
GUICat: GUI Testing as a Service

Lin Cheng, Jialiang Chang, Zijiang Yang
∗

Department of Computer Science
Western Michigan University

Kalamazoo, MI, USA

Chao Wang
Department of Computer Science
University of Southern California

Los Angeles, CA, USA

ABSTRACT
GUIs are event-driven applications where the flow of the pro-
gram is determined by user actions such as mouse clicks and
key presses. GUI testing is a challenging task not only be-
cause of the combinatorial explosion in the number of event
sequences, but also because of the difficulty to cover the large
number of data values. We propose GUICat, the first cloud-
based GUI testing framework that simultaneously generates
both event sequences and data values. It is a white-box GUI
testing tool that augments traditional sequence generation
techniques with concolic execution. We also propose a cloud-
based parallel algorithm for mitigating both event sequence
explosion and data value explosion, by distributing the con-
colic execution tasks over public clouds such as Amazon EC2.
We have implemented and evaluated the new tool on stan-
dard GUI testing benchmarks. Our experiments show that
GUICat significantly outperforms state-of-the-art GUI test-
ing tools such as GUITAR.

CCS Concepts
•Software and its engineering → Software verification and
validation; Software testing and debugging;

Keywords
Symbolic execution, Test generation, GUI testing, Cloud

1. INTRODUCTION
Graphical User Interfaces (GUIs) provide a convenient way

for the user to interact with the computer. They are event-
driven applications where the flow of the program is deter-
mined by user actions such as mouse clicks and key presses.
In contrast to console applications whose only point of in-
teraction is at the beginning, GUIs have a potentially large
number of interaction points, each of which may be associ-
ated with a different state. These features often make tra-
ditional software testing techniques ineffective. Specifically,
GUI testing has two significant challenges. First, covering all
possible event sequences of a GUI application is difficult due
to the combinatorial explosion, i.e., the number of possible
ways of clicking k buttons can be as large as k!. Second, GUI
behaviors depend not only on the event sequence but also on
the data values of widgets such as text-boxes, edit-boxes, and
combo-boxes, thus leading to an extremely large input space.
For example, covering all possible values of a k-character in-
put string requires 26k test cases. Although existing GUI test-
ing tools [9–11, 13] have addressed the challenge of gener-
∗Corresponding author (Email: zijiang.yang@wmich.edu)

ating high-quality event sequences, they have not addressed
the challenge of simultaneously generating high-quality data
values. As such, data-dependent GUI behaviors are often in-
adequately tested.

We propose GUICat, a cloud-based GUI testing framework
that generates both high-quality event sequences and high-
quality data values, by augmenting state-of-the-art event se-
quence generation techniques with concolic execution. The
result is a white-box GUI testing tool that uniformly explores
the event flow as well as the data flow. We also propose a
parallel concolic execution algorithm for mitigating the data
value explosion, by distributing the computation tasks over
workers on private clusters as well as public clouds such as
Amazon EC2 [3]. It provides an illusion of running GUICat
on a powerful super computer and thus allows it to handle
significantly larger applications than previously possible.

We have implemented GUICat based on a number of open-
source tools, including GUITAR [10] for generating the initial
event sequences, ASM [1] for Java bytecode instrumentation,
Catg [12] for concolic execution, and JaCoCo [2] for comput-
ing code coverage. Unlike prior techniques, GUICat is fully
automated in modeling GUI widgets. That is, it does not re-
quire developers to manually model these widgets. This is
important because manual modeling is not only labor inten-
sive and error prone but also hard to sustain in the long run
due to frequent widget updates.

We have evaluated GUICat on Amazon EC2 for a set of
GUI testing benchmarks. GUICat achieves scalability through
the distribution of symbolic execution tasks

The remainder of the paper is organized as follows. We
illustrate the main idea behind GUICat using motivating ex-
amples in Section 2. We present our algorithm in Section 3,
which is followed by our experimental results in Section 4.
We discuss the related work in Section 5. Finally, we give our
conclusions in Section 6.

2. MOTIVATING EXAMPLES
Figure 1 shows a GUI example for computing ticket fare

based on user inputs including Name, Age Level, Distance,
and Coupons. Once the Buy button is clicked, the applica-
tion computes and then displays ticket price, using a coeffi-
cient associated with the chosen age level. To allow GUICat
to generate test cases, the user must provide a configuration
file that specifies the name and type of the symbolic variables
as shown in Figure 1 (right). Each entry (line) of the configu-
ration file consists of the widget name, widget type, method
for obtaining user input (e.g., getText), type of user input, and
the default value (e.g., superman). Here, 0:1 means the default
value is of enum type with two values 0 and 1.

name, JTextField, getText, String, superman

distance, JTextField, getText, int, 100

Age Level, JComboBox, getSelectedIndex, int, 0:1

$100, JComboBox, isSelected, int, 0:1

$200, JComboBox, isSelected, int, 0:1

$400, JComboBox, isSelected, int, 0:1

Figure 1: A GUI example and GUICat’s configuration file.

OnClickComputePrice() {
int coupon = 0;
String age = (String)ageComboBox.getSelectedItem();
String sdistance = distanceTextField.getText();
int distance = Integer.parseInt(sdistance);
if (d100CheckBox.isSelected())
coupon += 100;

if (d200CheckBox.isSelected())
coupon += 200;

if (d400CheckBox.isSelected())
coupon += 400;

if (age.equals(Child)) {
coeffienct = 1;

}else {
coeffienct = 2;

}
if (distance < 60) {
price = 500;

}else if (distance < 80) {
price = 11 * distance * coeffienct - coupon;

}else if (distance < 100) {
price = 10 * distance * coeffienct - coupon;

}else if (distance < 120) {
price = 9 * distance * coeffienct - coupon;

}else {
price = 8 * distance * coeffienct - coupon;

}
assert (price > 0);
infoField.setText(price);

}

Figure 2: Code snippet for computing the ticket price.

Figure 2 shows the code for computing the ticket price. It
has a bug that can lead to negative ticket prices. For example,
if a user has three coupons, then purchasing a child ticket for
a distance of 60 miles would result in the price being -40 dol-
lars. However, since a negative price requires a specific com-
bination of widget values, such bug is difficult to detect using
state-of-the-art GUI testing tools such as GUITAR [10]. This
is because GUITAR focuses primarily on generating event se-
quences as opposed to generating a diverse set of widget val-
ues. Our new tool GUICat, in contrast, can quickly generate a
combination of event sequences and widget values to expose
this assertion failure.

GUICat generates the test cases as follows. First, it uses
GUITAR to generate the initial set of event sequences up to
a bounded length. Then, for each event sequence, it creates
an instrumented GUI where some variables are marked as
symbolic based on the configuration file. Next, it conducts
symbolic execution of the instrumented GUI over the cloud.
Finally, it uses JaCoCo to generate the coverage report. Now,
we explain each step in more detail.

Step 1. We use GUITAR to generate event sequences of a
bounded length. Assume the bound is 2, and events e1, . . . , e7
denote nameTextField, distanceTextField, AgeComboBox, 100Dol-
larCheckbox, 200DollarCheckbox, 400DollarCheckbox, and Buy-
Button. After running GUITAR, we have the following seven
length-2 event sequences: (e1, e7), (e2, e7), (e3, e7), (e4, e7),
(e5, e7), (e6, e7), and (e7, e7). In this example all the bounded

sequences end in e7 because otherwise no action can be taken
at the end of the user interaction. Consider (e2, e7) as an ex-
ample. It means the user specifies a distance (e2) before click-
ing the BuyButton (e7). Although logically meaningless, this
particular event sequence is feasible.

Step 2. For each event sequence produced by GUITAR, we
generate more sequences by enumerate the values of widgets
with enum types. For example, in (e3, e7), we know JCom-
boBox is associated with e3 and it has an enum type. There-
fore, we enumerate all possible values of JComboBox to pro-
duce the new sequences (e0

3, e7) and (e1
3, e7), where ei

3 means
the value i is chosen for event e3. We also enumerate the
values of other widgets with enum types, including AgeCom-
boBox, 100DollarCheckBox, 200DollarCheckBox, 400DollarCheck-
Box. Since these selectable widgets have a limited number of
data values, enumerating them is often more efficient than
generating the values using concolic execution.

Step 3. For each event sequence generated in Step 2, we
instrument the GUI application by marking certain variables
as symbolic. Consider the guicat-conf file in Figure 1 (right),
where the last four widgets are of enum types but the first
two are not. Thus, we mark the first two widgets as sym-
bolic. That is, we use CATG.readString("superman") to create
a symbolic string and use CATG.readString(100) to create a
symbolic integer. Here "superman" and 100 are the default
concrete values for the symbolic variables.

Step 4. We use Catg to execute each instrumented GUI ap-
plication symbolically following the specific event sequence.
Consider (e1

3, e7) again, where e7 is associated with branches
of an if statement. Symbolic execution will lead to the cre-
ation of new values for name and distance, e.g., name=superman
and distance=50. Mapping the values back to the event se-
quence will result in (esuperman

1 , e50
2 , e1

3, e7), where the first two
events are added to set the values of the widgets.

Step 5. After generating all the event sequences and data
values using concolic execution, we use JaCoCo to compute
the coverage report. JaCoCo is an open-source code cover-
age library for Java, whose output is formulated as an HTML
page to show the coverage statistics.

3. ARCHITECTURE
Figure 3 shows the architecture of GUICat. Given a GUI

program P as input, GUICat first invokes GUITAR to gener-
ate event sequences. Then, it instruments the program based
on each sequence and the symbolic variables specified in gui-
cat-conf. Next, it invokes the distributed algorithm to conduct
symbolic execution of the instrumented program on a cloud
node. Finally, the test cases generated by all instrumented
programs are collected and then used by JaCoCo to compute
the coverage report.

In the distributed symbolic execution algorithm, N0 is the
load balancer and N1 . . . Nk are the k workers on the cloud.
N0 distributes the set E of instrumented GUI programs, one
per event sequence, over the k workers. The workers then
conduct symbolic execution on their share of tasks. Initially,
each worker receives roughly the same number of tasks. How-
ever, since the cost of symbolic execution varies for each event
sequence, some workers may finish their symbolic execution
tasks sooner than others. N0 detects such imbalance and re-
quests a worker with the largest workload to share its tasks
with the idle worker. After all workers complete their tasks,
the load balancer N0 collects the test cases.

Algorithm 1 shows the symbolic execution procedure for
each individual worker. Initially, the set E of tasks and test

guicat-confBytecode
Instrumentation

event sequences

Event Seq. Gen.
(GUITAR)

Program (P)

instrumented GUI

Distributed Sym.
Exec. (Catg)

test cases

Coverage Gen.
(JaCoCo)

coverage report

Figure 3: The architecture of our GUICat tool.

Algorithm 1 Symbolic Execution on a Worker.
1: E = T = ∅;
2: while true do
3: if receiving task set E′ then
4: E = E ∪ E′ ;
5: send(N0, |E|);
6: else if requesting tasks on behalf of Ni then
7: send(Ni , E[0..|E|/2]);
8: send(N0, |E|);
9: else if collecting test cases then
10: send(N0, T);
11: terminate;
12: end if
13: for all e ∈ E do
14: Pe = instrument(P, e, c f g)
15: Te = Catg’.execute(Pe);
16: send(N0, |E|);
17: T = T ∪ Te ;
18: end for
19: end while

cases T are both empty. Then, the worker keeps checking
messages from N0 and conducting local symbolic execution.
If it receives a set E′ of tasks (from N0 or another worker),
the new tasks are added to the local set. Since the number
of tasks is changed, it updates N0 with its current number of
tasks. This also occurs at Lines 8 and 16. With such updates,
N0 knows the number of tasks to be processed at the workers.
If the worker receives a message from N0 that requests more
tasks on behalf of another worker Ni, it sends half of its tasks
to Ni (Line 7). A signal of termination is received if N0 asks
for its test cases, and in such case, the current worker sends
the locally generated test cases and then terminates.

Symbolic execution is conducted for each individual event
sequence e ∈ E. Essentially, it allows us to execute the event-
driven application as if it is a sequential Java program. We
leverage the Catg concolic execution tool, which maintains
two execution stacks: one for concrete execution and the other
for symbolic execution. When Catg executes an unknown
method, for example, Integer.parseInt() , the symbolic execu-
tion stack would not be updated, we have modified Catg to
handle unknown methods.

The distributed algorithm in GUICat has been implemented
on Amazon EC2 as a Cloud service. We divide EC2 instances
into the load balancer and the workers. The load balancer is a
multi-processor EC2 instance that generates event sequences,
distributes tasks to the workers, and collects the test cases
generated by the workers. Each worker is a single-processor

Load
balancer

Worker
1

Worker
2

Worker
3

Worker
4

Worker
5

Figure 4: Architecture of GUICat’s distributed algorithm.

for worker in $(workers); do
scp -r ${AUTDIR}.tar.gz {worker}:~/gui/guicat/log/

done
...
for worker in $(workers); do

scp ${worker}:~/gui/guicat/${AUTDIR}/report.tar.gz
./${AUTDIR}/${worker}.tar.gz

done

Figure 5: Communication from load balancer to workers.

EC2 instance that symbolically executes an event sequence to
generate test cases. GUICat allows the user to customize the
Cloud service, such as the number of workers and their com-
putation capabilities, based on customer requirements such
as whether a budget-first testing is preferred over a speed-
first testing, or whether branch coverage is preferred over
instruction coverage.

To allow easy customization, we implement GUICat by
following the star topology shown in Figure 4, where the
load balancer generates and distributes event sequences to
the workers, and the workers conduct concolic execution with
respect to the event sequence in isolation, before sending test
cases back to the load balancer. Figure 5 illustrates how event
sequences are distributed to the workers and how test cases
are collected from the workers. For now, distributed file sys-
tem libraries are used to implement the transfer of event se-
quences and test cases between the load balancer and work-
ers. The main advantage of this architecture is efficiency
since there is no communication between the workers.

4. EXPERIMENTAL EVALUATION
We have implemented GUICat using a number of open-

source tools, including GUITAR for generating the initial event
sequences, ASM for instrumenting the Java bytecode, Catg
for implementing the distributed parallel concolic execution,
and JaCoCo for computing the code coverage report.

We have evaluated GUICat on several GUI testing bench-
marks. In all experiments, we have used the Amazon EC2
cloud computing infrastructure, where the load balancer is
deployed as a multi-processor EC2 instance and each worker
is deployed as a single-processor EC2 instance.

In the remainder of this section, we report the results of
two case studies: a ticket seller and a workout generator.
In each case study, our experiment consists of the following
steps. First, we create a configuration file for the applica-
tion under test. Then, we generate the event sequences using
GUITAR [10]. Next, we distribute the event sequences from
the load balancer to workers on Amazon EC2. The initial
distribution is static and divides the tasks evenly to the EC2
instances. After receiving the event sequences, each worker
conducts concolic execution using Catg; as a result, test cases

Figure 6: Ticket Seller

are generated for these event sequences. When all workers
finished, the load balancer collects their test cases and then
uses JaCoCo to compute the coverage report.

4.1 The Ticket Seller
Figure 6 shows the user interface of a more sophisticated

ticket seller than the one shown in Figure 1. It allows the
user to provide passenger information such as the Name, ID,
start distance (From), end distance (To), Age Level, Class Level,
and the Coupon. When the user clicks the Buy Ticket button,
the application stores the passenger information to an object
named TicketModel, checks for consistency using the method
checkModel(), and computes the price using the method com-
putePrice().

There are five different types of GUI widgets in Figure 6:
four of JTextField type, one of JComboBox type, one of JRa-
dioButton type, one of JCheckBox type, and two of JButton
type.

The first two JTextField widgets collect the values of Name
and ID by invoking JTextField.getText(), the combination of
which may lead to buggy behaviors. We mark both fields as
symbolic. That is, when loading the related Java class, we use
the bytecode rewriting tool ASM to instrument the program
on the fly, to replace invocations of getText() with invocations
of sGetText(), a method that we develop to return a symbolic
value. The symbolic values for Name and ID are used during
the subsequent symbolic execution step.

The next two JTextField widgets collect the values of From
and To by first invoking JTextField.getText() and then invoking
Integer.parseInt to cast the strings into integers. Since the sym-
bolic execution engine Catg does not support such casting,
we have modified Catg to convert these strings into integers
before using them in the subsequent logic.

As for the selectable widgets JComboBox, and JCheckbox, we
enumerate all possible values of the enum types. We choose
enumeration over symbolic execution for these selectable wid-
gets due to efficiency and ease of implementation. First, se-
lectable widgets do not have many different values. Second,
the existing symbolic execution engine often has trouble han-
dling them. For example, JComboBox has two methods getS-
electedIndex() and getSelectItem() that return values of a cus-
tomized Object type, which cannot be easily cast to strings or
integers inside Catg.

To summarize, we used GUITAR to generate the initial event
sequences together with the initial parameters/states. Then,
we add the enumerated values for selectable widgets, be-
fore conducting symbolic execution to generate the values
for widgets of other types. If the initial event sequence is
too short to contain all widgets of JTextField type needed,
we remove the stateless JTextField event and then append
more stateful JTextField event to the beginning of the event
sequence, thus increasing the length of the sequence.

Table 1: Results on the ticket seller (length = 2, node = 1).
Tool Button Branches Coverage Instructions Coverage
GUITAR checkModel 6 33.3% 56 53.5%

computePrice 34 23.5% 172 30.8%
GUICat checkModel 6 100% 56 100%

computePrice 34 100% 172 100%

Table 2: Results on ticket seller: the test cases generated in
addition to GUITAR and the unique paths covered.

Tool length Test Case (TC) enum TC concolic TC paths covered
GUITAR 2 11 - - 4

3 110 - - 7
GUICat 2 11 13 286 96

3 110 156 3212 190

We analyzed the ticket seller with several configurations.
Table 1 shows the results of generating the length-2 test cases.
Columns 1-2 show the tool name and the name of the button
clicked. Columns 3-4 show the total number of branches and
the percentage of branches covered. Columns 5-6 show the
total number of instructions and the percentage of instruc-
tions covered. The results show that GUICat can achieve
full branch and instruction coverage even with length-2 test
cases, whereas GUITAR can only achieve 33.3% branch cov-
erage and 53.5% instruction coverage for checkModel, 23.5%
branch coverage and 30.8% instruction coverage for compute-
Price.

Table 2 compares GUICat and GUITAR in terms of the num-
ber of paths covered. Column 1 shows the tool name. Col-
umn 2 shows the length of the test sequences. Column 3
shows the total number of test cases generated by GUITAR.
Column 4 shows the number of additional test cases gener-
ated by GUICat after enumerating the values of selectable
widgets. Column 5 shows the number of test cases gener-
ated by GUICat after concolic execution. Column 6 shows
the path coverage.

To accurately compute the number of paths covered, we
manually added code into the program. Specifically, we used
a vector named path, where each element was mapped to an
if -statement. For example, the age combo-box corresponds
to an if -statement where we set path[0]=0 in the then branch
and path[0]=1 in the else branch. Each time the program ter-
minates, we will obtain a unique vector path that acts as the
path identifier. These vectors are stored and then used to
compute the path coverage after GUICat terminates.

Our result shows that, overall, GUICat achieved signifi-
cantly higher path coverage than GUITAR. For length-2 test
sequences, in particular, GUICat had 96/4=24 times higher
path coverage, whereas for length-3 test sequences, GUICat
had 190/7=27 times higher path coverage.

GUICat also successfully detected two bugs in ticket seller.
One bug is a NullPointerException caused by the race condi-
tion between clicking of the save button and clicking of the
buy button as shown in Figures 7 and 8. The other bug is the
failure of an assertion due to the computed price being less
than zero.

4.2 The Workout Generator
Figure 9 shows the user interface of the workout generator,

which is taken from Barad [6]. It generates a workout plan
based on the user input, including the Gender, Metabolism,
Experience, Age, Height, and Weight. The computation starts
when the user clicks the Generate button. Depending on the

buyButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
ticketModel.name = nameInput.getText();
if(ticketModel.checkModel()) {

ticketModel.computePrice();
assert ticketModel.price>0 : @Bug: price<=0

! ;
}}});
saveButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
...
ticketModel = null;

}});

Figure 7: The buggy code snippet in ticket seller.

[AWT-EventQueue-0] ERROR Uncaught exception
java.lang.NullPointerException
at examples.ticket.BaradTicket$1.actionPerformed(

BaradTicket.java:177)
...

[AWT-EventQueue-0] ERROR Uncaught exception
java.lang.AssertionError: @ Bug: price <= 0!
at examples.ticket.BaradTicket$1.actionPerformed(

BaradTicket.java:235)

Figure 8: The ticket seller bug detected by GUICat.

Figure 9: Workout Generator

user information, the computation goes through different ex-
ecution paths that use different cardio coefficients.

There are three JTextField widgets and three JComboBox wid-
gets. The JTextField widgets return string values of Age, Height,
and Weight using the method JTextField.getText(), before cast-
ing them to integers using Integer.parseInt(). Based on the
configuration file provided by the user, GUICat creates three
symbolic variables for these three widgets, and replaces get-
Text() with sGetText(Object) so it can return symbolic values.
The JComboBox widgets return values of Gender, Metabolism,
and Experience. Since they are selectable widgets, we use enu-
meration to create the value combinations.

Table 3 shows the results of applying GUICat to workout
generator with the length of test sequences set to 1 and 3.
Columns 1-2 show the tool name and the length of the test
sequences. Columns 3-4 show the number of branches cov-
ered and the percentage of branches covered. Columns 5-6
show the number of instructions covered and the percentage
of instructions covered. Again, GUICat significantly outper-
formed GUITAR in terms of both path coverage and instruc-
tion coverage. Neither tool was able to reach full path and
instruction coverage with length-2 test sequences, because
there are three selectable widgets, which requires the length
of test sequences being to be larger than 2.

With length-3 test sequences, GUICat was able to achieve
100% instruction coverage and 97.4% branch coverage. In
contrast, GUITAR did not show significant improvement in
branch/instruction coverage. The reason is that GUITAR only

Table 3: Results on workout generator (node=1).
Tool Length Branches Coverage Instructions Coverage
GUITAR 2 154 13.0% 2425 42.3%

3 154 13.0% 2425 42.3%
GUICat 2 154 68.9% 2425 85.7%

3 154 97.4% 2425 100%

Table 4: Results on workout generator: the test cases gener-
ated in addition to GUITAR and the unique paths covered.

Tool length Test Case (TC) enum TC concolic TC paths covered
GUITAR 2 9 - - 1

3 72 - - 2
GUICat 2 9 14 69 24

3 72 182 909 56

used the default values of the widgets, and thus cannot ex-
plore alternative paths even with a longer event sequence. In
contrast, GUICat used both enumeration and symbolic exe-
cution to diversify the values of the widgets.

Table 4 compares GUICat and GUITAR in terms of the num-
ber of paths covered. Column 1 shows the tool name. Col-
umn 2 shows the length of the test sequences used in the ex-
periments. Column 3 shows the number of test cases gen-
erated by GUITAR. Column 4 shows the number of addi-
tional test cases generated by GUICat after enumerating the
values of selectable widgets. Column 5 shows the number
of test cases generated by GUICat after concolic execution.
Column 6 shows the number of paths covered. Our result
demonstrates that, overall, GUICat can achieve significantly
higher path coverage than GUITAR. For length-2 test sequences,
in particular, GUICat reached 24/1=24 times higher path cov-
erage, whereas for length-3 test sequences, GUICat reached
56/2=28 times higher path coverage.

We also observed that GUICat generated many more test
cases than the paths covered. For example, with the length
set to 3, GUICat generated 909 test cases to cover 56 unique
paths, which means some of these test cases have led to the
same paths. If we could, for example, identify and elimi-
nate these redundant test cases, the performance of GUICat
would be further improved. However, we leave the pruning
of these redundant test cases for future work.

4.3 Effect of Cloud Computing
Figure 10 shows the effectiveness of distributing the test-

ing of the ticket seller (a) and the workout generator (b) over
Amazon EC2. The x-axis denote the number of workers,
ranging from 1 to 16, and the y-axis denote the time usage
in second. The solid, dashed and dotted lines represent the
bounded length of 2, 3 and 4, respectively. Due to the in-
herent parallelism in symbolic execution of different event
sequences, the speedup is almost linear.

5. RELATED WORK
GUITAR [10] is the first framework capable of performing

the whole process of test generation, execution, and result as-
sessment for GUIs. Since its first publication there have been
multiple improvements (e.g. [14]). This framework generates
tests as event sequences up to a given bound. For emulating
user input a specification based approach is adopted, i.e., us-
ing values from a prefilled database. Since GUITAR does not
provide a mechanism for reasoning about input values for
data widgets, GUICat offers complementary and more com-
prehensive testing.

(a) ticket seller

(b) workout generator

Figure 10: Time reduction achieved by cloud computing.

The work closest to ours is Barad [6] that also exploits
symbolic execution to compute input values for data wid-
gets. It manually creates symbolic mirror of java GUI library,
so its released source code contains a large symbolic java GUI
library. Manual modeling is error prone and hard to sus-
tain. In fact, we downloaded the tool but failed to make it
work on our benchmarks. We employ a different test gener-
ation algorithm and symbolic analysis method for obtaining
inputs. Another line of work is to apply model checking tech-
niques. For example, jfp-awt [8] is an extension of the Java
PathFinder for GUI applications.

Performance enhancement of GUI testing has traditionally
focused on minimizing event sequences [9, 13]. Barad gen-
erates test cases as chains of event listener method invoca-
tions and maps these chains to event sequences that force the
execution of these invocations. Such approach prunes the
event input space because it does not need to consider events
where there are no event listeners. More recent work starts to
apply event dependency analysis [4], program slicing [5] or
partial order reduction [7] to improve the performance. Our
performance improvement is obtained by exploiting massive
hardware resource available on cloud. Therefore our approach
is orthogonal to the existing algorithmic approaches.

6. CONCLUSION
We have present GUICat, the first cloud-based GUI test-

ing tool for simultaneously generating high-quality event se-
quences as well as high-quality data values. Internally, GUICat
leverages GUITAR to generate the initial set of event sequences,
and then uses a combination of value enumeration and sym-
bolic execution to generate data values of the widgets. GUICat
also leverages the cloud computation infrastructure to speed
up the test generation, by distributing independent concolic
execution tasks to EC2 nodes. We have implemented GUICat
and evaluated it on a set of GUI testing benchmarks. Our
experiments show that GUICat can significantly outperform

GUITAR on standard GUI testing benchmarks in terms of
both branch coverage and instruction coverage.

7. ACKNOWLEDGMENTS
This work was primarily supported by NSF under grants

DGE-1522883 and CCF-1500365. Partial support was pro-
vided by CCF-1149454, CCF-1405697, and CCF-1500024.

References
[1] ASM. http://asm.ow2.org/.

[2] JaCoCo. http://eclemma.org/jacoco/.

[3] Amazon. Amazon elastic compute cloud. http://aws.
amazon.com/ec2/.

[4] S. Arlt, A. Podelski, C. Bertolini, M. Schäf, I. Banerjee,
and A. M. Memon. Lightweight static analysis for GUI
testing. In International Symposium on Software Reliability
Engineering, 2012.

[5] S. Arlt, A. Podelski, and M. Wehrle. Reducing GUI test
suites via program slicing. In International Symposium on
Software Testing and Analysis, 2014.

[6] S. Ganov, C. Killmar, S. Khurshid, and D. E. Perry. Event
listener analysis and symbolic execution for testing GUI
applications. Formal Methods and Software Engineering,
2009.

[7] P. Maiya, R. Gupta, A. Kanade, and R. Majumdar.
Partial order reduction for event-driven multi-threaded
programs. In Tools and Algorithms for the Construction and
Analysis of System, pages 680–697, 2016.

[8] P. Mehlitz, O. Tkachuk, and M. Ujma. JPF-AWT: Model
checking GUI applications. ASE, 2011.

[9] A. Memon, I. Banerjee, N. Hashmi, and A. Nagarajan.
DART: A framework for regression testing "nightly/-
daily builds" of GUI applications. In International Con-
ference on Software Maintenance, 2003.

[10] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon.
GUITAR: an innovative tool for automated testing of
GUI-driven software. Automated Software Engineering,
2014.

[11] R. K. Shehady and D. P. Siewiorek. A method to au-
tomate user interface testing using variable finite state
machines. In International Symposium on Fault-Tolerant
Computing, 1997.

[12] H. Tanno, X. Zhang, T. Hoshino, and K. Sen. TesMa and
CATG: automated test generation tools for models of
enterprise applications. International Conference on Soft-
ware Engineering, 2015.

[13] L. White and H. Almezen. Generating test cases for GUI
responsibilities using complete interaction sequences.
In International Symposium on Software Reliability Engi-
neering, 2000.

[14] Q. Xie and A. M. Memon. Using a pilot study to derive
a GUI model for automated testing. ACM Trans. Softw.
Eng. Methodol., 18(2):7:1–7:35, Nov. 2008.

