F-SorT: Software Verification Platform

F. Ivanci¢, Z. Yang*, M.K. Ganai, A. Gupta, I. Shlyakhter, and P. Ashar**

NEC Laboratories America, 4 Independence Way,
Suite 200, Princeton, NJ 08540
fsoft@nec-labs.com

1 Introduction

In this paper, we describe our verification tool F-SOFT which is developed for
the analysis of C programs. Its novelty lies in the combination of several recent
advances in formal verification research including SAT-based verification, static
analyses and predicate abstraction. As shown in the tool overview in Figure 1,
we translate a program into a Boolean model to be analyzed by our verification
engine DIVER [4], which includes BDD-based and SAT-based model checking
techniques. We include various static analyses, such as computing the control
flow graph of the program, program slicing with respect to the property, and
performing range analysis as described in Section 2.2. We model the software
using a Boolean representation, and use customized heuristics for the SAT-based
analysis as described in Section 2.1. We can also perform a localized predicate ab-
straction with register sharing as described in Section 2.3, if the user so chooses.
The actual analysis of the resulting Boolean model is performed using DIVER.
If a counter-example is discovered, we use a testbench generator that automati-
cally generates an executable program for the user to examine the bug in his/her
favorite debugger. The F-SOFT tool has been applied on numerous case studies
and publicly available benchmarks for sequential C programs. We are currently
working on extending it to handle concurrent programs.

2 Tool Features

In this section, we describe the software modeling approach in F-SOFT and
the main tool features. We perform an automatic translation of the given pro-
gram to a Boolean model representation by considering the control flow graph
(CFQG) of the program, which is derived after some front-end simplifications per-
formed by the CIL tool [9]. The transitions between basic blocks of the CFG
are captured by control logic, and bit-level assignments to program variables
are captured by data logic in the resulting Boolean model. We support primitive
data types, pointers, static arrays and records, and dynamically allocated objects
(up to a user-specified bound). We also allow modeling of bounded recursion by

* The author is at Western Michigan University.
** The author is now with Real Intent.

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 301-B06, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



302 F. Ivancié et al.

including a bounded function call stack in the Boolean model. Assuming the
program consists of n basic blocks, we represent each block by a label consist-
ing of [logn] bits, called the program counter (pc) variables. A bounded model
checking (BMC) analysis is performed by unrolling the block-wise execution of
the program. Similar block-based approaches have been explored in a non-BMC
setting for software model checking [3, 11]. However, by incorporating basic-block
unrolling into a SAT-based BMC framework, we are able to take advantage of
the latest SAT-solvers, while also improving performance by customizing the
SAT-solver heuristics for software models. More details of our software modeling
approach can be found in [6].

‘ Property monitor ‘ ‘ C programs
]

-

Control flow grapl

[ Contoltow |
[ puapow |}

BMC Heuristics >
; > Y P
\ ‘Pred. Abstraction |-

Refinement

A Y

YES DiVer analysis

? reachable time

Testbench }4—{ Spurious? "* [S] o
‘ NO P unknown property correct

counter—example

Fig. 1. F-SOFT tool overview

2.1 Customized Heuristics for SAT-Based BMC

The Boolean models automatically generated by our software modeling approach
contain many common features. We have proposed several heuristics in order to
improve the efficiency of SAT-based BMC on such models [6]. In particular, a
useful heuristic is a one-hot encoding of the pc variables, called selection bits.
A selection bit is set if and only if the corresponding basic block is active.
This provides a mechanism for word-level, rather than bit-level, pc decisions
by the SAT solver. Furthermore, by increasing the decision score of the selection
bits (or the pc variable bits), in comparison to other variables, the SAT-solver
can be guided toward making decisions on the control location first. We also
add constraints obtained from the CFG, to eliminate impossible predecessor-
successor basic block combinations. These constraints capture additional high-
level information, which helps to prune the search space of the SAT-solver.
Experimental results for use of these heuristics on a network protocol case
study (checking the equivalence of a buggy Linux implementation of the Point-
to-Point protocol against its RFC specification) are shown in Figure 2. For these
experiments, the bug was found by SAT-based BMC at a depth of 119, and



F-SOFT: Software Verification Platform 303

the figure shows the cumulative time in seconds up to each depth. All experi-
ments were performed on a 2.8GHz dual-processor Linux machine with 4GB of
memory. The graph labeled standard represents the default decision heuristics
implemented in the DIVER tool, while the other three graphs show the effect of
specialized heuristics — higher scoring of pc variables (score), one-hot encoding of
pc variables (one-hot), and addition of constraints for CFG transitions (trans).
The advantage of the the one-hot encoding heuristic can be seen clearly.

6000 T
standard —+—

Score ---x--
o one-hot -+ ¥z X*
trans 2
5000 &
4000 jul Wl
o
o

3000 M et

2000
a]
M
oot

1000

Cumulative Time(s)

0
20 60 80 100 120

Unrolling Depth

Fig. 2. Cumulative time comparison of SAT-based BMC heuristics for PPP

2.2 Range Analysis

F-SoFT includes several automatic approaches for determining lower and upper
bounds for program variables using range analysis techniques [12]. The range in-
formation can help in reducing the number of bits needed to represent program
variables in the translated Boolean model, thereby improving the efficiency of
verification. For example, rather than requiring a 32 bit representation for every
int variable, we can use the range information to reduce the number of bits for
these variables. As discussed in the next section, F-SOFT also provides an effi-
cient SAT-based approach for performing predicate abstraction. In this context
too, SAT-based enumeration for predicate abstraction [8] can be improved by
using tighter ranges for concrete variables, derived by using our automatic range
analysis techniques.

Our main method is based on the framework suggested in [10], which formu-
lates each range analysis problem as a system of inequality constraints between
symbolic bound polynomials. It then reduces the constraint system to a linear
program (LP), such that the solution provides symbolic lower and upper bounds
for the values of all integer variables. This may require over-approximating some
program constructs to derive conservative bounds. Our second approach to com-
puting ranges exploits the fact that in a bounded model checking run of depth
k, the range information needs to be sound only for traces up to length k. This
bounded range analysis technique is able to find tighter bounds on many program
variables that cannot be bounded using the LP solver-based technique.



304 F. Ivancié et al.

These range analysis techniques in F-SOFT have been applied to many ex-
amples, including a network protocol (PPP), an aircraft traffic alert system
(TCAS), a mutual exclusion algorithm (Bakery), and an array manipulation ex-
ample. For these control-intensive examples, we found that the LP-based range
analysis technique reduced the number of state bits in the translated Boolean
model by 60% on average. The bounded range analysis technique produced an
additional 53% reduction on average. These resulted in considerable time savings
in verification using both BDD-based and SAT-based methods.

2.3 Localized Predicate Abstraction and Register Sharing

Predicate abstraction has emerged as a popular technique for extracting finite-
state models from software [1]. If all predicates are tracked globally in the pro-
gram, the analysis often becomes intractable due to too many predicate relation-
ships. Our contribution [7] is inspired by the lazy abstraction and localization
techniques implemented in BLAST [5]. While BLAST makes use of interpo-
lation, we use weakest pre-conditions along infeasible traces and the proof of
unsatisfiability of a SAT solver to automatically find predicates relevant at each
program location. Since most of the predicate relationships relevant at each pro-
gram location are obtained from the refinement process itself, this significantly
reduces the number of calls to back-end decision procedures in the abstraction
computation.

The performance of BDD-based model checkers depends crucially on the
number of state variables. Due to predicate localization most predicates are use-
ful only in certain parts of the program. The state variables corresponding to
these predicates can be shared to represent different predicates in other parts
of the abstraction. However, maximal register sharing may result in too many
abstraction refinement iterations; e.g., if the value of a certain predicate needs
to be tracked at multiple program locations. We make use of a simple heuristic
for deciding when to assign a dedicated state variable for a predicate in order to
track it globally. While it is difficult to compare the performance of these tech-
niques in F-SOFT with BLAST under controlled conditions, our experiments [7]
indicated that the maximum number of active predicates at any program loca-
tion are comparable for the two tools, even though BLAST uses a more complex
refinement technique based on computation of Craig interpolants.

We have also applied our predicate abstraction techniques in F-SOFT to a
large case study (about 32KLoC) consisting of a serial 16550-based RS-232 device
driver from WINDDK 3790 for Windows-NT. We checked the correct lock usage
property, i.e. lock acquires and releases should be alternating. Of the 93 related
API functions, F-SOFT successfully proved the correctness of 72 functions in
about 2 hours (no bugs found so far!).

3 Comparison to Other Tools

The most closely related tool to ours is CBMC [2], which also translates a C
program into a Boolean representation to be analyzed by a back-end SAT-based



F-SOFT: Software Verification Platform 305

BMC. However, there are many differences. One major difference is that we gen-
erate a Boolean model of the software that can be analyzed by both bounded
and unbounded model checking methods, using SAT solvers and BDDs. Another
major difference in the software modeling is our block-based approach using a pc
variable, rather than a statement-based approach in CBMC. (In our controlled
experiments, the block-based approach provides a typical 25% performance im-
provement over a statement-based approach.) Additionally, the translation to
a Boolean model in CBMC requires unwinding of loops up to some bound, a
full inlining of functions, and cannot handle recursive functions. In contrast, our
pc-based translation method does not require unwinding of loops, avoids multi-
ple inlining, and can also handle bounded recursion. This allows our method to
scale better than CBMC on larger programs, especially those with loops. The
practical advantages over CBMC were demonstrated in a recent paper [6], where
we also used specialized heuristics in the SAT solver to exploit the structure in
software models.

We also differentiate our approach by use of light-weight pre-processing anal-
yses such as program slicing and range analysis. Program slicing has been suc-
cessfully used in other software model checkers [3,11] as well. Although range
analysis techniques have been used for other applications [10], to the best of our
knowledge we are the first to use them for software model checking. In practice,
it significantly reduces the number of bits needed to represent program variables
in the translated Boolean model, compared to using a full bitwidth encoding,
as in CBMC. Finally, F-SOFT also allows abstraction of the software program
using predicate abstraction and localization techniques. These are inspired by
other model checkers [1, 5].

Acknowledgements. We thank Srihari Cadambi, Aleksandr Zaks and Himan-
shu Jain for their help in development of the F-SOFT platform.

References

1. T. Ball, R. Majumdar, T.D. Millstein, and S.K. Rajamani. Automatic predicate
abstraction of C programs. In PLDI, pages 203-213, 2001.

2. E.M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.
In TACAS, 2004.

3. J. C. Corbett et al. Bandera: Extracting finite-state models from java source code.
In Int. Conf. on Software Engineering, pages 439-448, 2000.

4. M.K. Ganai, A. Gupta, and P. Ashar. DIVER: SAT-based model checking platform
for verifying large scale systems. In TACAS, volume 3340 of LNCS. Springer, 2005.

5. T.A. Henzinger, R. Jhala, R. Majumdar, and K. McMillan. Abstractions from
proofs. In POPL, pages 232-244. ACM Press, 2004.

6. F. Ivancié, Z. Yang, M. Ganai, A. Gupta, and P. Ashar. Efficient SAT-based
bounded model checking for software verification. In Symposium on Leveraging
Formal Methods in Applications, 2004.

7. H. Jain, F. Ivanc¢ié¢, A. Gupta, and M.K. Ganai. Localization and register sharing
for predicate abstraction. In TACAS, volume 3340 of LNCS. Springer, 2005.



306 F. Ivancié et al.

8. S.K. Lahiri, R.E. Bryant, and B. Cook. A symbolic approach to predicate abstrac-
tion. In Computer Aided Verification, volume 2725 of LNCS. Springer, 2003.

9. G.C. Necula et al. CIL: Intermediate language and tools for analysis and trans-
formation of C programs. In International Conference on Compiler Construction,
volume 2304 of LNCS, pages 213-228. Springer-Verlag, 2002.

10. R. Rugina and M.C. Rinard. Symbolic bounds analysis of pointers, array indices,
and accessed memory regions. In PLDI, pages 182-195, 2000.

11. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering Journal, 10(2), 2003.

12. A. Zaks, I. Shlyakhter, F. Ivanc¢ié¢, H. Cadambi, Z. Yang, M. Ganai, A. Gupta, and
P. Ashar. Range analysis for software verification. 2005. In submission.



	Introduction
	ToolFeatures
	Customized Heuristics for SAT-Based BMC
	Range Analysis
	Localized Predicate Abstraction and Register Sharing

	Comparison to Other Tools
	References

