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Abstract. The success of the cloud computing initiative is heavily dependent on 

realizing trustworthy Web Services. The trustworthiness of a Web Service is 

judged by four factors: security, privacy, reliability and business integrity. Web 

Services use message-passing for communication which opens the door for 

messages races. Messages race with each other when their order of arrival at a 

destination is not guaranteed and is affected non-deterministically by factors 

such as network latencies and scheduling variations.  Message races are 

dangerous to Web Services because they can be unforeseen consequences of 

bugs, causing messages to arrive in an unexpected ordering. In this paper we 

present a novel approach for improving the reliability of Web Services by 

detecting message races using SMT-based analysis. We model a BPEL process 

as a Web Service Modeling Graph (WSMG). A WSMG model is then encoded 

into a set of SMT constraints. The satisfiability of these constraints means that 

message races will occur during the actual execution of the Web Service. 

Hence, we reduce the message race detection problem to constraint solving 

problem based on satisfiability modulo theories (SMT). 
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1   Introduction 

 
Reliability is one of the four pillars necessary for producing trustworthy Web Services 

[1]. Writing reliable Web Services is difficult due to the unique challenges of this 

domain. In particular, Web Services are prone to concurrency errors due to 1) 

concurrent processing of user/service requests; and 2) complex interaction behavior 

resulting from diverse communication mechanisms such as synchronous and 

asynchronous operations. In order to develop reliable Web Services, effective testing, 

analysis and verification techniques must be available to address these challenges. In 

this paper we attack the problem of detecting message races in Web Services. Race 

conditions are listed among the top 25 dangerous programming errors [2]; hence, 

detecting them is critical for Web Services development. 

Fig. 1 illustrates a simple message race. WS1, WS2, and WS3 are three Web 

Services. WS1 sends messages M1 and M2 to WS2 and WS3, respectively. WS3 

reacts to the received message, by sending message M3 to WS2. Since M3 is sent in 

response to M1, WS3 would expect receiving M2 before receiving M3 as in scenario 

A. However, M3 may arrive at WS2 before M2 (scenario B) due to unexpected 



network latency between WS1 and WS2, or due to unforeseen impediment at WS1 

that delays sending M2. Messages M2 and M3 are said to be racing with each other. 

Intuitively, two messages race with each other if either could be received first due to 

the unpredictability of schedulers and message delays. Message races should be 

detected since they may be manifestations of bugs and can cause unpredictable 

results. 
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Fig. 1. Messages can arrive at different orderings 

 

Unfortunately, traditional testing approaches that repeatedly execute or simulate a 

Web Service are not effective in detecting message races. First, such testing can be 

used to prove the existence of errors, but not the absence of them. Not detecting 

message races in multiple executions or simulations does not necessarily imply that 

they can’t happen. To completely verify the behavior of a Web Service, all possible 

scenarios must be examined. Explicitly examining all possible scenarios is a taunting 

task, if not impossible, as the number of possible scenarios is astronomical. Also, 

controlled testing can’t take into account unpredictable interactions that appear in the 

field. Second, Web Services testers have to interpret vast amount of output to 

determine whether there exists message races. This task alone takes non-trivial 

amount of time, and in many cases the output of an execution or simulation is 

considered correct by mistake even if there are message races. In the case where a 

message race is detected, the particular execution sequence that manifested the 

message race cannot be easily reproduced. 

In this paper we present a novel approach that addresses these problems that 

plague traditional testing approaches. Our approach can be used to prove the absence 

of message races within a bound specified by the user. Unlike most other static 

analysis approaches that report large amount of false negatives, only real message 

races are reported by our approach. In order to explore the astronomical amount of 

possible scenarios we model Web Services using suitable classes of constraints and 

reducing various analysis problems to constraint solving. Fig. 2 depicts the steps of 



our approach. First, a BPEL [3] process is translated to a WSMG model. Second, the 

WSMG is encoded as an SMT [3] formula. Third, an SMT solver is used to decide the 

satisfiability of the formula. We chose using SMT solvers as their performance has 

benefited from recent significant advances in Boolean satisfiability (SAT) solvers 

(e.g. [5], [6], [7]) and SMT solvers (e.g. [8], [9]). 
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Fig. 2. Steps for finding messages races in a Web Service 

 

The semantics of non-determinism such as network latency is represented implicitly 

by the SMT formula. The solution reported by the SMT solver offers detailed 

information that explains how the message race happened. Thus the bug is 

reproducible in the sense that the user can always simulate Web Service execution 

based on our bug report to obtain the same message race.  

The rest of this paper is organized as follows. Section 2 briefly reviews related 

work. Section 3 presents our modeling language for Web Services. Section 4 details 

our approach to reduce message race detection problem to constraint solving problem. 

Section 5 describes two case studies and we conclude in Section 6 with contributions 

and limits of this paper. 

 

 

2   Related Work 

 
Netzer and Miller [10] first characterize message races and design an on-the-fly 

algorithm for detecting them. Afterwards, Netzer et al. [11] improve their previous 

approaches by using a two pass hybrid on-the-fly/post-mortem scheme, and remove 

artifact races that are side effects of non-determinism from the bug report. In [12], 

Park        present an on-the-fly detection tool, which detects message races in MPI 

programs by checking communication concurrency in distributed processes. 

In [13], message race is identified as one type of undesirable interactions between 

Web Services. In that work, Web Services are modeled as feature interactions and 

then analyzed to discover potential message races. Zhang        proposed a Petri net 

based approach to detect race conditions in Web Services [14]. They subsequently 

presented another model checking based technique using SPIN, where the business 

process execution language for Web Services (BPEL4WS) is translated to Promela 

(SPIN model definition language) [15]. The most significant difference between 

previous work and ours is that most previous work uses existing languages and 

models that are intended for other domains such as hardware and network protocol 

designs. On the other hand, we use our Web Service Modeling Graph (WSMG) which 

is targeted for Web Services. Also, our SMT-based analysis eliminates false positives 

and produces a trace that facilities pinpointing the source of the message race. 

Similar ideas that apply symbolic analysis to detect message races have been 

reported in [17] [18]. However,  the technique has been applied in a different domain 



on MCAPI (Multicore Association Communication API), which leads to totally different 

modeling and encoding algorithms. 

 

 

3   Web Service Modeling Graph 
 

In this section we define the Web Service Modeling Graph (WSMG) that is inspired 

by hierarchical reactive modules [16]. WSMG is a compact representation that 

exhibits concurrency and control flow in Web Services.  

A WSMG model represents a Web Service as a set of threads that communicate 

via messages over a set of channels. A thread consists of a set of sequential transitions 

 . The set of transitions is defined as             uard    ction, where   is the 

state before the transition,   is the state after the transition,       is a conditional 

expressions and                            .      is a set of assignment 

statements.            sends the result of expression   over a channel in   . 

             receives a value from a channel and saves the value to a variable in 

   . No-op is denoted by  . In WSMG there are two types of channels        
         is a set of synchronous channels, over which both send and receive are 

blocking.     is a set of asynchronous channels, over which both send and receive 

are non-blocking if the buffer in a channel is not full during send action, and not 

empty during receive action. 

We say a transition   in thread   has a      , denoted as      , if it is a 

candidate for execution in a thread  . At any time one transition per thread can have 

the token. We say a transition   is       if it is selected for execution. When   is 

fired, the token moves to the next transition in that thread.         denotes the next 

transition of transition  . In the following we explain the execution semantics of a 

WSMG model: 

 Let               be a transition in thread  .   can be fired if   is scheduled 

and              . After the firing,            , and the assignment is 

executed. 

 Let    (           ) be a transition in thread   that sends the value of   to 

synchronous channel ch, and    (            ) is a transition in thread    that 

receives to the variable   from channel   . Transition   can be fired if      , 

       ,    is scheduled, and both   and    is true. In this case,   and     are fired 

simultaneously. After the firings, the value of   is updated by the result of  , and 

the tokens in   and    are transferred to         and          , respectively. 

 Let    (            ) be a transition in thread   that sends the value of   to 

asynchronous channel   . Transition   can be fired if   is scheduled,       , 
 =true and the buffer in    is not full. After the firing,            , and the 

value of   is delivered to   's buffer. 

 Let    (            ) be a transition in thread   that receives a value from 

asynchronous channel   . Transition   can be fired if   is scheduled,       , 
 =true, and the buffer in    is not empty. After the firing            , and the 

value of   is updated by the removed value from   . 



 Let                  be a transition in thread   that forks thread   , and    be the 

first transition in thread   . Both   and  ' will be fired if   is scheduled,  =true 

and      . After the firings             and        .   

 

 Let                   be a transition in thread   that joins thread   with thread   , 
and    be the last transition in thread   . Both   and    will be fired if       
       ,  =true and    is scheduled. After the firings,             and 

      . 

 

4   Symbolic Encoding 
 

In this section we present an encoding approach that converts a given WSMG model 

  to an SMT formula that consists of initial constraint      , thread scheduling 

constraint      , transition constraint       and message race constraint      . 

Whether there is message race up to the predefined bound   can be checked by the 

validity of formula 1 which is equivalent to checking the satisfiability for formula 2. 

 

                        (1) 

 

                          (2) 

 

We use the SMT solver Yices [8] to solve formula 2. If the formula is satisfiable, the 

solution gives a trace that leads to a message race from the initial state in  ; 

otherwise, it is proved that   has no message race within   steps. In the following we 

first discuss the symbolic variables needed for the encoding, and then discuss the 

constraints. 

 

 

4.1   Symbolic Variables 

 

In our symbolic analysis we check race conditions up to a pre-defined bound  . For 

each step    , we add a fresh copy for each variable introduced in this section. That 

is,        denotes the copy of     at the  -th step. The symbolic variables are: 

 Token variable: In order to encode the threads interleaving semantics 

symbolically we identify the set of threads in a given WSMG model and 

introduce one token variable     for each thread  . A transition   has a token iff 

   =  . Before a thread   is created or after it is terminated, we set     to be   or 

 , respectively. 

 Model variables: Given a WSMG model  , we introduce a symbolic variable for 

each model variable in  .  

 Scheduling variable: To model non-determinism in the scheduler, we add a 

symbolic variable   whose domain is the set of thread identifiers. The value of 

     indicates which thread is scheduled to execute at step  . This is an important 

feature to our symbolic analysis in our approach.  As in most cases the value of 



     is unspecified, the SMT solver is forced to consider the case where any 

thread can be scheduled to execute at step  .  
 Asynchronous channel buffers: In our encoding we only consider channels with 

finite size buffers. Let the size of the buffer in    be  , we introduce   symbolic 

variables     
        

  , each of which represents a cell in the buffer of   . A 

buffer is treated as a queue with     
   and     

   as its tail and head, 

respectively. We use a sentinel value      to denote a cell without valid 

information. The buffer in    is full iff     
        and is empty iff     

   
    . 

4.2   Initial Condition Constraint 

 

The initial condition constraint       specifies the starting locations for each thread as 

well as the initial values of model variables, including the values set by the input 

vector. 

 

4.3  Scheduling Constraint 

 

Our approach analyzes all possible valid interleavings, and excludes invalid ones. 

Therefore, we add thread scheduling constraint  
 
    to prevent invalid interleavings 

from being considered. In a WSMG model, a thread   must not be scheduled at step   
in four cases: 1) before its creation, or after its termination (formula 3), 2) when an 

asynchronous send transition is pending and the relevant buffer is full, or when an 

asynchronous receive transition is pending and the relevant buffer is empty (formula 

4), 3) when a synchronous send transition is pending, and there is no corresponding 

pending receive transition at another thread (formula 5), or 4) when a synchronous 

receive transition is pending, and there is no corresponding pending send transition at 

another thread (formula 6).     is an asynchronous send transition,      is an 

asynchronous receive transition,     is a synchronous send transition, and    is all 

potential receive transitions of     ,     is a synchronous receive transition, and    is 

all potential send transitions of    . 
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The thread scheduling constraint is encoded as in formula 7, where       is the 

conjunction of the constraints listed in formulas 3, 4, 5, and 6. 



        
   

 
      (7) 

 

 

4.4   Transition Constraint 

 

The execution semantics of a thread is specified by the encoding of its transitions in a 

WSMG model. In the following we discuss the translation from transitions to SMT 

formulas based on the types of transitions: 

 

1. An assignment transition in the format of                where   is a guard, 

and      assigns the results of   to variable   is encoded as in formula 8. 

 

                                                 
              

(8) 

 

Formula 8 states that at step      is fired under the following conditions: Thread   is 

selected         ,   has token (          and guard is true       . Note that      
(or     ) means that all variables in the guard   (or expression  ) are replaced by 

their corresponding versions at step  . The following updates occur at step     when 

  is fired at step  : the transition that succeeds   in   will have the token           
        ,  the value of   at step     is the result of   at step   (           ) and 

the values of all variables except         remain unchanged from step   to    . Note 

that       means that all the variables except those listed in set   keep their values 

step   to    . 

 

2. A synchronous send/receive transition pair in the format of    (           )  

and     (             ), will be encoded as:  

 

                                 (                 

                                ({            }))  
(9) 

 

3. An asynchronous send transition in the format of    (            ), is 

encoded as:  

 

                       
           (                 

             
         

          
               

        

          
               

                 
             )  

(10) 

 

4. An asynchronous receive transition in the format of    (            ), is 

encoded as: 

 

                        
           (                 (11) 
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5. A fork transitions in the format of                    , will be encoded according 

to formula 12, such that    is the first transition in thread   . 
 

                                              

 ({          })  
(12) 

 

6. A join transitions in the format of                    , will be encoded according 

to formula 13, such that    is the last transition in   . 
 

                                             

              ({          })  
(13) 

 

 

Let       denote the constraint for transition   at step   and   be the set of all 

transitions in a WSMG model, the transition constraint can be specified as 

 

      ⋀ ⋀      
 

   
 

   

 (13) 

 

4.5   Message Race Constraint 

 

A message race occurs on a synchronous channel    when two conditions exist: a 

receive operation on    is pending, and two or more send operations simultaneously 

attempt to deliver messages on   . In such case, the received message is non-

deterministic. Let      be the set of transitions with synchronous receive from    and 

     be the set of transitions with synchronous send to   . The constraint for 

synchronous message race at step   on channel    can be specified as: 

 

        
      

               

  
       

  
       

                            (14) 

 

Message race happens on an asynchronous channel    if    is not full and there are 

multiple transitions trying to send messages over    at the same time.  In such case, 

the message saved in the buffer of    is non-deterministic. Let      be the set of 

transitions with asynchronous send to   . The constraint for asynchronous message 

race at step   on channel    can be specified as in formula 15, where    

 (              ) and     (              ) are transitions in thread    and   , 

respectively. 

 



       (          
       

  
       

                        ) (15) 

 

Let     and     be the set of asynchronous and synchronous channels in a WSMG 

model  . The message race property, up to bound  , can be specified by: 

 

       
   

 
( ⋁         ⋁       

            

) 

 

(16) 

 

 

5   Experiments 
 

To assess the feasibility of our approach, we applied it on the stock-trading and the 

loan-approval case studies from the BPEL-WS 1.1 standard [2].   

As shown in Fig. 2, the stock-trading case study consists of three sub-services: a 

quote service (SQS), a trading service (STS), and a bank service (Bank). The quote 

service has two threads that continuously send updated stock prices to the bank and 

the trading services. The trading service compares a received price to a minimum 

threshold and a maximum threshold.  If the price is less than the minimum threshold, 

the trading service will send to the bank a buy request message. If the price is greater 

than the maximum threshold, the trading service will send to the bank a sell request 

message. Otherwise the trading service does nothing. The bank service updates its 

database when it receives new stocks prices from the quote service, and performs 

either selling or buying operations according to the requests received from the trading 

service.  
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Fig. 2. The stock-trading Web Service 

 

We followed the steps depicted in Fig. 2 and used Yices as the SMT solver. The 

solution produced by Yices indicates that a message race will occur when two quote 

services send prices-update messages to the bank service.  

Table 1 shows the output of Yices which is an interpreted partial valuation to the 

symbolic variables in the SMT formula. In particular, we show the values of the token 

variables and the thread selection variable. The values of token variables indicate 

which transition is ready to be executed in a thread, and the value of thread selection 

variable shows which thread is scheduled at a given step. With the values of these two 

kinds of variables, the trace that leads to a message race can be replayed, thus solving 

the non-repeatability problem in the debugging of Web Services. According to table 

1, at the 10th step, the variable values satisfy the message race constraint: the bank 

thread is scheduled for execution        and its pending transition is a receive 

operation         . At the same time, there exist two send operations          and 
         and all the three operations are on the same channel. 

 
Table 1. Partial valuation to the FOL formula translated from the stock-trading WSMG model 

 

Step Partial Valuation 

0                                                          

1                                                            

2                                                             

3                                                             

4                                                             

5                                                             

6                                                             



7                                                             

8                                                             

9                                                             

10                                                             

 

The second case study is based on the loan-approval Web Service which is shown in 

Fig. 3. It consists of four sub-services: a customer service (Customer), an approval 

service (Approval), an approver service (Approver), and an assessor service 

(Assessor). The approval service receives loan requests from the customer service. If 

the requested loan amount is less than a predetermined threshold, the loan request is 

sent to the approver service for automatic approval. Otherwise, the loan request is sent 

to the assessor service. When the assessor service receives a loan request, it assesses 

the risk associated with the customer, and then sends the risk assessment to the 

approval process. If the risk is high, the approval process denies the request; 

otherwise, the request is forwarded to the approver process.  When the approver 

process receives a request, it automatically stamps the request as approved, and sends 

it back to the approval process. When the approval process receives an approved 

request from the approver process, it forwards the request to the customer. 
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Fig. 3. The loan-approval Web Service 

 

When Yices is fed the SMT formulas corresponding to the loan-approval Web 

Service, it was able to detect a potential message race that happens when two quote 

services send prices-update messages to the bank service. Table 2 shows the output of 



Yices. At the 8th step, the variable values satisfy the message race constraint:    is 

scheduled for execution and it is a receive operation. At the same time both the 

pending transitions of   , and    are send operations. 

 
Table 2. Partial valuation to the FOL formula translated from the loan-approval WSMG model 

 

Step Partial Valuation 

0                                                                  

1                                                                     

2                                                                      

3                                                                      

4                                                                      

5                                                                      

6                                                                      

7                                                                      

8                                                                      

 

The experiments were performed on a computer with Intel Core 2 Duo 2.6GHz 

processor and 4GB memory. Table 3 reports statistics that are related to solving the 

SMT formulas in the two case studies, including the number of decisions, number of 

conflicts, number of Boolean variables and memory usage during the SMT solving 

procedure. The last two rows list the memory and time usage of the two case studies. 

 
Table 3. Yices statistics 

 

Yices Statistics Loan-approval Stock-trading  

#Decisions 11833 7954 

#Conflicts 6411 869 

Boolean variables 8845 5176 

Memory used (MB) 20.1 13 

CPU Time (sec.) 2.8 0.45 

 

6   Conclusion and Discussion  
 

To improve the reliability and consequently the trustworthiness of Web Services, 

potential messages races should be detected. We have addressed the problem of 

detecting message races in BPEL Web Services. The main contribution of this paper 

is a novel approach that reduces message race detection to constraint solving and uses 

modern SMT solvers to check the satisfiability of the SMT formula translated from 

the WSMG models. Given a predefined bound  , our approach is both sound and 

complete within the bound. Compared with traditional testing approaches that 

repeatedly execute or simulate a Web Service, the advantages of our approach include 

1) ability to prove the absence of message races within a predefined bound, 2) implicit 

exploration of astronomical amount of possible scenarios, 3) no need to control the 



non-deterministic factors in Web Services in testing environment, and 4) detailed bug 

reports. 

However, even though all the message races reported by our approach are real, 

there are benign message races that are allowed by certain Web Services. How to 

differentiate benign and malicious message races is an important area that is out of the 

scope of this paper. For the future work, we plan to perform more significant case 

studies to future investigate the effectiveness of the approach. 
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