
Message Race Detection for Web Services by an SMT-

Based Analysis

Mohamed Elwakil1, Zijiang Yang1, Liqiang Wang2, and Qichang Chen2

1Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008, USA

2Department of Computer Science, University of Wyoming, Laramie, WY 82071, USA

{mohamed.elwakil, zijiang.yang}@wmich.edu

{wang, qchen2}@cs.uwyo.edu

Abstract. The success of the cloud computing initiative is heavily dependent on

realizing trustworthy Web Services. The trustworthiness of a Web Service is

judged by four factors: security, privacy, reliability and business integrity. Web

Services use message-passing for communication which opens the door for

messages races. Messages race with each other when their order of arrival at a

destination is not guaranteed and is affected non-deterministically by factors

such as network latencies and scheduling variations. Message races are

dangerous to Web Services because they can be unforeseen consequences of

bugs, causing messages to arrive in an unexpected ordering. In this paper we

present a novel approach for improving the reliability of Web Services by

detecting message races using SMT-based analysis. We model a BPEL process

as a Web Service Modeling Graph (WSMG). A WSMG model is then encoded

into a set of SMT constraints. The satisfiability of these constraints means that

message races will occur during the actual execution of the Web Service.

Hence, we reduce the message race detection problem to constraint solving

problem based on satisfiability modulo theories (SMT).

Keywords: web services, satisfiability modulo theories, symbolic analysis

1 Introduction

Reliability is one of the four pillars necessary for producing trustworthy Web Services

[1]. Writing reliable Web Services is difficult due to the unique challenges of this

domain. In particular, Web Services are prone to concurrency errors due to 1)

concurrent processing of user/service requests; and 2) complex interaction behavior

resulting from diverse communication mechanisms such as synchronous and

asynchronous operations. In order to develop reliable Web Services, effective testing,

analysis and verification techniques must be available to address these challenges. In

this paper we attack the problem of detecting message races in Web Services. Race

conditions are listed among the top 25 dangerous programming errors [2]; hence,

detecting them is critical for Web Services development.

Fig. 1 illustrates a simple message race. WS1, WS2, and WS3 are three Web

Services. WS1 sends messages M1 and M2 to WS2 and WS3, respectively. WS3

reacts to the received message, by sending message M3 to WS2. Since M3 is sent in

response to M1, WS3 would expect receiving M2 before receiving M3 as in scenario

A. However, M3 may arrive at WS2 before M2 (scenario B) due to unexpected

network latency between WS1 and WS2, or due to unforeseen impediment at WS1

that delays sending M2. Messages M2 and M3 are said to be racing with each other.

Intuitively, two messages race with each other if either could be received first due to

the unpredictability of schedulers and message delays. Message races should be

detected since they may be manifestations of bugs and can cause unpredictable

results.

WS1 WS2 WS3

M1

M2

M3

Recv

Send

Recv

Recv

Send

Send

WS1 WS2 WS3

M1

M2 M3

Recv

Send
Recv

Recv
Send

Send

Scenario A Scenario B

Fig. 1. Messages can arrive at different orderings

Unfortunately, traditional testing approaches that repeatedly execute or simulate a

Web Service are not effective in detecting message races. First, such testing can be

used to prove the existence of errors, but not the absence of them. Not detecting

message races in multiple executions or simulations does not necessarily imply that

they can’t happen. To completely verify the behavior of a Web Service, all possible

scenarios must be examined. Explicitly examining all possible scenarios is a taunting

task, if not impossible, as the number of possible scenarios is astronomical. Also,

controlled testing can’t take into account unpredictable interactions that appear in the

field. Second, Web Services testers have to interpret vast amount of output to

determine whether there exists message races. This task alone takes non-trivial

amount of time, and in many cases the output of an execution or simulation is

considered correct by mistake even if there are message races. In the case where a

message race is detected, the particular execution sequence that manifested the

message race cannot be easily reproduced.

In this paper we present a novel approach that addresses these problems that

plague traditional testing approaches. Our approach can be used to prove the absence

of message races within a bound specified by the user. Unlike most other static

analysis approaches that report large amount of false negatives, only real message

races are reported by our approach. In order to explore the astronomical amount of

possible scenarios we model Web Services using suitable classes of constraints and

reducing various analysis problems to constraint solving. Fig. 2 depicts the steps of

our approach. First, a BPEL [3] process is translated to a WSMG model. Second, the

WSMG is encoded as an SMT [3] formula. Third, an SMT solver is used to decide the

satisfiability of the formula. We chose using SMT solvers as their performance has

benefited from recent significant advances in Boolean satisfiability (SAT) solvers

(e.g. [5], [6], [7]) and SMT solvers (e.g. [8], [9]).

BPEL WSMG
SMT

FormulaTranslate Encode
Solution

Solve

Fig. 2. Steps for finding messages races in a Web Service

The semantics of non-determinism such as network latency is represented implicitly

by the SMT formula. The solution reported by the SMT solver offers detailed

information that explains how the message race happened. Thus the bug is

reproducible in the sense that the user can always simulate Web Service execution

based on our bug report to obtain the same message race.

The rest of this paper is organized as follows. Section 2 briefly reviews related

work. Section 3 presents our modeling language for Web Services. Section 4 details

our approach to reduce message race detection problem to constraint solving problem.

Section 5 describes two case studies and we conclude in Section 6 with contributions

and limits of this paper.

2 Related Work

Netzer and Miller [10] first characterize message races and design an on-the-fly

algorithm for detecting them. Afterwards, Netzer et al. [11] improve their previous

approaches by using a two pass hybrid on-the-fly/post-mortem scheme, and remove

artifact races that are side effects of non-determinism from the bug report. In [12],

Park present an on-the-fly detection tool, which detects message races in MPI

programs by checking communication concurrency in distributed processes.

In [13], message race is identified as one type of undesirable interactions between

Web Services. In that work, Web Services are modeled as feature interactions and

then analyzed to discover potential message races. Zhang proposed a Petri net

based approach to detect race conditions in Web Services [14]. They subsequently

presented another model checking based technique using SPIN, where the business

process execution language for Web Services (BPEL4WS) is translated to Promela

(SPIN model definition language) [15]. The most significant difference between

previous work and ours is that most previous work uses existing languages and

models that are intended for other domains such as hardware and network protocol

designs. On the other hand, we use our Web Service Modeling Graph (WSMG) which

is targeted for Web Services. Also, our SMT-based analysis eliminates false positives

and produces a trace that facilities pinpointing the source of the message race.

Similar ideas that apply symbolic analysis to detect message races have been

reported in [17] [18]. However, the technique has been applied in a different domain

on MCAPI (Multicore Association Communication API), which leads to totally different

modeling and encoding algorithms.

3 Web Service Modeling Graph

In this section we define the Web Service Modeling Graph (WSMG) that is inspired

by hierarchical reactive modules [16]. WSMG is a compact representation that

exhibits concurrency and control flow in Web Services.

A WSMG model represents a Web Service as a set of threads that communicate

via messages over a set of channels. A thread consists of a set of sequential transitions

 . The set of transitions is defined as uard ction, where is the

state before the transition, is the state after the transition, is a conditional

expressions and . is a set of assignment

statements. sends the result of expression over a channel in .

 receives a value from a channel and saves the value to a variable in

 . No-op is denoted by . In WSMG there are two types of channels
 is a set of synchronous channels, over which both send and receive are

blocking. is a set of asynchronous channels, over which both send and receive

are non-blocking if the buffer in a channel is not full during send action, and not

empty during receive action.

We say a transition in thread has a , denoted as , if it is a

candidate for execution in a thread . At any time one transition per thread can have

the token. We say a transition is if it is selected for execution. When is

fired, the token moves to the next transition in that thread. denotes the next

transition of transition . In the following we explain the execution semantics of a

WSMG model:

 Let be a transition in thread . can be fired if is scheduled

and . After the firing, , and the assignment is

executed.

 Let () be a transition in thread that sends the value of to

synchronous channel ch, and () is a transition in thread that

receives to the variable from channel . Transition can be fired if ,

 , is scheduled, and both and is true. In this case, and are fired

simultaneously. After the firings, the value of is updated by the result of , and

the tokens in and are transferred to and , respectively.

 Let () be a transition in thread that sends the value of to

asynchronous channel . Transition can be fired if is scheduled, ,
 =true and the buffer in is not full. After the firing, , and the

value of is delivered to 's buffer.

 Let () be a transition in thread that receives a value from

asynchronous channel . Transition can be fired if is scheduled, ,
 =true, and the buffer in is not empty. After the firing , and the

value of is updated by the removed value from .

 Let be a transition in thread that forks thread , and be the

first transition in thread . Both and ' will be fired if is scheduled, =true

and . After the firings and .

 Let be a transition in thread that joins thread with thread ,
and be the last transition in thread . Both and will be fired if
 , =true and is scheduled. After the firings, and

 .

4 Symbolic Encoding

In this section we present an encoding approach that converts a given WSMG model

 to an SMT formula that consists of initial constraint , thread scheduling

constraint , transition constraint and message race constraint .

Whether there is message race up to the predefined bound can be checked by the

validity of formula 1 which is equivalent to checking the satisfiability for formula 2.

 (1)

 (2)

We use the SMT solver Yices [8] to solve formula 2. If the formula is satisfiable, the

solution gives a trace that leads to a message race from the initial state in ;

otherwise, it is proved that has no message race within steps. In the following we

first discuss the symbolic variables needed for the encoding, and then discuss the

constraints.

4.1 Symbolic Variables

In our symbolic analysis we check race conditions up to a pre-defined bound . For

each step , we add a fresh copy for each variable introduced in this section. That

is, denotes the copy of at the -th step. The symbolic variables are:

 Token variable: In order to encode the threads interleaving semantics

symbolically we identify the set of threads in a given WSMG model and

introduce one token variable for each thread . A transition has a token iff

 = . Before a thread is created or after it is terminated, we set to be or

 , respectively.

 Model variables: Given a WSMG model , we introduce a symbolic variable for

each model variable in .

 Scheduling variable: To model non-determinism in the scheduler, we add a

symbolic variable whose domain is the set of thread identifiers. The value of

 indicates which thread is scheduled to execute at step . This is an important

feature to our symbolic analysis in our approach. As in most cases the value of

 is unspecified, the SMT solver is forced to consider the case where any

thread can be scheduled to execute at step .
 Asynchronous channel buffers: In our encoding we only consider channels with

finite size buffers. Let the size of the buffer in be , we introduce symbolic

variables

 , each of which represents a cell in the buffer of . A

buffer is treated as a queue with
 and

 as its tail and head,

respectively. We use a sentinel value to denote a cell without valid

information. The buffer in is full iff
 and is empty iff

 .

4.2 Initial Condition Constraint

The initial condition constraint specifies the starting locations for each thread as

well as the initial values of model variables, including the values set by the input

vector.

4.3 Scheduling Constraint

Our approach analyzes all possible valid interleavings, and excludes invalid ones.

Therefore, we add thread scheduling constraint

 to prevent invalid interleavings

from being considered. In a WSMG model, a thread must not be scheduled at step
in four cases: 1) before its creation, or after its termination (formula 3), 2) when an

asynchronous send transition is pending and the relevant buffer is full, or when an

asynchronous receive transition is pending and the relevant buffer is empty (formula

4), 3) when a synchronous send transition is pending, and there is no corresponding

pending receive transition at another thread (formula 5), or 4) when a synchronous

receive transition is pending, and there is no corresponding pending send transition at

another thread (formula 6). is an asynchronous send transition, is an

asynchronous receive transition, is a synchronous send transition, and is all

potential receive transitions of , is a synchronous receive transition, and is

all potential send transitions of .

 (3)

)

(4)

 ⋀

 (5)

 ⋀

 (6)

The thread scheduling constraint is encoded as in formula 7, where is the

conjunction of the constraints listed in formulas 3, 4, 5, and 6.

 (7)

4.4 Transition Constraint

The execution semantics of a thread is specified by the encoding of its transitions in a

WSMG model. In the following we discuss the translation from transitions to SMT

formulas based on the types of transitions:

1. An assignment transition in the format of where is a guard,

and assigns the results of to variable is encoded as in formula 8.

(8)

Formula 8 states that at step is fired under the following conditions: Thread is

selected , has token (and guard is true . Note that
(or) means that all variables in the guard (or expression) are replaced by

their corresponding versions at step . The following updates occur at step when

 is fired at step : the transition that succeeds in will have the token
 , the value of at step is the result of at step () and

the values of all variables except remain unchanged from step to . Note

that means that all the variables except those listed in set keep their values

step to .

2. A synchronous send/receive transition pair in the format of ()

and (), will be encoded as:

 (

 ({ }))
(9)

3. An asynchronous send transition in the format of (), is

encoded as:

 (

)

(10)

4. An asynchronous receive transition in the format of (), is

encoded as:

 ((11)

 ⋀ (

)

)

5. A fork transitions in the format of , will be encoded according

to formula 12, such that is the first transition in thread .

 ({ })
(12)

6. A join transitions in the format of , will be encoded according

to formula 13, such that is the last transition in .

 ({ })
(13)

Let denote the constraint for transition at step and be the set of all

transitions in a WSMG model, the transition constraint can be specified as

 ⋀ ⋀

 (13)

4.5 Message Race Constraint

A message race occurs on a synchronous channel when two conditions exist: a

receive operation on is pending, and two or more send operations simultaneously

attempt to deliver messages on . In such case, the received message is non-

deterministic. Let be the set of transitions with synchronous receive from and

 be the set of transitions with synchronous send to . The constraint for

synchronous message race at step on channel can be specified as:

 (14)

Message race happens on an asynchronous channel if is not full and there are

multiple transitions trying to send messages over at the same time. In such case,

the message saved in the buffer of is non-deterministic. Let be the set of

transitions with asynchronous send to . The constraint for asynchronous message

race at step on channel can be specified as in formula 15, where

 () and () are transitions in thread and ,

respectively.

 (

) (15)

Let and be the set of asynchronous and synchronous channels in a WSMG

model . The message race property, up to bound , can be specified by:

(⋁ ⋁

)

(16)

5 Experiments

To assess the feasibility of our approach, we applied it on the stock-trading and the

loan-approval case studies from the BPEL-WS 1.1 standard [2].

As shown in Fig. 2, the stock-trading case study consists of three sub-services: a

quote service (SQS), a trading service (STS), and a bank service (Bank). The quote

service has two threads that continuously send updated stock prices to the bank and

the trading services. The trading service compares a received price to a minimum

threshold and a maximum threshold. If the price is less than the minimum threshold,

the trading service will send to the bank a buy request message. If the price is greater

than the maximum threshold, the trading service will send to the bank a sell request

message. Otherwise the trading service does nothing. The bank service updates its

database when it receives new stocks prices from the quote service, and performs

either selling or buying operations according to the requests received from the trading

service.

SQS

Q0

SQS 1

Q1

Q3

Allocate Memory

Q5

Q7

Send prices

to the STS

Retrieve Prices

SQS 2

Q2

Q4

Allocate Memory

Q6

Q8

Send prices

to the BS

Retrieve Prices PricesPrices

Bank

B1

B3 B4

B5

B7

B6

B8

BuySell

Receive Prices

Update Shares Count

Receive Prices

Update Shares Count

B2

Receive Operation

B0

Allocate Memory

M0

STS

S3

S1

S4

S5

S6

Price<LowerLimitPrice>UpperLimit

Send Sell Request

Update Shares Count

Send Buy Request

Update Shares Count

S2

Receive Prices

S9

Otherwise

S0

Allocate Memory

Sell Buy

Fig. 2. The stock-trading Web Service

We followed the steps depicted in Fig. 2 and used Yices as the SMT solver. The

solution produced by Yices indicates that a message race will occur when two quote

services send prices-update messages to the bank service.

Table 1 shows the output of Yices which is an interpreted partial valuation to the

symbolic variables in the SMT formula. In particular, we show the values of the token

variables and the thread selection variable. The values of token variables indicate

which transition is ready to be executed in a thread, and the value of thread selection

variable shows which thread is scheduled at a given step. With the values of these two

kinds of variables, the trace that leads to a message race can be replayed, thus solving

the non-repeatability problem in the debugging of Web Services. According to table

1, at the 10th step, the variable values satisfy the message race constraint: the bank

thread is scheduled for execution and its pending transition is a receive

operation . At the same time, there exist two send operations and
 and all the three operations are on the same channel.

Table 1. Partial valuation to the FOL formula translated from the stock-trading WSMG model

Step Partial Valuation

0

1

2

3

4

5

6

7

8

9

10

The second case study is based on the loan-approval Web Service which is shown in

Fig. 3. It consists of four sub-services: a customer service (Customer), an approval

service (Approval), an approver service (Approver), and an assessor service

(Assessor). The approval service receives loan requests from the customer service. If

the requested loan amount is less than a predetermined threshold, the loan request is

sent to the approver service for automatic approval. Otherwise, the loan request is sent

to the assessor service. When the assessor service receives a loan request, it assesses

the risk associated with the customer, and then sends the risk assessment to the

approval process. If the risk is high, the approval process denies the request;

otherwise, the request is forwarded to the approver process. When the approver

process receives a request, it automatically stamps the request as approved, and sends

it back to the approval process. When the approval process receives an approved

request from the approver process, it forwards the request to the customer.

Assessor

S1

S2

Receive Request

S3

Assess Request

S4

Send Assessment

S0

Allocate Memory

Approver

R1

R2

Receive Request

R3

Approve Request

R4

Send Approved Request

R0

Allocate Memory

Approval

L6

L3

L4

Amt≥Threshold

Amt<Threshold

Send Request to Assessor

Receive Assessment

L2

L1

Receive Request

L8

High Risk

Low Risk

L5

L7

Send Request to Approver

L9

L10

Send Decision

Receive Approved Request
Deny Request

L0

Allocate Memory

M0

Customer

Customer 1 Customer 2

C0

C1

C3

Allocate Memory

Prepare Request

C2

C4

Allocate Memory

Prepare Request

C5

C7

Send request

C9

Receive decision

C6

C8

Send request

C10

Receive decision

RequestRequest

Decision

Request

Assessment

Request

Approved Request

Fig. 3. The loan-approval Web Service

When Yices is fed the SMT formulas corresponding to the loan-approval Web

Service, it was able to detect a potential message race that happens when two quote

services send prices-update messages to the bank service. Table 2 shows the output of

Yices. At the 8th step, the variable values satisfy the message race constraint: is

scheduled for execution and it is a receive operation. At the same time both the

pending transitions of , and are send operations.

Table 2. Partial valuation to the FOL formula translated from the loan-approval WSMG model

Step Partial Valuation

0

1

2

3

4

5

6

7

8

The experiments were performed on a computer with Intel Core 2 Duo 2.6GHz

processor and 4GB memory. Table 3 reports statistics that are related to solving the

SMT formulas in the two case studies, including the number of decisions, number of

conflicts, number of Boolean variables and memory usage during the SMT solving

procedure. The last two rows list the memory and time usage of the two case studies.

Table 3. Yices statistics

Yices Statistics Loan-approval Stock-trading

#Decisions 11833 7954

#Conflicts 6411 869

Boolean variables 8845 5176

Memory used (MB) 20.1 13

CPU Time (sec.) 2.8 0.45

6 Conclusion and Discussion

To improve the reliability and consequently the trustworthiness of Web Services,

potential messages races should be detected. We have addressed the problem of

detecting message races in BPEL Web Services. The main contribution of this paper

is a novel approach that reduces message race detection to constraint solving and uses

modern SMT solvers to check the satisfiability of the SMT formula translated from

the WSMG models. Given a predefined bound , our approach is both sound and

complete within the bound. Compared with traditional testing approaches that

repeatedly execute or simulate a Web Service, the advantages of our approach include

1) ability to prove the absence of message races within a predefined bound, 2) implicit

exploration of astronomical amount of possible scenarios, 3) no need to control the

non-deterministic factors in Web Services in testing environment, and 4) detailed bug

reports.

However, even though all the message races reported by our approach are real,

there are benign message races that are allowed by certain Web Services. How to

differentiate benign and malicious message races is an important area that is out of the

scope of this paper. For the future work, we plan to perform more significant case

studies to future investigate the effectiveness of the approach.

Acknowledgements. The work was supported in part by ONR Grant N000140910740

and NSF Grant CCF-0811287.

References

1. Schneider, F. B. (editor): Trust in Cyberspace, National Academies Press, 1999

2. Christey, S. (editor), Top 25 most dangerous programming errors, CWE/SANS

report, 2009, http://cwe.mitre.org/top25.

3. Klein, J., Leymann, F., Roller, D., Curbera, F., Goland, Y., Weerawarana, S.:

Business process execution language for web services, 2003, version 1.1.

4. Satisfiability Modulo Theories,

http://en.wikipedia.org/wiki/Satisfiability_Modulo_Theories

5. Marques-Silva, J. P., Sakallah, K. A.: GRASP: A search algorithm for

propositional satisfiability. In: IEEE Transactions on Computers, vol. 48, no. 5,

pp. 506–521, 1999.

6. Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., Malik, S.: Chaff:

engineering an efficient SAT solver. In: 38th Design Automation Conference

(DAC), New York, NY, USA: ACM Press, 2001, pp. 530–535.

7. Een, N., Sorensson, N.: An extensible sat-solver. In: Satisfiability Workshop,

2003, pp. 333–336.

8. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In

18th Computer-Aided Verification Conference (CAV), ser. LNCS, vol. 4144.

Springer-Verlag, 2006, pp. 81–94.

9. Moura, L. D., Bjrner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms

for the Construction and Analysis of Systems (TACAS), 2008, pp. 337–340.

10. Netzer, R. H. B., Miller, B. P.: Optimal tracing and replay for debugging

message-passing parallel programs. In: Super computing ’92: roceedings of

the 1992 ACM/IEEE conference on Supercomputing. Los Alamitos, CA,

USA: IEEE Computer Society Press, 1992, pp. 502–511.

11. Netzer, R. H. B., Brennan, T. W., Damodaran-Kamal, S. K.: Debugging race

conditions in message-passing programs. In: SPDT’96: roceedings of the

SIGMETRICS symposium on Parallel and distributed tools. New York, NY,

USA: ACM, 1996, pp. 31–40.

12. Park, M.Y., Shim, S. J., Jun, Y.K., Park, H.R.: Mpirace-check: Detection of

message races in MPI programs. In: Advances in Grid and Pervasive Computing,

ser. Lecture Notes in Computer Science, vol. 4459. Springer-Verlag, 2007, pp.

322–333.

13. Weiss, M., Esfandiari, B.: On feature interactions among web services. In: IEEE

International Conference on Web Services. Los Alamitos, CA, USA: IEEE

Computer Society, 2004.

14. Zhang, J., Su, S., Yang, F.: Detecting race conditions in web services. In: AICT-

ICIW ’06: roceedings of the dvanced Int’l Conference on

Telecommunications and Int’l Conference on Internet and Web pplications

and Services, Washington, DC, USA: IEEE Computer Society, 2006, p. 184.

15. Zhang, J., Yang, F., Su, S.: Detecting feature interactions in web services with

model checking techniques. In: The Journal of China Universities of Posts and

Telecommunications, vol. 14, no. 3, pp. 108 112, 2007.
16. Alur, R., NcDougall, M., Yang, Z.: Exploiting Behavioral Hierarchy for Efficient

Model Checking, 14th International Conference on Computer-Aided

Verification(CAV), 2002.

17. Elwakil, M., Yang, Z., Liqiang, W.: CRI: Symbolic Debugger for MCAPI

Applications. In: ATVA 2010: The 8th International Symposium on Automated

Technology for Verification and Analysis (ATVA). Singapore: Springer-Verlag,

2010.

18. Elwakil, M., Yang, Z.: Debugging Support Tool for MCAPI Applications. In

Workshop on Parallel and Distributed Systems: Testing, Analysis, and

Debugging (PADTAD - VIII). Trento, Italy: ACM, 2010.

