

Radius Aware Probabilistic Testing
of Deadlocks with Guarantees

Yan Cai†

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

Beijing, China
ycai.mail@gmail.com

Zijiang Yang

Department of Computer Science
Western Michigan University

Kalamazoo, MI, USA
zijiang.yang@wmich.edu

ABSTRACT

Concurrency bugs only occur under certain interleaving. Existing

randomized techniques are usually ineffective. PCT innovatively

generates scheduling, before executing a program, based on pri-

orities and priority change points. Hence, it provides a probabilis-

tic guarantee to trigger concurrency bugs. PCT randomly selects

priority change points among all events, which might be effective

for non-deadlock concurrency bugs. However, deadlocks usually

involve two or more threads and locks, and require more ordering

constraints to be triggered. We interestingly observe that, every

two events of a deadlock usually occur within a short range. We

generally formulate this range as the bug Radius, to denote the

max distance of every two events of a concurrency bug. Based on

the bug radius, we propose RPro (Radius aware Probabilistic

testing) for triggering deadlocks. Unlike PCT, RPro selects priori-

ty change points within the radius of the targeted deadlocks but

not among all events. Hence, it guarantees larger probabilities to

trigger deadlocks. We have implemented RPro and PCT and eval-

uated them on a set of real-world benchmarks containing 10

unique deadlocks. The experimental results show that RPro trig-

gered all deadlocks with higher probabilities (i.e., >7.7x times

larger on average) than that by PCT. We also evaluated RPro with

radius varying from 1 to 150 (or 300). The result shows that the

radius of a deadlock is much smaller (i.e., from 2 to 114 in our

experiment) than the number of all events. This further confirms

our observation and makes RPro meaningful in practice.

CCS Concepts

• Software and its engineering➝Deadlocks • Software and its

engineering➝Software testing and debugging.

Keywords

Deadlock, random testing, bug radius, multithreaded program

1. INTRODUCTION
Concurrency bugs widely exist in multithreaded programs [39],

including data races [21], atomicity violations [29][57], and dead-

locks [8][39]. Their occurrences usually involve multiple memory

accesses or synchronizations (known as events in this paper) from

different threads. Among these concurrency bugs, deadlocks are a

kind of high level concurrency bugs caused by incorrect synchro-

nization orders; whereas others (e.g., atomicity violations) are

usually caused by wrong memory access orders. Many techniques

differentiate concurrency bugs as deadlock bugs and non-

deadlock bugs [35][39][47][58][65] as they require different tech-

niques to detect. For example, ConcBugAssist [35] only focuses on

non-deadlock bugs while Sherlock [19] only focuses on deadlocks.

A deadlock occurs when a set of threads are holding some locks

and are waiting for other locks held by the threads in the same set

[8][31][32]. There are both static [45][56][61] and dynamic ap-

proaches [8][11][15][31][46][53] to detect deadlocks. However,

static approaches may report false positives as it is difficult to

infer whether two events may occur concurrently [31]. Dynamic

ones usually predict a set of potential deadlocks from the execu-

tion traces by identifying cycles or cyclic lock dependencies.

These potential deadlocks also include many false positives and,

hence, the real deadlocks should be further isolated [17][31].

Randomized testing does not rely on predicted information from

concrete executions to infer potential deadlocks. Traditional ran-

domized testing approaches [9][20] try to introduce additional

randomness (e.g., random sleep) on top of OS scheduling. Other

kinds of testing (e.g., heuristic directed ones [48] and systematic

scheduling [43][63]) may be effective on detecting certain kinds

of concurrency bugs. But they do not provide any guarantee.

PCT [12][44] then introduces mathematical randomness to pro-

vide a guarantee to trigger concurrency bugs of given bug depths.

The bug depth of a concurrency is the minimal number of order-

ing constraints to trigger this bug [12] (see Section 2.2 for details).

The innovation of PCT is to generate a scheduling prior to execut-

ing a program. The scheduling consists of a set of initial thread

priorities and a set of priority change points. A priority change

point is an event such that, if this event is executed, the priority of

the involved thread is changed accordingly. As the scheduling of

PCT is generated purely based on the mathematical randomness,

it probabilistically guarantees to detect a concurrency bug with

bug depth of d at a probability of 1/(𝑛 × 𝑘𝑑−1), where n and k

are the approximated number of threads and the approximated

number of events, respectively, of the given program.

However, PCT assumes that the events of a concurrency bug are

uniformly distributed among all events. Therefore, it randomly

selects thread priority change points among all events. Hence, if

the bug depth increases by one, the guaranteed probability de-

creases to be 1/𝑘 times. For real-world programs, the value of k

could be very large, which makes PCT ineffective.

We interestingly found that all events involved in a concurrency

bug usually fall into a short range, which is also suggested by

† Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ASE’16, September 3–7, 2016, Singapore, Singapore
ACM. 978-1-4503-3845-5/16/09...$15.00
http://dx.doi.org/10.1145/2970276.2970307

356

existing works (e.g., short depth [17][39] and small scope hypoth-

esis [42]). The number of events in the range is much smaller

compared to the total number of events of a program. Besides,

existing works also show that deadlocks usually involve more

ordering constraints than other concurrency bugs [39]. For exam-

ple, a data race only involves two events (i.e., memory accesses)

and an atomicity violation only involves three; however, a dead-

lock must involve at least four direct events and other indirect

events [17]. Therefore, random selection of events among all

events could be ineffective for PCT to trigger a concurrency bug,

especially for deadlocks.

In this paper, we propose a new approach RPro (Radius aware

Probabilistic testing) to generate execution. Given a bug depth,

RPro selects the first priority change point randomly among all.

Let's denote this event as k1 (in term of the order of events to be

executed). However, for the remaining priority change points,

RPro selects them out of a certain range of event k1. The range is

defined to be [k1 – r, k1 + r] excluding the k1 itself, where the

number r is referred as the Radius of the concurrency bug. In this

way, all priority change points are within the range [k1 – r, k1 + r].

Hence, RPro guarantees to trigger a concurrency bug with a prob-

ability of 1/(𝑛 × 𝑘 × 𝑟𝑑−2) which is (𝑘/𝑟)𝑑−2 times of the guar-

antee by PCT, if all events of the bug fall within the range, where

k and n are the number of events and the number of threads of the

given program, respectively.

In theory, the radius of a bug could be as large as the number of

the total events. Even a concurrency bug has very large radius, the

same bug can be manifested with a much smaller radius. That is, a

concurrency bug that must have very large distance (e.g., > 1,000)

is rare. After an event is selected, assuming the same concurrency

bug can be triggered by selecting another event at either distance

r1 or r2 from all events, where r1 ≪ r2 < k and k is the number of

total events. By randomly selecting an event, the probability to

trigger the event is 1/𝑘 + 1/𝑘 = 2/𝑘 (corresponding to selecting

either r1 or r2). However, if we restrict the radius to be r, where r1

< r ≪ r2, the probability becomes 1/𝑟 (corresponding to only

select r1), which can be significantly larger than 2/𝑘.

In practice, this radius is usually much smaller than the number of

total events (e.g., from 50 to 120 vs 400,000 or more events in our

experiments).

We have implemented RPro and evaluated it on a set of real-world

benchmarks. We run both PCT and RPro on each benchmark for

10,000 times. In the experiment, we configured two radiuses 10

and 50 to RPro. The experimental result shows that, with either

radius, RPro triggered each deadlock with a much higher probabil-

ity. That is, on average, RPro achieved >7x probabilities of that by

PCT. Particularly, on two large-scale benchmarks (i.e., two ver-

sions of MySQL), PCT failed to trigger any deadlock; whereas

RPro triggered the two deadlocks with probabilities of 0.0004 and

0.0055 (with radius 10) and 0.0018 and 0.0041 (with radius 50).

We also configured RPro with radius from 1 to 150 (or 300). The

experimental results show RPro achieved the highest probability

with the radius at most 114, even the events of some benchmarks

could be > 4 × 106. This shows that, in practice, a deadlock usual-

ly has a smaller radius (e.g., 114 vs 4 × 106).

The main contributions of this paper are as follows:

 It proposes a new approach RPro toward randomized testing

of deadlocks with probabilistic guarantees. Compared to

PCT, RPro has a larger probabilistic guarantee to trigger a

deadlock with depth of three or more.

 We have implemented RPro as a prototype tool to trigger

deadlocks. The experiment results demonstrate the effective-

ness of RPro compared to PCT. It also shows that the radius

of a concurrency bug is usually much smaller compared to

the number of events in a program.

The rest of this paper, Section 2 presents the preliminaries and the

motivation of our work. Section 3 presents our RPro approach.

Section 4 presents an experiment to evaluate RPro. Section 5 dis-

cusses the related works, followed by the conclusion in Section 6.

2. PRELIMINARIES AND MOTIVATIONS

2.1 Events and Deadlocks
An execution of a multithreaded program involves the following

kinds of events:

 acq(t, m) : A thread t acquires a lock m, acq(m) for short.

 rel(t, m): A thread t releases a lock m, rel(m) for short.

 others (e.g., memory read and write)

An execution trace (or a trace) is a sequence of events. A dead-

lock occurs if a set of threads wait mutually for a set of locks that

are held by other threads in the same set [15][32]. For example,

Figure 1 shows an example program with a deadlock D1. The

program has two threads t1 and t2 that totally execute eight events

(i.e., lock acquisitions and releases on locks m and n). Deadlock

D1 occurs if: thread t1 tries to acquire lock n after it acquired lock

m but thread t2 tries to acquire lock m after it acquired lock n. The

two threads then mutually wait for each other to release a lock.

2.2 The PCT Algorithm
We firstly explain the concept bug depth [12] of a concurrency

bug. A concurrency bug occurs if the involved events occurring

under a certain interleaving. In other words, there is one or more

ordering constraints among these events. If a concurrency bug

could occur in a way such that the number of required constraints

is minimal, we say the bug depth of this bug is the number of

these constraints. For example, deadlock D1 in Figure 1 occurs

only if both (1) the event acq(m) at site s01 occurs before the

events acq(m) at site s06 and (2) the event acq(n) at site s05 occurs

before the event acq(n) at site s02, as indicated by two arrows. The

two conditions are known as two ordering constraints of deadlock

D1. If only one of two ordering constraints is satisfied, deadlock

D1 cannot occur. Therefore, the bug depth of deadlock D1 is 2.

PCT firstly generates a scheduling prior to executing a program.

During runtime, it enforces an execution to follow its generated

scheduling. Hence, PCT can mathematically explore the inter-

leaving to trigger a concurrency bug of given bug depths. There-

fore, it can guarantee a probability to trigger a concurrency bug.

Algorithm 1 outlines the core idea of PCT. PCT accepts a pro-

gram P and the following parameters over P: a parameter n indi-

cating the approximated number of threads, a parameter k indicat-

Thread t1 Thread t2

s01 acq(m)

s02 acq(n)

s03 rel(n)

s04 rel(m)

s05 acq(n)

s06 acq(m)

s07 rel(m)

s08 rel(n)

Figure 1. An illustration of PCT on a simple deadlock D1.

357

ing the approximated number of events, and the parameter d indi-

cating the bug depth of the targeted concurrency bugs.

PCT is based on priorities to schedule all threads. In Step 1, PCT

randomly assigns n priorities d, d + 1, …, d + n – 1 to the n

threads, where a larger number indicates a larger priority. The

lowest d – 1 priorities 1, 2, … d – 1 are reserved for runtime

scheduling. Next (Step 2), from all k events (labeled from 1 to k),

PCT randomly selects d – 1 unique events k1, …, kd-1 as the pri-

ority change points. Each event ki is associated with a priority

value of i. Totally, the d – 1 priorities are 1, 2, …, d – 1. Finally

(Step 3), PCT executes the given program and changes the priori-

ties of all threads as follows:

 PCT only executes events from the thread with the largest

priority, and counts all executed events (starting from 1).

 If an event is counted as the number k' and k' is equal to ki

out of k1, …, kd-1, PCT changes the priority of the current

thread to be i. (The priority change brings a chance for

other threads to be executed.)

PCT repeats the above procedure until the execution terminates.

In practice, the scheduling generated by PCT is not always feasi-

ble. For example, PCT may first schedule a thread that is not

forked by the main thread or is disabled by operating system. In

this case, PCT schedules a thread with the largest priority out of

all enabled threads.

Illustration of PCT. We show an illustration of PCT on our ex-

ample in Figure 1. The program contains 2 threads and 8 events

(i.e., n = 2 and k = 8). Its deadlock D1 has a bug depth d = 2 as

indicated by two solid arrows. Therefore, PCT randomly assigns

two priorities 2 and 3 (i.e., d, …, d + n – 1) to the two threads. It

then randomly selects 1 (i.e., d – 1) priority change point and this

priority change point is reversed for runtime priority change. Sup-

pose that the randomly assigned priorities of threads t1 and t2 are 3

and 2 (indicated by the symbols and in Figure 1), respective-

ly, and the change points is 1 (i.e., right after executing the 1st

event of thread t1, indicated by the symbol). Then, PCT gener-

ates a scheduling for the example program toward triggering

deadlock D1, as indicated by the dotted (red) arrow in Figure 1.

(Please ignore whether the generated scheduling is feasible or not

as discussed in the last paragraph). During execution, PCT fol-

lows its schedule to execute the program. It firstly schedules

thread t1 (i.e., the thread with the largest priority) to execute. After

executing the event acq(m) at site s01, PCT counts the executed

events, where the count is 1 that is equal to the selected change

point 1. Hence, PCT changes the priority of thread t1 to be the 1st

reserved priority that is 1. And the priorities of threads t1 and t2

are 1 and 2, respectively. PCT then schedules thread t2 (that has a

larger priority) to execute its events and counts the executed

events. As there is only one priority change point which has been

consumed by thread t1, no priority of any thread would be

changed. Finally, after thread t2 executes event acq(n) at site s05

and further executes the event at site s06 (i.e., acq(m)), it fails as

the lock m is being held by thread t1. In this case, thread t2 is disa-

bled. PCT has to schedule thread t1 as it has the larger priority that

can be scheduled. When thread t1 tries to execute the event acq(n)

at site s02, it fails as the lock n is being held by thread t2, and a

deadlock occurs.

That is, in order to trigger deadlock D1 in the example, PCT

should select the first event of the thread with the largest priority

that are randomly assigned. The probability of this selection is

(1/2) × (1/8) = 1/16 , corresponding to select the first event

(with the probability of 1/8) of the thread with a largest priority

(with the probability of 1/2).

Intuitively from the above illustration, PCT targets to select a set

of priority change points that could form a minimal set of ordering

constraints to trigger a concurrency bug. Formally, given a pro-

gram P that contains at n threads and executes at k events, PCT is

able to find a concurrency bug of depth d with a probability at

least 1/(𝑛 × 𝑘𝑑−1) [12].

2.3 Motivations
PCT can avoid exploring similar interleaving mathematically,

resulting in relatively effective scheduling with repeatedly execut-

ing the same program. And it also has a probabilistic guarantee to

find concurrency bugs of given bug depths.

However, PCT utilizes the randomized generation of priority

change points. The randomized generation may become ineffec-

tive in practice if the bug depth is 3 or even larger. For example,

to detect data races or atomicity violations, the required bug

depths are usually 1 or 2 [12], respectively. If the bug depth is 1 or

2, the guaranteed probability is 1/𝑛 or 1/(𝑛 × 𝑘), respectively.

However, for real-world deadlocks, such bug depths could be 3 or

larger. In this case, PCT might become ineffective as its guaran-

teed probability decreases by a factor of 1/𝑘 if the bug depth in-

creases by one. For example, if the bug depth is 3, the guaranteed

probability becomes 1/(𝑛 × 𝑘2) . For real-world programs, the

number of events (i.e., k) is usually large; and hence, the guaran-

teed probability by PCT becomes much smaller. We illustrate this

by another real-world example shown in Figure 2.

The program in Figure 2(a) is adapted from a real-world deadlock

program (i.e., JDBC Connector 5.0 with bugID=2147). It con-

tains two threads t1 and t2 that may form a deadlock D2 on two

locks p and n (at sites s06, s08 of thread t1 and sites s15 and s16 of

thread t2) as shown in bold. Figure 2 (b) and (c) shows two differ-

ent scheduling to trigger deadlock D2. Unlike deadlock D1 in Fig-

ure 1, deadlock D2 requires more ordering constraints (i.e., the

two dotted arrows from site s14 to site s03 and from site s05 to site

s15) to be triggered, besides the two ordering constraints between

the events directly involved in deadlock D2 (i.e., the two solid

arrows from site s06 to site s16 and from site s15 to site s08). That is,

if thread t1 is firstly scheduled to execute as shown in Figure 2(b),

after executing the event rel(k) at site s02, thread t2 should be

scheduled to execute the two events acq(s) and rel(s) at sites s13

Algorithm 1: PCT(P, k, n, d)

Input P: a given program.

Input n: an approximation of the total number of threads.

Input k: an approximation of the total number of events.

Input d: a bug depth of the targeted concurrency bug.

1. Assign the n priority values d, d + 1, …, d + n – 1 randomly

to the n threads. (A larger number indicates a lager priority.)

2. Pick d – 1 unique random priority change points k1, …, kd-1

in the range [1, k]. These d – 1 priority change points are

ordered and each ki has an associated priority value of i.

3. Schedule the k threads by their priorities assigned in step 1

and count the events executed. After executing an event:

3.1 If the count becomes ki, change the priority of the cur-

rent thread to be i.

3.2 If a concurrency bug occurs, report the bug.

358

and s14. Otherwise, if thread t1 is allowed to execute events from

site s03 to site s07 (i.e., all events before site s08), thread t2 cannot

reach site s15 to execute event acq(n) as lock s is being held by

thread t1. Figure 2(c) also shows the second case if thread t2 is

firstly scheduled to execute, where thread t1 should be scheduled

to execute right before thread t2 executes event acq(s) at site s14.

For PCT, if we follow deadlock D1 to set up a bug depth of 2 (i.e.,

by only considering the two solid arrows in Figure 2(a)), it never

triggers deadlock D2 theoretically as the minimal number of or-

dering constraints to trigger deadlock D2 is 3, corresponding to the

scheduling shown in Figure 2(b). Even if we configure PCT to

work with the bug depth of 3, it has to assign thread t2 to have a

larger priority initially.

Note that, due to symmetric property, PCT could trigger deadlock

D1 with any one of two initial assignments of two priorities to two

threads under the bug depth of 2. That is, besides the priority as-

signments and change point selection shown in Figure 1, PCT can

trigger deadlock D1 by assigning priorities 3 and 2 to threads t2

and t1, respectively, and selecting a priority change point at site s05

as shown in Figure 3. The generated scheduling is denoted by a

dotted (red) arrow. However, not all concurrency bugs have a

symmetric property to be triggered, such as data races.

Besides, PCT treats all events uniformly. However, in practice, a

concurrency bug usually has a short depth to be exposed [17][39]

[42]. In other words, if one priority change point is selected, the

remaining priority change points should not be randomly selected

in practice. In Section 3, we introduce how our algorithm selects

more effective priority change points to trigger concurrency bugs

as well as the rationales.

Lastly, the generated scheduling of PCT is meaningful in theory.

During real execution, PCT has to resolve various thrashing. For

example, Figure 4 shows that a scheduling generated by PCT

indicated by the dotted (red) arrow, where the priority change

point (marked as) is right after evt2. The actual scheduling (de-

noted by the solid (green) arrow) differentiates the generate

scheduling as there is a pair of wait(m) and notify(m). This pair of

events requires that thread t1 has to wait after executing evt1 until

thread t2 sends a notification to thread t1. Such kinds of synchroni-

zations are very common [21][39]. But it is difficult to be consid-

ered by PCT, which may further reduce the probability of PCT to

trigger concurrency bugs.

3. RPRO ALGORITHM
This section presents our algorithm RPro. We firstly present the

design rationales of RPro, followed by the RPro algorithm and its

probabilistic guarantee.

3.1 Rationales of RPro
PCT is designed not to consider any program information, except

the basic program statistics (i.e., the approximations on the

number of threads and the number of events). It treats each thread

and each event uniformly. Therefore, for any given bug depth d, it

randomly selects d – 1 priority change points (Section 3.3

discusses why PCT selects d – 1 but not d priority change points).

This selection is fair to all events. We illustrate this selection

strategy in Figure 5(a). In Figure 5, the arrows under different

threads indicate the events of each corresponding thread. The

solid black circles indicate the events selected as priority change

points and the (red) dotted arrows indicate the communications

among all threads. The dotted area depicts the range among which

PCT or our RPro selects priority change points.

By following PCT, the selected priority change points are

uniformly distributed among all events, as shown in Figure 5(a).

Thread t1 Thread t2

evt1

wait(m)

evt2

evt3

evt4

evt5

notify(m)

evt6

Generated scheduling by PCT
An actual but complex scheduling

Figure 4. Comparison between a generated scheduling by PCT and

an actual scheduling.

Thread t1 Thread t2

s01 acq(m)

s02 acq(n)

s03 rel(n)

s04 rel(m)

s05 acq(n)

s06 acq(m)

s07 rel(m)

s08 rel(n)

Figure 3. The second way for PCT to trigger deadlock D1.

Thread t1 Thread t2 Thread t1 Thread t2

s01 acq(k) s01 acq(k)

s02 rel(k) s02 rel(k)

s03 acq(s) s03 acq(s)

s04 acq(n) s13 acq(s) s04 acq(n) s13 acq(s)

s05 rel(n) s14 rel(s) s05 rel(n) s14 rel(s)

s06 acq(p) s15 acq(n) s06 acq(p) s15 acq(n)

s07 acq(m) s16 acq(p) s07 acq(m) s16 acq(p)

s08 acq(n) s17 rel(p) s08 acq(n) s17 rel(p)

s09 rel(n) s18 rel(n) s09 rel(n) s18 rel(n)

s10 rel(m) s10 rel(m)

s11 rel(p) s11 rel(p)

s12 rel(s) s12 rel(s)

(b) A scheduling by PCT with
a bug depth of 4.

(c) A scheduling by PCT with
a bug depth of 3.

Thread t1 Thread t2

s01 acq(k)

s02 rel(k)

s03 acq(s)

s04 acq(n) s13 acq(s)

s05 rel(n) s14 rel(s)

s06 acq(p) s15 acq(n)

s07 acq(m) s16 acq(p)

s08 acq(n) s17 rel(p)

s09 rel(n) s18 rel(n)

s10 rel(m)

s11 rel(p)

s12 rel(s)

(a) The four ordering constraints
to trigger deadlock D2.

Figure 2. An example program p and with a deadlock D2, adapted from the deadlock of JDBC Connector 5.0 with bugID=2147.

359

However, our observation is that a multithreaded program is not

arbitrarily designed and developed. For example, there are many

synchronization primitives to coordinate different threads of a

program, such as wait()/notify()/barrier() operations [21] as well

as various customized conditionals [31]. That is, a concurrency

bug are unlikely to involve two or more events that have an

execution distance (in term of the number of events) as long as the

total number of events in the program. Contrastly, for a

concurrency bug, the execution distance of its events may be

centralized such that if one of its event occurs, the other events of

the same bug may also occur after or before several other events

[17][39]. Figure 5(b) illustrates this kind of scenarios: if an event

occurs, all other events of the same concurrency bug fall into the r

events of the first event.

In this paper, we define the Radius of a concurrency bug to be:

the largest distance of every two events involved in the bug during

execution, where the distance of two events is 1 + x and x is the

number of events executed or to be executed immediately (i.e., the

next event of a thread) between the two events. From this

definition, the radius of a concurrency bug is interleaving

sensitive. In Figure 2(b), by following the scheduling indicated by

green arrows, the radius of deadlock D2 is 9 as the trace is …, s15,

s03, s04, s05, s06, s07, s08, s16, …. Note that, although the event

acq(n) at site s15 is executed as the second last executed event of

deadlock D2, it is the next event to be executed after the execution

of rel(s) at site s14. Therefore, the event acq(n) at site s15 (under-

lined in the trace) is the first event to trigger deadlock D2 in the

execution in Figure 2(b). For the scheduling in Figure 2(c), the

radius of deadlock D2 is 11 where the corresponding trace is …,

s15, s01, s02, s03, s04, s05, s06, s07, s08, s16, ….

Our observation is that, during an execution, threads are actually

synchronized to execute their events with similar pace. Let's

consider the example in Figure 4 again. Suppose that the two

events evt2 and evt5 form a concurrency bug. (This kind of bugs

widely exist in real-world programs [31], e.g., shared conditionals

to control whether the next wait(m) or notify(m) should be

executed.) Then, the two events are actually very close: one is

right after the wait(m) event and the other is right before the

notify(m) event; and the two events wait(m) and notify(m) are

expected to execute almost at the same time (as the execution of

wait(m) has to be suspended until the notify(m) is executed).

Now, let's re-consider the real-world deadlock D2 in Figure 2

again. Both schedulings in Figure 2 (b) and (c) can successfully

trigger deadlock D2. When the deadlock occurs, the distance of

the involved events are 9 or 11. However, the program containing

this bug actually involves more than 5,000 additional events (see

the experiment in Section 4) not related to this bug. Compared to

the total number of events, the radius of 9 or 11 is much smaller.

Therefore, if the priority change points of a scheduling could be

selected within the radius of a concurrency bug, the probability to

trigger this bug could be significantly improved.

Let's consider the scheduling in Figure 2(c). There are two priority

change points as indicated by and . The probability for PCT

to select the two points is actually: (1/𝑘) × (1/𝑘) = 1/𝑘2 as

PCT selects them independently, where k is the number of total

events. However, if considering the radius (denoted as r) of dead-

lock D2, the probability would be (1/𝑘) × (1/𝑟) = 1/(𝑘 × 𝑟) as:

once the first priority change point is selected to be one of events

of deadlock D2 (corresponding to a probability of 1/𝑘), the re-

maining one is selected within the r events from the first one (cor-

responding to a probability of 1/𝑟). Therefore, the probability to

select the right priority change points could be improved to be

𝑘/𝑟 times of what PCT guarantees. For deadlock D2, as the radius

r = 11 and there are actually more than 5,000 events, the above

probability could be improved to be 5000/11 ≈ 455 times larger.

3.2 RPro Algorithm
To improve the probability of PCT, we present a new approach

based on our bug radius concept, known as RPro, namely Radius

aware Probabilistic testing.

RPro algorithm is straightforward, as shown in Algorithm 2. The

difference between PCT and RPro is highlighted (i.e., steps 2 and

3 in Algorithm 2). RPro takes a program P with the approximated

number of threads and events (i.e., n and k), as well as the bug

depth d and the radius r of the targeted concurrency bug. Prior to

executing the program P, RPro selects a random priority change

point k1 among all k events (step 2) like PCT. Then, it selects the

remaining d – 2 priority change points k2, …, kd-1 within the r

events starting from k1 (i.e., the range [k1 – r, k1) ∪ (k1, k1 + r])

(step 3). During runtime scheduling, it adopts the same scheduling

strategy as that of PCT to trigger the targeted bug.

Algorithm 2: RPro (P, k, n, d, r)

Input P: the given program.

Input n: the approximation of the total number of threads.

Input k: the approximation of the total number of events.

Input d: the bug depth of the targeted concurrency bug.

Input r: the radius of the targeted concurrency bug.

1. Assign the n priority values d, d + 1, …, d + n – 1 random-

ly to the n threads. (A larger number indicates a lager prior-

ity.)

2. Pick one unique random priority change point k1 in the

range [1, k].

3. If d is larger than 2, Pick d – 2 unique random priority

change points k2, …, kd-1 in the range [k1 – r, k1) ∪ (k1 +

r]. Together with k1, these d – 1 priority change points

are ordered and each ki has an associated priority value

of i.

4. Schedule the k threads by their priorities assigned in step 1

and count the events executed. After executing an event:

4.1 If the count becomes ki, change the priority of the cur-

rent thread to be i.

4.2 If a concurrency bug occurs, report the bug.

Threads t1, t2, … tn

(a) Uniform distribution (b) Centralized distribution

E
x
e
c
u
ti

o
n

Execution of events

Coordination among threads

Ranges of events to be selected by PCT or RPro

Threads t1, t2, … tn

… …

Figure 5. Two distribution models of bug events.

360

3.3 Guarantee and Limitations of RPro
In this subsection, we present an analysis on the probabilistic

guarantee of RPro on triggering concurrency bugs. We firstly pre-

sent Lemma 1 to show the formal guarantee of PCT.

Lemma 1. Given a concurrency bug of depth d from a program

that produces at most n threads that totally execute at most k

events, PCT guarantees to trigger this bug with a probability

of 1/(𝑛 × 𝑘𝑑−1) . And this probability is 1/𝑛 times of the

probability by selecting d – 1 ordered events among all k

events (i.e., 1/𝑘𝑑−1).

Proof. See the proof of PCT [12].

It is interesting that the guaranteed probability of PCT is 1/(𝑛 ×

𝑘𝑑−1) but not 1/𝑘𝑑. From the PCT algorithm (i.e., Algorithm 1),

we know that PCT only selects d – 1 but not d priority change

points, where d is also the number of minimal ordering constraints

to trigger the same bug. Actually, the first ordering constraint is

enforced by the initial priorities randomly assigned to all threads.

Let's consider the example in Figure 4 again and suppose that a

concurrency bug only requires 1 ordering constraint from evt1 to

evt6. Then, PCT only needs to assign a larger priority to thread t1

without selecting any priority change point (i.e., 1 – 1 = 0). This

probability is 1/(𝑛 × 𝑘1−1) = 1/𝑛 where n = 2 is the number of

threads of the program. One may refer the detailed proof in [12] to

find more about the proof of Lemma 1.

Theorem 1. Given a concurrency bug of depth d (d 2) from a

program that produces at most n threads that totally execute at

most k events, if the radius of this bug is less than or equal to r

(d–2 r < k), RPro guarantees to trigger this bug with a

probability of 1/(𝑛 × 𝑘 × 𝑟𝑑−2).

Proof sketch. We prove Theorem 1 based on PCT algorithm and

Lemma 1. Like PCT, RPro selects the first priority change

point randomly from all k events with a probability of 1/𝑘.

However, for the remaining d – 2 priority change points, RPro

selects them only within the r events of the first priority

change point, with a probability of 1/𝑟𝑑−2. As the all events

of the given bug are within the r events1 of any event from this

bug, the probability of RPro to exactly select all the priority

changes is x times of the probability of PCT, where x is:

𝑥 = ((1/𝑘) × (1/𝑟𝑑−2)) ÷ (1/𝑘𝑑−1) = (
𝑘

𝑟
)
𝑑−2

 .

By Lemma 1, PCT guarantees to trigger the given bug with a

probability of 1/(𝑛 × 𝑘𝑑−1), which is 1/𝑛 of that probability

by selecting d – 1 ordered events out of k events. Therefore,

RPro guarantees to trigger the given bug with a probability of:

(1/𝑛) × ((1/𝑘𝑑−1) × (
𝑘

𝑟
)
𝑑−2

) = 1/(𝑛 × 𝑘 × 𝑟𝑑−2).

Theorem 1 is proved.

Theorem 1 shows that RPro is more effective than PCT if the bug

radius r is smaller than the total number of events k. Of course,

PCT can be viewed as a special case of RPro where the radius is

the number of all events (i.e., r = k). Another point that should be

1 Strictly, if we randomly select one event out of a range with a radius r (i.e., by following

the step 3 of Algorithm 2), then the probability to select a certain event is 1/(2 × 𝑟) instead

of 1/𝑟.

mentioned is that, with increasing depth value d, the guaranteed

probability by RPro decreases much slower than that by PCT.

Discussion on the bug radius of RPro. PCT relies on the approx-

imated program execution information to generate scheduling but

does not consider the practical features of concurrency bugs, es-

pecially the deadlocks. Whereas, RPro takes this into considera-

tion. It is based on the radius of a concurrency bug to generate

scheduling. However, like the bug depth, this radius is also un-

known until a concurrency bug is detected. Therefore, if RPro

takes a smaller radius than the actual radius of the bug, it may fail

to select the right set of priority change points; hence, it may fail

to trigger any concurrency bug. And its guaranteed probability

becomes zero. If RPro takes a too large radius value than the actu-

al radius of the targeted concurrency bug, its guaranteed probabil-

ity may also decrease. For example, in the worst case, given that r

= k, RPro would have the same guaranteed probability as that of

PCT. Figure 6 shows such a comparison, where x-axis is the value

of radius r and the y-axis is the guaranteed probability. We use

rbug to denote the actual radius of a concurrency bug. As PCT is

unware of bug radius, it always has the same probabilistic guaran-

tee. For RPro, it guarantees either a probability of zero if the radi-

us is less than rbug or a larger probability if the radius is from rbug

to the number of events (i.e., k). In practice, even if the given

radius is less than rbug, RPro may still trigger occurrences of a

concurrency bug. This also applies to PCT because their

guaranteed probabilities are only the low bounds [12] and has

been verified in our experiments (see the Observation 1 in Section

4.3.2). In Figure 6, we also the practical probability of RPro.

3.4 Optimization for Deadlock Triggering
RPro is designed for triggering concurrency bugs with larger bug

depth. However, in this paper, we focus on deadlocks. And a

deadlock occurs only after the involved threads try to acquire

some locks but these locks are already acquired by the same set of

threads. That is, an acquisition may result in a deadlock occur-

rence but a release event cannot directly result in a deadlock oc-

currence. Therefore, RPro considers lock acquisition events but

discards lock release events. Hence, RPro only needs to select

priority change point among the half of events of a program (as a

release event is paired with an acquisition event).

3.5 Limitations
RPro considers the bug radius to select priority change points.

However, it still suffers from several limitations. Firstly, it might

be difficult to find a proper radius value in practice, although this

value is usually much smaller compared to the total number of

events. Secondly, compared to PCT, RPro restricts its priority

change points into a smaller range; hence, it may not be able to

expose those bugs with a large radius, although the probability for

PCT to find such a bug is small. Lastly, like PCT, RPro also re-

quires a larger number of executions to exhibit its effectiveness as

0

Bug Radius

Probability

1 (𝑛 × 𝑘𝑑−1

0

1 (𝑛 × 𝑘 × 𝑟𝑑−2

rbugrbug – 1

PCT: Guaranteed probability

RPro: Guaranteed probability

RPro: Probability in practice

r = k

Figure 6. Comparison of the probabilities of PCT and RPro with d > 2

361

both of them have probabilistic guarantees. From the last two

points, there is a tradeoff between the probability and the number

of executions (i.e., cost) to find a concurrency bug.

4. EXPERIMENT

4.1 Benchmarks
We collected a set of widely-used real-world benchmarks, includ-

ing: one Java program (i.e., JDBC Connector 5.0 [3]) and five

C/C++ program (i.e., Hawknl [1], SQLite [7], and three versions

of MySQL Database Server [4]). There are totally 10 test

cases and 10 unique deadlocks, covering most of deadlocks cases

[39]. All these benchmarks and their test cases have been used in

previous works multiple times [15][22][33][59] and are available

either online [1][4][5][7] or from the previous works [33][59].

Table 1 shows the statistics of all benchmarks, including bench-

mark names with version numbers (if available), Bug IDs (if

available), program size (SLOC [6]), the numbers of threads of

each benchmark ("prog") and its threads in each unique deadlock

("dlk"), the number of deadlocks ("#dlks", as a deadlock may

have two or more variants) in each benchmark. The next column

shows the total number of events ("# events") produced in the

execution. The last column shows the descriptions on how each

deadlock occurs.

4.2 Implementation and Experimental Setup
For Java programs, we used ASM 3.2 [2] to identify all "syn-

chronized" operations of each loaded class and wrapped them to

produce events. Following the mechanism in Java, we take each

"Object" as a lock instance. The C/C++ implementation was

based on Pin 2.10 [41] on Linux. We used the Probe mode of Pin

because the analysis of deadlock is a high level problem and there

is no need to monitor low level memory access in our case; be-

sides, the Probe mode provides almost native execution perfor-

mance [41]. We used Pin to instrument a C/C++ binary program

to produce events by wrapping the Pthread library functions.

Besides lock acquisition and release events, we also modeled

other synchronization events (e.g., wait(), notify(), barrier()) by

following FastTrack [21]. We then implemented the PCT and

RPro algorithms to work on generated events.

We conducted the experiment on four ThinkPad W540 work-

stations. Each workstation is configured with a 2.5 GHz (up to

3.4GHz) i7-4710MQ processor with eight-cores and 250G SSD,

installed with Ubuntu 14.04, GCC 4.8, and JDK 1.7. We

concurrently run each algorithm up to eight instances.

RPro requires a radius value. We selected two values 10 and 50 as

two radiuses for RPro and refer them as RPro10 and RPro50, respec-

tively. We firstly run each benchmark for 10,000 times under each

algorithm to collect the probabilities of each algorithm to trigger

the corresponding deadlocks from each benchmark. And the prob-

ability is computed to be the ratio of the number of the runs trig-

gering deadlocks out of all 10,000 runs. Note that some bench-

marks may contain one or more variants of the same deadlock;

and we treated these variants as the same deadlock.

To evaluate whether a short value of the radius is required to trig-

ger deadlocks in practice, we further configured RPro to run addi-

tional 10,000 times under each of the radiuses from 1 to 150 to

calculate the corresponding probabilities except on MySQL-1 and

MySQL-3. On these two benchmarks, we run them with radiuses

from 1 to 300 in order to show a clearer trend of the probability

changes by RPro.

4.3 Result Analysis
This section presents our analysis on the experimental result by

comparing RPro10, RPro50, and PCT on their probabilities to trig-

ger each deadlock. Finally, we analyze the effectiveness of RPro

with different radius values (i.e., 1 to 150 or 300).

4.3.1 Effectiveness Comparisons
Table 2 shows the probabilities of three algorithms on each

benchmark. The first column shows the benchmark name. The

second major column ("Program parameters") lists the pro-

gram information (i.e., the number of events k, the number of

threads n, and the bug depth d). These three parameters are col-

lected from executions and are used as the approximations of

three. The sub-column ("Guaranteed probabilities")

shows the guaranteed probabilities of three. The third major col-

umn lists the collected probabilities of PCT, RPro10 and RPro50, as

well as the ratio of probability increases ("") of RPro10 and RPro50

to the probabilities of PCT. The probability increase is calculated

by the following formula: = (RProx – PCT) ÷ PCT × 100%

(where x is 10 or 50). The last row also shows the average im-

provements on the probabilities of RPro10 and RPro50 to trigger all

deadlocks. We also use the symbol , , and to indicate

whether the probability increased, decreased, and did not changed,

respectively, in the two delta columns (i.e.,).

From the program parameters shown in Table 2 and the program

description shown in Table 1, these programs are representative as

they include large-scale ones. For example, MySQL-3 has more

than 1,000,000 lines of code and its executions in our experiment

produce more than 20 threads and more than 400,000 events.

Table 1. Statistics of benchmarks and deadlocks.

Benchmark Bug ID SLOC
threads

(prog/dlk)
dlks # events Deadlock descriptions

JDBC-1 (5.0) 2147 36.3K 3/2 4 5,090 Statement.executeQuery() and Conenction.prepareStatement()

JDBC-2 (5.0) 14927 36.3K 3/2 1 5,088 PreparedStatement.getWarnings() and Connection.close()

JDBC-3 (5.0) 31136 36.3K 3/2 1 5,050 Connection.prepareStatement() and Statement.close()

JDBC-4 (5.0) 17709 36.3K 3/2 2 5,080 PreparedStatement.executeQuery() and Connection.close()

Hawknl (1.6b3) n/a 9.3K 3 / 2 1 33 Nlshutdown() and nlclose()

SQLite (3.3.3) 1672 74.0K 3 / 2 2 16 sqlite3UnixEnterMutex() and sqlite3UnixLeaveMutex()

MySQL-1 (6.0.4a) 34567 1,093.6K 16 / 2 4 19,300 Alter on a temporary table and a non-temporary table

MySQL-2 (6.0.4a) 37080 1,093.6K 17 / 2 1 15,066 Insert and Truncate on a same table using falcon engine

MySQL-3 (5.5.17) 62614 1,282.7K 22 / 2 2 406,117 PUGE BINARY LOG acquires locks in wrong order

MySQL-4 (5.1.57) 60682 1,146.7K 19 / 3 6 444,621 SHOW INNODB STATUS deadlocks if LOCK_thd_data points to LOCK_open

362

From the second major column in Table 2, we observe that these

real-world deadlocks require three or more priority change points

to be triggered. Besides, the events of these deadlocks are hidden

within 5,000 to >400,000 events except on Hawknl and SQLite.

As a result, the guaranteed probabilities of all three approaches

are small (i.e., at the level of 10-6 to 10-30 except on Hawknl and

SQLite). Therefore, it is challenging to triggering these dead-

locks in practice.

However, we still observe that, both RPro10 and RPro50 has larger

guarantee probabilities except on SQLite (where only 16 events

were produced which are less than the radius 50 of RPro50). For

example, on JDBC-1, the guaranteed probability of RPro is at the

level of 10-6, which is about 102 larger than that of PCT (i.e., at

the level of 10-8). With increasing number of events, we could

observe that, the guarantee probabilities of RPro decrease much

slower than that by PCT. For example, on four versions of

MySQL, the guarantee probabilities of RPro is about 103 to 1019

larger than that by PCT.

From the last major column in Table 2, we observe that all three

techniques triggered all deadlocks with larger probabilities than

what they guaranteed, except for PCT on MySQL-3 and MySQL-

4. This result is consistent with the previous results evaluating

PCT [12][44] as a deadlock may occur in several ways. However,

on the two deadlocks form MySQL-3 and MySQL-4, PCT failed

to trigger any deadlock in 10,000 runs (i.e., producing a probabil-

ity of zero, highlighted in Table 2,); whereas RPro10 and RPro50

both triggered two deadlocks in 4 to 55 runs out of 10,000 runs.

With our strategy on selecting priority change points, RPro

achieved higher probabilities on triggering deadlocks. Table 2

shows that both RPro10 and RPro50 achieved an increases on the

probabilities from 5.44% to more than 5,400% except on MySQL-

1 on which, RPro10 achieved the same probability as PCT. On

average, the probability improvement of RPro was more than

770% times. This improvement is significant.

In summary from Table 2, we observe that the strategy of RPro is

much more effective than that of PCT over all benchmarks.

4.3.2 Effectiveness of RPro with Different Radiuses
Figure 7 shows the probabilities of our RPro on each benchmark

with different radiuses varying from 1 to 150 (or 300). In each

sub-figure of Figure 7, the x-axis shows the 150 (or 300) radiuses

and the y-axis shows the corresponding probability on triggering

each deadlock. On each subfigure, we show the point (i.e., peek

value) where RPro achieved the largest probability in the form of

"r = x, p = y", indicating that the achieved largest probability was

y when the radius was x. For comparison purpose, we also show

the probability of PCT in each sub-figure.

In Table 3, we further list the best radius (rbest) of RPro that pro-

duced the largest probability on each benchmark, as well as the

ratio of rbest to the number of events (i.e., 𝑟𝑏𝑒𝑠𝑡/#𝑒𝑣𝑒𝑛𝑡𝑠) except

for Hawknl and SQLite that produced two few events. Table 3

also includes the number of events, the number of threads, the bug

depth, and the largest probability for each benchmark. In Table 3,

we sort all rows according to the column rbest.

From Figure 7 and Table 3, we have the following four observa-

tions:

Observation 1. When the radius varied from 1 to 150 (or 300),

the probability of RPro on each benchmark firstly increased. After

the probability reached a certain value (i.e., the marked peek point

of each sub-figure), it began to decrease. And the increase speed

before the peek value was usually faster than the decrease speed

from the peek value. For example, on JDBC-1, the probability

was around 0.0024 when the radius is from 1 to 9; however, when

the radius increased from 10 to 17, the probabilities jumped from

about 0.0024 to around 0.0439. When the radius increased from

12 to 150, the probability gradually decreased from 0.0439 to

around 0.0072. This is roughly consistent with our theoretical

analysis on the guaranteed probability of RPro (see Figure 6).

Table 3. The best radiuses (rbest) of each benchmarks.

Benchmark

events

threads

bug

depth
𝒓𝒃𝒆𝒔𝒕*

𝒓𝒃𝒆𝒔𝒕

#𝒆𝒗𝒆𝒏𝒕𝒔
 Probability

Hawknl 28 3 3 2 - 0.4530

SQLite 16 3 3 2 - 0.6863

JDBC-2 5,050 3 3 3 0.059% 0.0632

JDBC-4 5,090 3 3 5 0.098% 0.1123

JDBC-3 5,080 3 3 11 0.217% 0.0229

JDBC-1 5,088 3 3 17 0.334% 0.0439

MySQL-4 444,621 19 3 20 0.005% 0.0062

MySQL-2 15,066 17 3 27 0.179% 0.0256

MySQL-1 19,300 16 3 47 0.244% 0.0022

MySQL-3 406,117 22 6 114 0.028% 0.0039

(* All rows are sorted on the data in this column.)

Table 2. Probability Comparisons of PCT and RPro where the two radiuses of RPro are 10 and 50 (RPro10 and RPro50, respectively).

Benchmark

Program parameters Probabilities

k: #

 events

n: #

threads

d: bug

 depth

Guaranteed probabilities
PCT RPro10 by RPro10 RPro50 by RPro50 PCT RPro10 RPro50

JDBC-1 5,090 3 3 1.29×10-8 6.55×10-6 3.27×10-6 0.0020 0.0070 250.00% 0.0168 740.00%

JDBC-2 5,088 3 3 1.29×10-8 6.55×10-6 3.28×10-6 0.0385 0.0489 27.01% 0.0437 13.51%

JDBC-3 5,050 3 3 1.31×10-8 6.60×10-6 3.30×10-6 0.0005 0.0208 4,060.00% 0.0043 760.00%

JDBC-4 5,080 3 3 1.29×10-8 6.56×10-6 3.30×10-6 0.0680 0.0858 26.18% 0.0717 5.44%

Hawknl 33 3 3 3.06×10-4 1.01×10-3 5.05×10-4 0.1755 0.3218 83.36% 0.2665 51.85%

SQLite 16 3 3 1.30×10-3 2.08×10-3 1.04×10-3 0.4326 0.5543 28.13% 0.5012 15.86%

MySQL-1 19,300 16 3 1.68×10-10 3.24×10-7 1.62×10-7 0.0004 0.0004 0.00% 0.0015 275.00%

MySQL-2 15,066 17 3 2.59×10-10 3.90×10-7 1.95×10-7 0.0088 0.0120 36.36% 0.0230 161.36%

MySQL-3 406,117 22 6 4.11×10-30 1.12×10-11 7.00×10-13 0.0000 0.0004 >300.00% 0.0018 >1,700.00%

MySQL-4 444,621 19 3 2.66×10-13 1.18×10-8 5.92×10-9 0.0000 0.0055 >5,400.00% 0.0041 >4,000.00%

 Avg.: >1,021.10% >772.30%

363

Note that, in practice, if PCT or RPro fails to select a set of right

priority change points, it is still possible to trigger the deadlock

due the randomness of program execution; however, the probabil-

ity should be smaller than what they guarantee. We have also

shown the trend of this practical probability changes in Figure 6,

which is roughly consistent with the curve in Figure 7. Besides,

when the radius increased to a larger value (e.g., more than 100),

the probabilities by RPro on some benchmarks were still larger

than that of PCT. There are two reasons. For some benchmarks

(e.g., JDBC-1, JDBC-2, JDBC-3, MySQL-1, MySQL-2, MySQL-

3, and MySQL-4), the radius is still much smaller than the number

of events; on other benchmarks (e.g., Hawknl and SQLite), our

optimization of RPro on deadlock triggering also played an im-

portant role.

Observation 2. Our benchmarks include programs of different

sizes and they also produced different number of events from less

than 100 to more than 400,000. From Figure 7 and Table 3, one

could observe that, roughly, a large-scale program have a larger

radius than a smaller one. However, one may also observe that a

program containing more threads have a larger radius. This also

indicates the complexity of deadlock triggering. For example,

MySQL-3 has the largest number of threads, the largest bug

Figure 7. Probabilities of RPro with different radiuses from 1 to 150 or 300. (The legend of subfigure (a) applies to all other subfigures.)

p=0.0020

r=17, p=0.0439

0.00

0.01

0.02

0.03

0.04

0.05

0 15 30 45 60 75 90 105 120 135 150

PCT

RPro

p=0.0385

r=3, p=0.0632

0.02

0.03

0.04

0.05

0.06

0.07

0 15 30 45 60 75 90 105 120 135 150

p=0.0005

r=11, p=0.0229

0.00

0.01

0.01

0.02

0.02

0.03

0 15 30 45 60 75 90 105 120 135 150

p=0.0680

r=5, p=0.1123

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0 15 30 45 60 75 90 105 120 135 150

p=0.1755

r=2, p=0.453

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 15 30 45 60 75 90 105 120 135 150

p=0.4326

r=2, p=0.6863

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0 15 30 45 60 75 90 105 120 135 150

p=0.0004

r=47, p=0.0022

-0.0001

0.0004

0.0009

0.0014

0.0019

0.0024

0 50 100 150 200 250 300

p=0.0088

r=27, p=0.0256

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0 15 30 45 60 75 90 105 120 135 150

p=0.0000

r=114, p=0.0039

-0.0001

0.0009

0.0019

0.0029

0.0039

0.0049

0 50 100 150 200 250 300

p=0.0000

r=20, p=0.0062

-0.0001

0.0009

0.0019

0.0029

0.0039

0.0049

0.0059

0.0069

0 15 30 45 60 75 90 105 120 135 150

(a) JDBC-1 (b) JDBC-2

(c) JDBC-3 (d) JDBC-4

(e) Hawknl (f) SQLite

(g) MySQL-1 (h) MySQL-2

(i) MySQL-3 (j) MySQL-4

364

depth, and the second largest number of events. It also required

the largest radius (i.e., 114) to trigger its deadlock. Besides, on

this benchmark, the largest probability produced by RPro is the

smallest one among all the largest probabilities on other bench-

marks. Actually, PCT also produced the smallest (i.e., 0.0000)

probability on this benchmark (as well as on MySQL-4). We will

further investigate the correlation between radius and program

parameters including the program size and the number of threads.

Observation 3. The radius of RPro to effectively trigger each

deadlock is usually much smaller, compared with the number of

events from the same program. For example, except on Hawknl

and SQLite that produced too few events, the best radius (rbest) of

each program is less than 0.35% of the corresponding number of

events, as shown in the column "𝑟𝑏𝑒𝑠𝑡/(#𝑒𝑣𝑒𝑛𝑡𝑠)" in Table 3. There-

fore, for deadlocks with larger bug depths, RPro is more effective

than PCT. For example, on MySQL-3 where the bug depth is 6,

PCT never triggered any occurrence of the deadlock out of 10,000

runs; whereas, RPro successfully triggered it in 4 to 18 runs as

shown in Table 2. Besides, RPro triggered 39 occurrences of the

deadlock when the radius is 114 (see Figure 7 (i)).

Observation 4. Figure 7 also shows that on all benchmark, the

probabilities of RPro exhibited different vibrations with increasing

radius values, although the overall trends are clear. This becomes

particularly obvious on four version of MySQL benchmarks. We

are interested in this phenomenon but we have not find the cause.

In summary, this experiment further validated the effectiveness of

RPro that selects priority change points based on the radiuses of

deadlocks. It also shows that such radius is much smaller in prac-

tice than the total number of events of the same program.

5. RELATED WORK
In this section, we review related work on (1) deadlock detection,

and (2) fixing and recovery of concurrency bugs.

5.1 Deadlock Detection
Detection of deadlocks is mainly based on detection of cycles in

lock order graphs [8][10][11][18][28][40][45][56][61] or cyclic

lock dependencies on lock dependency relation [15][16][32]. Both

static and dynamic approaches could detect them [8][18][45][52]

[56][61]. Static approaches may report false positives [61] com-

pared as they cannot precisely infer the runtime information, even

with various filters [45]. Although dynamic approaches are rela-

tively precise, they also report false positives. Hence, many works

target on detecting real ones through reachability analysis or ac-

tive testing [17][19][31] [34]. Other works, recently, focus on how

to actually trigger occurrences of real-world deadlocks by search-

ing for possible scheduling [13][16][17][32][53].

ESD [64] synthesizes an execution from a core dump file of an

execution with a deadlock occurrence. PENELOPE [57] also syn-

thesizes part of execution to replay an observed atomicity viola-

tions or deadlocks. These techniques may fail due to the lack of

thread interleaving and test cases.

ConTeGe [50] targets to generate concurrent test cases so as to

trigger an expected concurrency bug. OMEN [54] further synthe-

sizes executions for deadlock triggering based on ConTeGe. Sher-

lock [19] actively infers test cases based on interleaving con-

straints of threads involved in a targeted deadlock via concolic

executions [55].

Deadlocks easily exist in database applications (e.g., MySQL Da-

tabase Servers). These deadlocks could also be detected and

prevented by analyzing hold-and-wait relations among threads

and locks [26][27].

On the other hand, PCT and RPro focus on random testing. PCT

has a probabilistic guarantee to find concurrency bugs including

deadlocks of given bug depths. RPro further takes bug radius into

consideration to improve the probabilities of PCT both

theoretically and experimentally.

5.2 Concurrency Bug Fixing and Recovery
Manual bug fixing not only takes a long time [29] but is also error

prone [62]. Recently, automated bug fixing become popular [14]

[23][24][25][35][49][60][66]. Most of these techniques on fixing

concurrency bugs insert new locks (known as gate locks) statical-

ly or dynamically to serialize all executions of threads involved in

a concurrency bug, including AFix [29][30], Axis [37], Grail [38],

Gadara [59], and [46]. One of challenges on fixing concurrency

bugs is whether new concurrency bugs could be introduced. For

example, by introducing new locks to fix atomicity violations or

deadlocks, new deadlocks may also be introduced [37][38][46].

Even manual fixing may also introduce deadlocks (e.g., 16.4%

incorrect fixing indeed introduced new deadlocks [62]). Axis [37]

further iteratively fixes introduced deadlocks by adding more new

gate locks. Grail [38] adopts Petri-net analysis to eliminate such

introduced deadlocks [59] which, however, is only applicable to

deadlocks with two threads [38]. DFixer [14] is designed to fix

deadlocks without introducing new deadlocks. Our RPro could be

easily adapted to test for deadlocks in fixed program by selecting

priority change points near to the events of the original deadlocks.

Recovery techniques could be integrated with deadlock detection

and fixing. Sammati [51] aims to provide deadlock recovery by

rolling back the executed operations, once a deadlock is detected.

ConAir [65] tries to recover most concurrency bugs including

deadlock. Lin et al. [36] propose to change lock acquisition primi-

tives to the corresponding primitives with trials (e.g., from

pthread_mutex_lock to pthread_mutex_trylock) to

partially fix a deadlock. They further propose to recover program

executions once a deadlock occurs. However, there are still chal-

lenges for recovery from deadlock occurrence as discussed in [36].

6. CONCLUSION
Existing randomized scheduling might be ineffective to trigger

concurrency bugs. PCT randomly schedules a program based on

priorities generated before executing a program and probabilisti-

cally guarantees to trigger concurrency bugs. However, PCT may

also become ineffective for concurrency bugs with larger bug

depths such as complex deadlocks. We proposed the bug radius

concept and RPro approach to generate priorities based on bug

radius. RPro has a larger probabilistic guarantee to trigger concur-

rency bugs with bug depth of three or more. The experiment on a

set of real-world program also shows that RPro was much effec-

tive on 10 unique deadlocks than PCT. In future, we will apply

RPro to trigger other kinds of concurrency bugs.

7. ACKNOWLEDGEMENT
We thank anonymous reviewers for their invaluable comments

and suggestions on improving this work. This work is supported

in part by National 973 program of China (2014CB340702), and

National Natural Science Foundation of China (NSFC) (grant No.

61502465, 91418206, 61472318), and National Science Founda-

tion (DGE-1522883, CCF-1500365).

365

8. REFERENCES
[1] HawkNL, http://hawksoft.com/hawknl.

[2] ASM 3.2, http://asm.ow2.org.

[3] JDBC Connector 5.0, http://www.mysql.com.

[4] MySQL, http://www.mysql.com.

[5] MySQL Bugzilla, http://bugs.mysql.com.

[6] SLOCCount 2.26. http://www.dwheeler.com/sloccount.

[7] SQLite, http://www.sqlite.org.

[8] R. Agarwal, S. Bensalem, E. Farchi, K. Havelund, Y. Nir-

Buchbinder, S. D. Stoller, S. Ur, and L. Wang. Detection of

deadlock potentials in multithreaded programs. IBM Journal

of Research and Development, Vol. 54 (5), 520–534, 2010.

[9] Y. Ben-Asher, Y. Eytani, E. Farchi, and S. Rr. Producing

scheduling that causes concurrent programs to fail. In Proc.

PADTAD, 37–40, 2006.

[10] S. Bensalem and K. Havelund. Scalable dynamic deadlock

analysis of multi-threaded programs. In PADTAD, 2005.
[11] S. Bensalem, J.C. Fernandez, K. Havelund, and L. Mounier.

Confirmation of deadlock potential detected by runtime

analysis. In Proc. PADTAD, 41−50, 2006.
[12] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte.

A randomized scheduler with probabilistic guarantees of

finding bugs. In Proc. ASPLOS, 167–178, 2010.

[13] Y. Cai, C. Jia, K. Zhai, and W.K. Chan. ASN: A Dynamic

barrier-based approach to confirmation of deadlocks from

warnings for large-scale multithreaded programs. IEEE

Transactions on Parallel and Distributed Systems (TPDS),

26(01), 13−23, 2015.

[14] Y. Cai and L.W. Cao. Fixing Deadlocks via Lock Pre-

Acquisitions. In Proc. ICSE, 1109–1120 , 2016.

[15] Y. Cai and W.K. Chan. Magiclock: scalable detection of

potential deadlocks in large-scale multithreaded programs.

IEEE Transactions on Software Engineering (TSE), 40(3),

266–281, 2014.

[16] Y. Cai and W.K. Chan. MagicFuzzer: scalable deadlock

detection for large-scale applications. In Proc. ICSE,

606−616, 2012.

[17] Y. Cai, S. Wu, and W.K. Chan. ConLock: A constraint-based

approach to dynamic checking on deadlocks in multithreaded

programs. In Proc. ICSE, 491–502, 2014.

[18] J. Deshmukh, E. A. Emerson, and S. Sankaranarayanan.

Symbolic deadlock analysis in concurrent libraries and their

clients. In Proc. ASE, 480–491, 2009.

[19] M. Eslamimehr and J. Palsberg. Sherlock: scalable deadlock

detection for concurrent programs. In Proc. FSE, 353–365,

2014.

[20] E. Farchi, Y. Nir-Buchbinder, and S. Ur. A cross-run lock

discipline checker for Java. In PADTAD, 2005.

[21] C. Flanagan and S. N. Freund. FastTrack: efficient and pre-

cise dynamic race detection. In Proc. PLDI, 121–133, 2009

[22] P. Gerakios, N. Papaspyrou, K. Sagonas, and P. Vekris.

Dynamic deadlock avoidance in systems code using

statically inferred effects. In Proc. PLOS, Article No. 5,

2011.

[23] C. L. Goues, S. Forrest, and W. Weimer. Current challenges

in automatic software repair. Software Quality Journal,

21(3): 421–443, 2013.

[24] C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A

systematic study of automated program repair: fixing 55 out

of 105 bugs for $8 each. In Proc. ICSE, 3–13, 2012.

[25] C. L. Goues, T. Nguyen, S. Forrest and W. Weimer.

GenProg: A generic method for automated software repair.

IEEE Transactions on Software Engineering (TSE), 38(1):

54-72, 2012.

[26] M. Grechanik, B.M. M. Hossain, U. Buy, and H. Wang.

Preventing database deadlocks in applications. In Proc.

ESEC/FSE, 356–366, 2013.

[27] M. Grechanik, B.M. M. Hossain, and U. Buy. Testing

database-centric applications for causes of database

deadlocks. In Proc. ICST, 174–183, 2013.

[28] K. Havelund, Using runtime analysis to guide model

checking of java programs. In Proc. SPIN, 245–264, 2000.

[29] G. Jin, L.H, Song, W. Zhang, S. Lu, B. Liblit. Automated

atomicity-violation fixing. In Proc. PLDI, 389–400, 2011.

[30] G. Jin, W. Zhang, D. Deng, B. Liblit, S. Lu. Automated

concurrency-bug fixing. In Proc. OSDI, 221 - 236, 2012.

[31] P. Joshi, M. Naik, K, Sen, and D. Gay. An effective dynamic

analysis for detecting generalized deadlocks. In Proc. FSE,

327–336, 2010.

[32] P. Joshi, C.S. Park, K. Sen, amd M. Naik. A randomized

dynamic program analysis technique for detecting real

deadlocks. In Proc. PLDI, 110–120, 2009.

[33] H. Jula, D. Tralamazza, C. Zamfir, and G.e Candea.

Deadlock immunity: enabling systems to defend against

deadlocks. In Proc. OSDI, 295–308, 2008.

[34] V. Kahlon, F. Ivančić, and A. Gupta. Reasoning about

threads communicating via locks. In Proc. CAV, 505–518,

2005.

[35] S. Khoshnood, M. Kusano, and C. Wang. ConcBugAssist:

Constraint solving for diagnosis and repair of concurrency

bugs. In Proc. ISSTA, 165–176, 2015.

[36] Y. Lin and S. S. Kulkarni. Automatic repair for multi-

threaded programs with Deadlock/Livelock using maximum

satisfiability. In Proc. ISSTA, 237–247, 2014.

[37] P. Liu and C. Zhang. Axis: automatically fixing atomicity

violations through solving control constraints. In Proc. ICSE,

299–309, 2012.

[38] P. Liu, O. Tripp, and C. Zhang. Grail: context-aware fixing

of concurrency bugs. In Proc. FSE, 318–329, 2014.

[39] S. Lu , S. Park , E. Seo , Y.Y. Zhou. Learning from mistakes:

a comprehensive study on real world concurrency bug

characteristics. In Proc. ASPLOS, 329–339, 2008.

[40] Z.D. Luo, R. Das, and Y. Qi,. MulticoreSDK: a practical and

efficient deadlock detector for real-world applications. In

Proc. ICST, 309–318, 2011.

[41] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.

Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:

building customized program analysis tools with dynamic

instrumentation. In Proc. PLDI, 191–200, 2005.

[42] M. Musuvathi and S. Qadeer. Iterative Context Bounding for

Systematic Testing of Multithreaded Programs. In Proc.

PLDI, 446–455, 2007.

366

[43] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. Arumuga

Nainar, and I. Neamtiu. Finding and reproducing Heisenbugs

in concurrent programs. In Proc. OSDI, 267–280, 2008.

[44] S. Nagarakatte, S. Burckhardt, M. M.K. Martin, and M.

Musuvathi. Multicore acceleration of priority-based

schedulers for concurrency bug detection. In Proc. PLDI,

2012, 543–554, 2012.

[45] M. Naik, C.S. Park, K. Sen, and D. Gay. Effective static

deadlock detection. In Proc. ICSE, 386–396, 2009.

[46] Y. Nir-Buchbinder, R. Tzoref, and S. Ur. Deadlocks: from

exhibiting to healing. In Proc. RV, 104–118, 2008.

[47] S. Park. Debugging non-deadlock concurrency bugs. In Proc.

ISSTA, 358–361, 2013.

[48] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity

violation bugs from their hiding places. In Proc. ASPLOS,

25–56, 2009.

[49] Y. Pei, C. A. Furia, M. Nordio, and B. Meyer. Automatic

program repair by fixing contracts. In Proc. FASE,

8411:246–260, 2014.

[50] M. Pradel and T. R. Gross. Fully automatic and precise

detection of thread safety violations. In Proc. PLDI, 521–

530, 2012.

[51] H. K. Pyla and S. Varadarajan. Avoiding deadlock

avoidance. In Proc. PACT, 75–86, 2010.

[52] R. Raman, J.S. Zhao, V. Sarkar, M. Vechev, and E. Yahav.

Scalable and precise dynamic datarace detection for

structured parallelism. In Proc. PLDI, 531–542, 2012.

[53] M. Samak and M.K. Ramanthan. Trace driven dynamic

deadlock detection and reproduction. In Proc. PPoPP, 29–42,

2014.

[54] M. Samak and M.K. Ramanathan. Multithreaded test

synthesis for deadlock detection. In Proc. OOPSLA, 473–

489, 2014.

[55] K. Sen and G. Agha. CUTE and jCUTE: concolic unit testing

and explicit path model-checking tools. In Proc. CAV, 419–

423, 2006.

[56] V.K. Shanbhag. Deadlock-detection in java-library using

static-analysis. In Proc. APSEC, 361–368, 2008.

[57] F. Sorrentino, A. Farzan, and P. Madhusudan. PENELOPE:

weaving threads to expose atomicity violations. In Proc.

FSE, 37–46, 2010.

[58] R. Surendran, R. Raman, S. Chaudhuri, J. Mellor-Crummey,

and V. Sarkar. Test-driven repair of data races in structured

parallel programs. In Proc. PLDI, 15–25, 2014.

[59] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke.

Gadara: dynamic deadlock avoidance for multithreaded

programs. In Proc. OSDI, 281–294, 2008.

[60] W. Weimer, S. Forrest, C. L. Goues, and T. Nguyen.

Automatic program repair with evolutionary computation.

Communications of the ACM (CACM), 53(5): 109–116,

2010.

[61] A. Williams, W. Thies, and M.D. Ernst. Static deadlock

detection for java libraries. In Proc. ECOOP, 602–629, 2005.

[62] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L.

Bairavasundaram. How do fixes become bugs? In Proc. FSE,

26–36, 2011.

[63] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple: a

coverage-driven testing tool for multithreaded programs. In

Proc. OOPSLA, 485–502, 2012.

[64] C. Zamfir and G. Candea. Execution synthesis: a technique

for automated software debugging. In Proc. EuroSys, 321–

334, 2010.

[65] W. Zhang, M. de Kruijf, A. Li, S. Lu, and K. Sankaralingam.

ConAir: featherweight concurrency bug recovery via single-

threaded idempotent execution. In Proc. ASPLOS, 113–126,

2013.

[66] J. Zhou, H. Zhang, and D. Lo. where should the bugs be

fixed? - more accurate information-retrieval-based bug

localization based on bug reports. In Proc. ICSE, 14–24,

2012.

367

