testing

From Path pcon P transitiveD (g, =1;) To-be-Explored Tasks
F qF
(true true) (37,107 147 3T A107 A14T true - (3T<314'13P 1>4F>
N14%,
(3T A14F 14F) 37,107,147 167] 3T A10T A14F A16T 147 | transitiveD(14F, 167)=T (3T A14F A16F 16T
(3T A14F A16% 167 [37,107,14F 167] 3T A10T A14F A16F 16 - -
transitiveD(3F, 55)=T (3F A5 5T
(37 ,3F) [37,57,107 147] 3F AT A10T A14T 3F transitiveD(3F, 10F)=F -
transitiveD(3F, 14F)=T (3F ABT A14F 147
ACEA s P , , AT A A N transitive , = AST A A ,
3FA5T A14F 14F [3F,57,107 147 16T | 3FAST A10T A14F A16T | 14F D(14F, 16F)=T | (3FA5T A14F A16% 167
(B3F AT A14F A167 16T) | [3F 57,107,147 ,167] | 37 ABT A10T A14F AT6E | 167 - -
transitiveD(5F, 10F")=F -
(37 A5 55 [3F 57,107,147 167] | 3FASFA10T A14FA16T | 57 | transitiveD(5F, 14T)=T (3F ASF A14T 147
transitiveD(5F, 16F)=T | (3FA5FA14F A16%,16F)
(BFASE A14F A167 ,167) | [3F 57,107,147 167 | 3F A A10T A14F A16F | 167 - -
(3F A5F A14T 14T Infeasible - - - -
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